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Abstract

The paper proposes an overview of
different information fusion prob-
lems in the context of multiple
source spatial data. Problems raise
from the uncertainty and possible in-
consistency of information as in any
information fusion situations, but
also from the fact that sources may
partition the space in different ways,
or may use different partitions of
attribute domains or even different
conceptual taxonomies or ontolo-
gies, for assessing symbolic pieces of
data. The paper discusses represen-
tation issues and outlines possible
approaches to these problems.
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1 Introduction

The management of multiple source, sym-
bolic or numerical, information raises differ-
ent forms of fusion problems due to the un-
certainty and the heterogeneity of information
[5]. The spatial distribution of information in
geographical information systems [1, 12, 14]
adds new features to these problems such as
the use of different space partitions by the
sources or the possible dependencies between
the pieces of information pertaining to parcels
that are close.

Also spatial information may involve numeri-
cal as well as symbolic attributes whose eval-

uation may use different vocabularies accord-
ing to the sources. Spatial information fu-
sion issues may more generally take place in
a variety of information handling problems
such as the management of multiple source
spatial databases systems, the prediction or
the detection of changes over time of land-
cover parameters (e.g., [17]), or in best loca-
tion decision problems using multiple infor-
mation sources and multiple criteria.

The paper is organized in the following way.
Section 2 discusses issues related to the rep-
resentation of spatial information, in terms
of single or multiple-valued attributes which
may be imprecise or fuzzy, including the dis-
tinction between positive and negative infor-
mation. Section 3 introduces the notions of
refinement and coarsening of a partition and
examines the related issues of attribute val-
ues propagation. Discussing these represen-
tation issues, which involve label ontologies
and space partitions, is clearly a necessary
prerequisite for defining meaningful fusion op-
erations. Section 4 and 5 survey different fu-
sion problems raised by the handling of spa-
tial information, for merging multiple-source
information pertaining to the same parcels or
to different partitionings of the space.

2 Representation of spatial
information

In the field of spatial information, as in other
fields, information may be imprecise, per-
vaded with uncertainty or be inconsistent.
The specific aspect of spatial information is
that information is associated to parcels of



land (the parcels are defined by a partition
of the land).

Since we are dealing with spatial information,
attribute values pertain to parcels, but there
may be some ambiguity on the way they apply
to the parcels (which are themselves sets of
“points”). Moreover the values may be not
just elements of an attribute domain, but may
be symbolic labels taken from an ontology.

A parcel p is described in terms of several
attributes (or evaluation criteria) that have
values. Their values may be numerical or
symbolic. Numerical attribute values may be
imprecise or fuzzy. A symbolic value can be
based on labels belonging to a given vocabu-
lary. The vocabulary is supposed to be orga-
nized into an ontology that specifies special-
ization/generalization relations between con-
cepts. For instance, Figure 1 provides an ex-
ample of (a part of) an ontology about veg-
etation (where arrows refer to generalization
relations).

vegetation

meadow wood cultivated plant

bush fruit tree ornamental tree cereal

fig tree cherry tree magnolia

⊥

Figure 1: Example of ontology

Observe that an ontology may not have, in
general, a lattice structure, which requires
that each pair of nodes has a unique least up-
per bound and a unique greatest lower bound.
The ontology of Figure 1 is not a lattice since,
for instance, there is no greatest lower bound
of {“wood”, “cultivated plant”}, indeed there
are two elements, namely “fruit tree” and “or-
namental tree” which are maximal among the
labels that are lower than “wood” and “culti-
vated plant”, but none of them is greater than
the other.

A symbolic attribute value may involve sev-
eral labels. Such a situation may correspond
to very different intended meanings. Let b and
c be two distinct labels (in the following, for
the sake of simplicity, only two labels are con-
sidered, but the definitions are similar when
considering combinations of any number of la-
bels). Let a(p) denote the available informa-
tion about the value of attribute a on parcel
p. a(p) can be specified by means of combina-
tion of terms in the ontology associated with
attribute a.

