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Abstract. The problem of revision is to find which formula ψ can be deduced 
from a formula ϕ, which has been added to a Knowledge Base KB. Since ϕ can 
bring inconsistency to KB, non-monotonic inference relations which are able to 
deal with inconsistency have been proposed; note that classical revision takes 
place after the arrival of ϕ. The aim of this paper is to propose a priori revision, 
that is to provide a way to "armor" the KB by suppressing some knowledge and 
by forbidding to accept some new information in such a way that adding any 
allowed formula ϕ to the revised KB will not bring inconsistency.  

1 Introduction 

A lot of researchers have studied inconsistency handling in knowledge bases (KB for 
short). The KB is used to describe a system and to deduce new information about it. 
The difficulty is to reason with an inconsistent KB because the possible deductions 
become trivial; if we do not want to throw away the whole KB we have to handle 
inconsistency. A particular problem is the insertion of a new formula in an initially 
consistent KB; reasoning with the KB after the arrival of this new formula is called 
revision [Alchourrón&al85, Winslett88, Katsuno-Mendelzon91]. So, the problem of 
revision is to find which formula ψ can be deduced from a formula ϕ that has been 
added to the KB. The inference must not be the classical inference since ϕ can bring 
inconsistency to the KB. This is why, many researchers have proposed, so called, non 
monotonic inference relations which are able to deal with inconsistency. Those non 
monotonic inference relations use some preference relations that select the most 
interesting consistent sub-theory(ies) of ϕ ∪ KB in which classical deduction can be 
applied. Note that classical revision takes place after the arrival of a new information 
ϕ, so this revision can be called a posteriori revision. 
 
The aim of this paper is to propose a way to make a priori revision . In a priori 
revision, we want to provide a way to "armor" the KB by suppressing some rules and 
by forbidding to accept some new information in such a way that adding any allowed 
formula  ϕ to the revis ed KB will not bring inconsistency. Consequently, in the revised 
KB, classical monotonic inference relation will always be usable. In this work, we 
distinguish between input variables, which can compose a new information, and other 
variables; we restrict also a new information to be a conjunction of input literals. We 
propose to examine the initial KB to provide a set of armored KB such that each one 



 

  

will be consistent with any conjunction ϕ of allowed input literals. A diagnosis  is 
composed by a set of formulas that must be removed from the KB and a set of 
integrity constraints which define valid new information  for the KB; those integrity 
constraints provide a way to eliminate some formulas from the set of possible arriving 
new formulas. Applying a diagnosis to a KB is called armoring the KB. One 
difficulty is that it can exist many such diagnoses. So, we propose to use a penalty 
preference relation [Dupin&all94] in order to select preferred diagnoses and so 
armored KB.  

 
This paper is organized as follows. In a first part, we define a priori revision. In the 
second part, we present a preference relation on diagnoses, based on penalty theory, 
in order to provide a way to choose a best diagnosis, to obtain a best armored KB. In 
the last part we propose algorithms to compute the diagnoses and their associated 
penalty cost. 

2 How to armor a knowledge base ? 

In the following, we denote by L a finite propositional language. Elements of L, or 
formulas, are denoted by Greek letters. An interpretation  in L is an assignment of a 
truth value in {T, F} to each formula of L in accordance with the classical rules of 
propositional calculus. A literal is an atomic variable p or its negation ¬p. An 
interpretation ω is a model of a formula α (ωªα) iff ω(α)=T. A formula β is called a 
logical consequence of α (αªβ) iff each model of α is a model of β. A formula α is 
said to be consistent iff it has at least one model.  Any inconsistent formula can be 
denoted by ⊥ . A knowledge base KB is a set of logical formulas. Non monotonic 
inference relation will be denoted by Ã~.  
 