Then we may have to represent imprecise in-
formation, or multiple valued information, or
information with a positive or negative flavor.

2.1 Single-valued information

Single-valued information refers to the situa-
tion when there should be a unique value for
a given attribute for a given object (here a
parcel). This value may be more or less pre-
cisely known. Imprecision refers to the case
where several values are still eligible. This
value may be numerical or symbolic. In par-
ticular in case of symbolic information, the
value can be expressed in terms of disjunc-
tion or conjunction of symbols. When sym-
bols are labels that belong to an ontology they
are themselves more or less precise inasmuch
there may exist more specialized labels in the
ontology.

A disjunctive piece of information, denoted by
a(p) = b∨ c, expresses imprecision, i.e., either
b or c may be appropriate for assessing a(p).
Here, ∨ is the classical Boolean connective.

For instance, coverage(p) = “rocks” ∨ “sand”
is to be understood as parcel p is uniformly
covered by rocks or uniformly covered by
sand, but we do not know what is the real
coverage among these two possibilities.

Suppose b1, . . . , bm and c1, . . . , cn be special-
izations of b and c respectively in the con-
sidered ontology. Then, when the ontology is
complete (i.e., there is no other possible spe-
cialization for b than the known b1, . . . , bm and
the same holds for c), a(p) = b∨ c also means
a(p) = b1∨. . .∨bm∨c1∨. . .∨cn. However, the



more concise expression b∨ c is generally pre-
ferred. More generally a(p) can be assessed
under the form of a possibility distribution
over a set of labels, reflecting a weighted dis-
junction.

In case c generalizes b (or equivalently b spe-
cializes c), we should have formally b ∨ c = c.
However in practice, one may state a(p) is “ce-
real or vegetation” with the intended meaning
that a(p) is more plausibly (uniformly) cov-
ered by cereals, but it is somewhat possible
that the parcel should be covered (uniformly)
by another type of vegetation. This might be
viewed as a symbolic possibility distribution
π semantically defined by

π(ω) =




1 if ω |= b,
α < 1 if ω |= c ∧ ¬b,
0 otherwise.

Attribute values may be also expressed by the
linguistic conjunction of labels. This can re-
fer to at least two different uses, one single-
valued which is discussed in this subsection
and another that refers to a multiple-valued
attribute that is considered in the following
subsection.

A conjunctive expression, denoted by a(p) =
b ∧ c, means that the parcel is covered uni-
formly by something that can be described
both by b and c. Here, the symbol ∧ is the
classical Boolean conjunction. This is a way
to make less imprecise a description (e.g., in
Figure 1 “wood” ∧ “cultivated plant” is equiv-
alent to “fruit tree” ∨ “ornamental tree”).

2.2 Multiple-valued information

A multiple-valued piece of information, de-
noted by a(p) = b & c, expresses that at-
tribute a may have simultaneously several val-
ues (in contrast with the previous subsection)
and that the attribute value is the subset
{b, c}, i.e., both b and c applies to parcel p
in the sense of attribute a. Here & is a non-
classical, idempotent, connective.

Indeed, the subset {b, c} has a conjunctive
meaning that contrasts with the disjunctive
meaning of a possibility distribution used for

modeling b∨c as discussed above [18]. For in-
stance, coverage(p) = “rocks” & “sand” then
means that p is both covered by rocks and by
sand. We may then want to further distin-
guish between the case where p is uniformly
covered by a mixture of rocks and sand and
the case where a subpart of p is only covered
by rocks while the other subpart is only cov-
ered by sand. In this latter case, the informa-
tion may be augmented with the respective
proportions x and y of the surface of p cor-
responding to b and c. Namely, x% of the
parcel is b and y% of the parcel is c where x
and y can be known more or less precisely and
x + y ≤ 1 (x + y < 1 meaning that the value
is not known on the whole part of the parcel).

In case b specializes c, in a multiple-valued
pieces of information, one may suspect that
since the captor has been able to detect b,
the coverage of the rest of the parcel corre-
spond to interpretations of c that exclude b,
since otherwise the captor should have been
able to detect b on the rest of the parcel as
well (provided that the captors have the same
performance everywhere).

Lastly, note that pieces of information refer-
ring to multiple-valued attributes may be in-
complete or imprecise also. For instance, a
parcel known to exhibit “rocks” and “sand”
may reveal later to also include, say “water”.
More generally, imprecise multiple-valued in-
formation can be represented by means of pos-
sibility distributions on the power set of the
attribute domain. For instance, the coverage
of the parcel is made of “wood and meadow”
or “wood and cultivated plant”, is represented
by associating a possibility equal to 1 to
each of the subsets {“wood”, “meadow”} and
{“wood”, “cultivated plant”}. Moreover, a
possibility distribution on the power set of an
attribute domain can be approximated from
above and from below by two possibility dis-
tributions on this domain [11].

2.3 Positive vs. negative information

Generally speaking, there are two ways of in-
terpreting information (should it be numerical
or symbolic).



• The information can be interpreted “neg-
atively”. Namely, any interpretation that
is not compatible with the stated pieces
of information is judged to be impossible.
This kind of information can be termed
as “exhaustively closed”. This may ap-
ply to multiple-valued or single-valued
information, e.g., there are “rocks” and
“sand” (and nothing else), or, e.g., the
parcel is uniformly covered by “meadow”’
or by “wood” (but no other coverage is
possible).

• However, there exists also a positive type
of understanding that focuses on what
is possible for sure (because it has been
observed), and does not refer to what is
known to be impossible. This kind of in-
formation can be viewed as an “open”
set of values, as in the “water” example
above. The positive understanding is also
possible with single-valued disjunctive in-
formation (see, e.g., [8]), for instance,
coverage(p) =“meadow” ∨ “wood” may
mean that the parcel is uniformly covered
by meadow, or by wood, or by something
else.

3 Coarsening and refining parcels

As already said, the considered space S is sup-
posed to be partitioned into a set of parcels
pi such that ∀i, pi �= ∅, ∀i, j, pi ∩ pj = ∅

and ∪ipi = S. For the sake of simplicity, we
assume that there is no fuzziness about the
frontiers between parcels. However, in case of
multiple source information, each source may
refer to a different partition of S for providing
the attribute value information.

Given two partitions P = {p1, . . . , pr} and
P ′ = {p′1, . . . , p′s}, one can define a refine-
ment/coarsening relation, that induces a par-
tial order 	 between the partitions. Namely,

Definition 1 (Coarsening and refinement)
P 	 P ′ ⇔ ∀pi ∈ P,∃p′j ∈ P ′, pi ⊆ p′j
P � P ′ ⇔ P 	 P ′ and not P ′ 	 P

If P � P ′ then P is said to refine P ′, and P ′

is said to coarsens P .

Let ref(P,P ′) be the largest partition in
the sense of 	 that refines both P and P ′,
and coar(P,P ′) be the smallest partition that
coarsens both P and P ′.

Given two distinct partitions P and P ′, it
is always possible to build the two partitions
ref(P,P ′) and coar(P,P ′). See Figure 2 for
an example.

P P’ ref(P,P’) coar(P,P’)

Figure 2: Refinement and coarsening

This raises the problem of propagating at-
tribute values attached to parcels when refin-
ing or coarsening a partition.

3.1 Numerical attribute values

We first discuss the case of numerical informa-
tion. There are different situations according
as the attribute is spatially pointwise, or not:

• If the attribute a is “spatially pointwise”
then a can be seen as a pointwise func-
tion of x where x ranges on the parcel
p. For example, altitude is such an at-
tribute: each point of the parcel has an
altitude value. Then a parcel p is nat-
urally associated with a pair of minimal
and maximal values u(p) = minx∈p a(x)
and u(p) = maxx∈p a(x).