The problem of revision is to decide if, given a knowledge base ΚΒ composed by 
logical formulas and a new information ϕ, we can deduce ψ, denoted by ϕ Ã~ΚΒ ψ. 
The a posteriori revision selects a set of consistent subsets KBi (i=1 à n) of KB such for 
each subset KBi,  KBi ∪ ϕ Ã ψ, which is noted ϕ Ã~ΚΒ ψ.  The point is to define a 
preference re lation which is able to select the most interesting preferred consistent 
subsets. In order to discriminate between the consistent subsets of KB, some 
approaches [Rescher64, Brewka89, Nebel91, Dubois&all92, Benferhat&al93, 
Lehmann92, Cayrol-Lagasquie95] consist in ranking the KB into priority levels and 
maximizing the set or the number of formulas satisfied at each level starting from the 
highest priority level. An important aspect of this kind of approach is that violating 
however many formulas at a given level is always more acceptable than violating only 
one formula at a strictly higher level; thus, these approaches are non-compensatory, 
i.e., levels never interact. An alternative approach, called penalty approach, 
[Pinkas91, Dupin&all94] is to weight the formulas of the KB with positive numbers 
called penalties. Intuitively, the penalty associated to a formula represents the 
importance of the formula, the higher it is, the more important is the formula and the 
more difficult it will be to reject this formu la. Inviolable formulas are given an infinite 
penalty. Contrarily to priorities, penalties are compensatory since they are additive: 



 

  

the cost associated to a subset of formulas of a KB is the sum of the penalties of the 
rejected formulas. The subsets having a minimum cost are preferred subsets of KB. 
Notice that in all these approaches, ϕ  has a maximal priority.  

 
We now present the framework we use in order to make a priori revision. We define a 
set of input variables which is a subset of the variables of L. An input literal  is an 
input variable or its negation; we note I this set of input literals. The aim of a priori 
revision is to compute a revised KB, denoted by D(KB), so that for any valid 
conjunction of input literals  ϕ which will be added in the future, D(ΚΒ) ∪ ϕ will be 
consistent; hence the classical monotonic inference relation will always be usable 
with ϕ. Such a revision of KB is made by defining a diagnosis . A diagnosis is 
composed of a set of formulas that must be removed from the KB and of a set of 
integrity constraints which define valid new information for the KB. An integrity 
constraint is a formula (l1ú… úln → ⊥ ), where each li is an input literal. Such a 
constraint means that l1ú… úln cannot be added to the KB. To simplify the notations, 
the constraint formula (l1ú… úln → ⊥ ) will be represented by its set of literals { l1, 
…, ln }. 
We consider the following restrictions: the possible new information is a conjunction 
of input literals and the knowledge base is a set of Horn clause formulas where the 
positive literal in the clause is not an input literal (we can represent these Horn clauses 
by implicative formulas where input facts can only occur in the premises). This 
framework allows us to consider Modus Ponens as the unique inference relation 
(more formally, with our restrictions, if ϕ is a conjuction of input literals then ϕ ∪  KB 
infers classically ψ is equivalent to ϕ ∪ KB infers ψ by Modus Ponens).  
 
Definition 1 – diagnosis of a knowledge base 
Let KB be a knowledge base; I a set of input literals. Let D be a pair < ED, rD>, where 
rD is a subset of KB and ED is a set of literal sets, {{l1,1; ..., l1,n}; ...;{lp,1; ...; lp,m}} that 
represents a set of p integrity constraints, called RED. 
D is a diagnosis for KB if for every conjunction j of input literals, consistent with the 
integrity constraints RED , {j}∪ KB \ rD is consistent  
 
Example 1 Let us consider the following example: Quakers (Qua) are Pacifists (Pac), 
Republicans (Rep) are not pacifists, Republicans are American (Am), Americans like 
Baseball (Bball), and Republicans do not like Baseball. With this knowledge base 
KB1, if a new information arrives and states that Nixon is both a Quaker and a 
Republican, it is possible to deduce that Nixon is both pacifist and not pacifist, a 
contradiction that we want to avoid. 
r1: Qua → Pac r2: Rep → ¬Pac r3: Rep → A m  
r4: Am → Bball r5: Rep → ¬Bball 
If the set of input variables is {Rep, Qua}, then D0= <{},{r1,r2,r3,r4,r5}>, D1= <{}, 
{r1, r3}>, D7= <{{Rep}}, {}> and D9= <{{Rep, Qua}}, {r4}> for instance, are 
possible diagnoses. The computation of diagnoses will be explained in section 3.  
 
An armored KB is a KB on which a diagnosis has been applied. 
 