Hence propagation of such pairs through
refinement/coarsening is easy thanks to:

u(p1 ∩ p2) = max(u(p1), u(p2))
u(p1 ∩ p2) = min(u(p1), u(p2)).

Note that sometimes intersection leads
to an empty interval, which expresses
inconsistency. When consistency holds
u(p1 ∩ p2) ≤ u(p1 ∩ p2).

u(p1 ∪ p2) = min(u(p1), u(p2))
u(p1 ∪ p2) = max(u(p1), u(p2))

This is the thesis of C-calculus [6, 7].



• If the attribute is not “spatially point-
wise”, the problem is different. We then
need to know how a(p1∩p2) or a(p1∪p2)
relates to a(p1) and a(p2). For instance, a
may refer to cardinality (e.g, population)
then obviously a(p1 ∪ p2) = a(p1)+ a(p2)
if p1 ∩ p2 = ∅. Average values are more
tricky to handle, since an average value
over p1 ∪ p2 cannot be computed sim-
ply from the averages over p1 and over
p2 (even if p1 ∩ p2 = ∅), but requires the
knowledge of other quantities attached to
p1 and p2, namely their cardinalities (or
their ratio).

3.2 Symbolic attribute values

In case of symbolic attribute values, the prob-
lem again depends on the precise meaning of
the label(s) attached to a parcel, as discussed
above (see section 2).

First, assume a(p1) = l1 and a(p2) = l2, where
l1 and l2 are labels in the ontology used for at-
tribute a. We suppose first for simplicity that
this ontology has a lattice structure (in con-
trast with the example of Figure 1) equipped
with a partial order ≺, where l ≺ l′ means
that l has a more specialized meaning than
l′, or conversely that l′ is more general than l
and thus covers more cases.

For a pair (l1, l2), there exists two labels
glb(l1, l2) and lub(l1, l2), that are respectively
the greatest lower bound and the lowest upper
bound of l1 and l2 in the lattice with respect
to the partial order ≺ expressing specializa-
tion/generalization. Namely, glb(l1, l2) is the
most general specialization of both l1 and l2,
and lub(l1, l2) is the most specialized general-
ization of both l1 and l2 in the ontology. Then
it is natural to take:

a(p1 ∪ p2) = lub(l1, l2) (1)
a(p1 ∩ p2) = glb(l1, l2). (2)

Such situation can take place in a Galois con-
nection construct [2], which describes subsets
of objects and their discriminating properties
(see, e.g. [15] in a spatial information con-
text). Indeed in a Galois lattice, one label l
may have several descendant labels that are
associated to different subsets of cases cov-

ered by l. But several labels l1, . . . , ln cannot
have more than one direct common descen-
dant l′ (each label li being associated to a set
of cases then a common descendant l′ is asso-
ciated to the intersection of the cases of each
li, since this intersection of cases is unique
then the Galois connection can only associate
one property to it).

Observe that one may have glb(l1, l2) = ⊥
(bottom of the lattice) in case of inconsis-
tency (i.e., there is no specialization compat-
ible with both l1 and l2).

However expressions (1) and (2) are not ap-
plicable if a lattice structure is not available.
In order to cope with this general case, let us
introduce the following notation.

Notation 1 Let s(l) be the set of labels that
heritates from the label l in the ontology (its
set of descendants):
s(l) = {l} ∪ {l′ s.t. l′ ≺ l} where ≺ is the
partial strict order of the ontology.

For instance, in Figure 1, “fig tree” belongs
to s(“wood”) ∩ s(“cultivated plant”). In this
example, there are two nodes, namely “culti-
vated plant” and “wood” that have two de-
scendants, if the considered vocabulary have
been more complete we could have a node rep-
resenting the two sons, for instance, “culti-
vated tree”, which would have had two sons:
“fruit tree” and “ornamental tree” (then the
ontology of Figure 1 would have been a lat-
tice). In order to be able to deal with any
kind of ontology, we propose (3) and (4) in
place of (1) and (2):

a(p1 ∪ p2) = s(l1) & s(l2) (3)
a(p1 ∩ p2) = s(l1) ∩ s(l2). (4)

The first formula expresses the fact that when
doing the union of two parcels p1 and p2, the
obtained region has two parts, one part can
be described by l1 and the other part by l2.
Hence it corresponds to the operator & de-
scribed above.

The second formula expresses that the area
corresponding to the intersection of the two
parcels must verify both properties l1 and l2.
Note that a(p1) ∩ a(p2) is more concisely de-



scribed, in a semantically equivalent way, by
suppressing every label of s(l1) ∩ s(l2) that is
subsumed.

More generally, any set of labels could be rep-
resented more concisely by a minimal set of
labels covering them and only them. For in-
stance, considering again the ontology of Fig-
ure 1: s(l1) ∩ s(l2) = {“ornamental tree”,
“cherry tree”} would be rewritten as {“cherry
tree”}.

4 Fusion problems within the same
parcel

Fusion problems refer to the merging of pieces
of information coming from different sources.
The sources may refer or not to the same on-
tologies.

4.1 Sources using the same ontology

At the core of any fusion problem, there is a
question of handling inconsistency. Namely,
assume source 1 says a(p) = x1 and source 2
says a(p) = x2. Then they are basically two
situations:

• either x1 and x2 are compatible and it
is possible to refine the information into
x1 ∩ x2, where x1 ∩ x2 refers to:

– interval intersection in case of nu-
merical information (xi = [si, ti]):
x1∩x2 = [max(s1, s2),min(t1, t2)] �=
∅.

– in case of symbolic values taken from
an ontology, x1 = l1 and x2 = l2,
and again x1 ∩ x2 = s(l1) ∩ s(l2).

• or x1 and x2 are not compatible then (at
least) one of the sources is wrong, and
we do not know which one. Then if we
want to keep the information anyway, one
can perform a union for combining the
information, namely, x1∪x2 = l1∨l2 (see,
e.g., [10]). If lub(l1, l2) = �, top element
of the lattice, Trung Pham [15] speaks
of total conflict since there is no common
generic label covering both l1 and l2, like,
e.g., “water” and “earth”.

More generally, it has been shown how to per-
form any combination operation between un-
certain pieces of information at the syntactic
level (i.e., at a label level) in agreement with
the semantic level that handles the different
interpretations of the labels, in the framework
of possibilistic logic [3].

4.2 Sources having distinct
vocabularies

The problem of combining information pro-
vided by two sources using different vocabu-
laries (but using the same spatial partition)
is slightly different than the previous one.
The ideas outlined below could be extended
to fuzzy partitions [9] induced by linguistic
terms. For simplicity, let us only consider the
case where the two vocabularies V1 and V2

used by sources 1 and 2 respectively define
two partitions of the domain of attribute a.
Namely, ∀l ∈ Vi,∀l′ ∈ Vi, l ∧ l′ = ⊥. Thus,
as in rough sets theory [13, 9], if sources 1
and 2 states respectively that a(p) = l1 ∈ V1

and a(p) = l2 ∈ V2, we shall only be able
to provide a lower and an upper approxima-
tion, a�(p) and a�(p), using ref(V1, V2) and
coar(V1, V2) respectively, if there exists labels
for the cells of these new conceptual parti-
tions. Indeed, given an evaluation a(p) using
a vocabulary V1, there is not an exact trans-
lation of it in V2. In general, the translation
of a(p) ∈ V1 can only be approximated un-
der the form a�(p) ∈ V2, a�(p) ∈ V2, and
[a�(p)] ⊆ [a(p)] ⊆ [a�(p)] in the rough sets
sense, where the [ ]’s denote sets of interpre-
tations.

5 Fusion with distinct space
partitions

Let us now consider the problems raised by
the use of different space partitions, in case
of symbolic information. Let us suppose that
we have two sources using two different space
partitions P and P ′, which have non triv-
ial refinement and coarsening ref(P,P ′) and
coar(P,P ′). To each parcel p of P and p′

of P ′, for an attribute a of interest, is at-
tached a symbolic label, namely a(p) = l and



a(p′) = l′. Here, it is supposed that the l’s
and the l′’s belong to the same ontology. The
problem is then to evaluate a(r) and a(c) for
r ∈ ref(P,P ′) and c ∈ coar(P,P ′) from the
available information. Let us outline the ap-
proach

• for the refined partition. Let us as-
sume that r = p ∩ p′. Then a(r) =
s(a(p))∩s(a(p′)), if information is consis-
tent. This covers the general case where
a(p) and a(p′) are possibility distribu-
tions [18] over labels of the ontology. For
instance, a(p) = (λ1, l1) ∨ · · · ∨ (λn, ln)
where λi express to what extent it is pos-
sible that the interpretations of li are the
precise value of a(p). Note that if li ≺ lj
then (λi, li) ∨ (λj , lj) (with λi > λj as
suggested in section 2) is equivalent to
(λi, li) ∨l:l≺lj ;l �=li (λj , l). So any possibil-
ity distribution over labels for a given at-
tribute can always be written in an ex-
panded form where the labels involved
are not a specialization of each other.
When handling possibility distributions,
a(r) is then computed by a minimum-
based intersection. In case of incon-
sistency between s(a(p)) and s(a(p′)),
maximum-based union should be per-
formed. Trung Pham [15] systematically
perform an intersection-based combina-
tion and a union-based combination, in
the case of non-weighted labels (equiv-
alent to {0, 1}-possibility distributions),
which are respectively called “optimistic”
and “pessimistic” fusion.

• for the coarsened partition. Let c =
p ∪ p′ (this could be straightforwardly
generalized to the case where p or p′ are
themselves unions of several parcels in
their respective partitions). Then tak-
ing a(p) ∨ a(p′) (or even lub(a(p), a(p′))
if we look for a unique label) may be felt
inappropriate, because what we need to
express is not that the new parcel p ∪ p′

can be uniformly labeled by the imprecise
description “a(p) or a(p′)”, but rather to
model that p ∪ p′ is partly described by
a(p) and described by a(p′) for the other
part. In other words, the attribute be-

comes multiple-valued, then, as said be-
fore, a(p)&a(p′) seems the most appro-
priate representation.

6 Concluding remarks

This paper intends to provide an introductory
discussion of the basic issues related to repre-
sentation and fusion of multiple source spatial
information. Clearly, there are other related
problems worth discussing. Let us mention
some of them.

Thus, one may be interested not only in re-
trieving the best information that can be at-
tached to a parcel about some attribute us-
ing multiple sources, but also in evaluating
some new attribute a that depends on the
values of other attributes a1, . . . , an that can
be obtained (maybe with imprecision or un-
certainty) from information sources, i.e., for-
mally there is some function f or relation R
(maybe described by “if ... then...” rules)
such as a(p) = f(a1(p), . . . , an(p)) or a(p) ∈
R(a1(p), . . . , an(p)). A similar problem is en-
countered in updating, where the situation
at time t + 1 generally depends on situation
at time t. When the information about the
ai(p)’s is represented by possibility distribu-
tions, we need to apply the extension prin-
ciple to f or R, or its syntactic counterpart
when dealing with symbolic labels, see [4], for
evaluating a(p). This has to be combined with
the ideas discussed in this paper about dealing
with different sources using different vocabu-
laries or different spatial partitions see, e.g.,
[16].

Another important issue is the conjoint use
of pieces of information pertaining to differ-
ent parcels together with dependency rela-
tions (induced by neighboring properties for
instance) between these parcels.
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