 

  

Definition 2 -armoring a knowledge base 
Let D(KB) be the knowledge base KB armored by D = < ED, rD> ; D(KB) corresponds 
to KB from which the rules of rD have been deleted and to which the integrity 
constraints of RED are added:  D(KB) = RED  ∪ KB \ rD .  
 
Example 1 If we consider D9, D9(KB1) = { Rep∧Qua→⊥} ∪ {r1, r2, r3, r5}. This 
means that, with D9(KB1), the new information "Nixon is both pacifist and Quaker" 
represented by Rep∧Qua is forbidden; for any conjunction of input literals j that is 
not forbidden, j ∪ {r1, r2, r3, r5} is consistent. 

3 How to choose the best armoring ? 

Definition 3 -a priori revision 
A priori revising a KB consists in providing a preference relation on the possible 
diagnoses for a KB. 
 
If there are several diagnoses with the same preference, then either we can define, as 
in a posteriori revision, that a formula ψ can be inferred from a formula ϕ if it can be 
inferred from all the preferred armored KB to which ϕ is added, or we select any 
preferred armored KB. A main difficulty is to choose among several possible 
diagnoses. We propose to use a preference ordering on diagnoses. First, we prefer and 
so only consider, minimal diagnosis. A minimal diagnosis is a diagnosis that leads to 
minimal change to the corresponding armored KB. Second, we use a penalty 
approach that provides criteria to prefer the diagnoses that reject or make useless the 
less important formulas of KB. 

3.1 Minimal change diagnosis 

Definition 4 – minimal diagnosis 
A diagnosis <ED, rD> is minimal if there does not exist another diagnosis <ED’, rD’> 
verify ing:  rD’ ⊆ rD, and (ED’ ⊆  ED or ∀ F’ Ü ED’, ∃ F ÜED such that F ⊆ F’). 
 
Examples  1) For the preceding example KB1, there are 10 minimal diagnoses: 
D1= <{}, {r1, r3}>;  D2= <{}, {r1, r4}>;  D3= <{}, {r1, r5}>;  D4= <{}, {r2, r3}>;  
D5= <{}, {r2, r4}>;  D6= <{}, {r2, r5}>;  D7= <{{Rep}}, {}>;  
D8= <{{Rep, Qua}}, {r3}>; D9= <{{Rep, Qua}}, {r4}>; D10= <{{Rep, Qua}}, {r5}> 
2) Let us suppose that a knowledge base has the three following diagnoses: D1= 
<{{a,b},{a, c}}, {r1}>, D2=<{{a, b}}, {r1}>, D3=<{{a }}, {r1}> 
D2 is minimal, D1 and D3 are not minimal. D1 is not minimal because it is not 
necessary to forbid the conjunction of the literals a and c to have a diagnosis; D3 is 
not minimal because D2 shows that it is not necessary to forbid all the interpretations 
satisfying a, it is sufficient to forbid the interpretations having a and b. 
Note that the minimality principle is not interesting for comparing equivalent (in 
terms of models) diagnoses. For instance, between two diagnoses D1=<{a, b},{a, 



 

  

¬b}}, {r1}> and D2=<{{a }}, {r1}>, the minimality criterion leads to prefer D1, but 
in fact the two sets of constraints are equivalent.   
 
We have defined an order relation between diagnoses and the associated minimality 
criterion. However, this relation only defines a partial order that we propose to refine 
by using a penalty approach. The penalty approach can rank diagnoses by comparing 
the weights of the deleted or useless rules. 

3.2. Uselessness of a rule in an armored KB 

A diagnosis explicitly excludes some rules from the knowledge base. It may also 
happen that some rules become useless in the revised knowledge base because they 
can never be fired. A rule cannot be fired if its conditions correspond to an impossible 
conjunction of input literals or if some of its conditions cannot be proved after the 
deletion of rules of rD. If a rule becomes useless after application of a diagnosis, we 
can consider that the information encapsulated in this rule is, in some way, suppressed 
from the knowledge base. So, in order to compare armored KB, it is important to 
know if the rules that are kept in the armored KB are useful.  

 
Definition 5 – useless rule set for a diagnosis D 
Let D = < ED, rD> be a diagnosis  for KB. 
A Horn clause r is useless for D iff  there is no conjunction j of input literals, 
consistent with RED , such that the premises of r can be deduced from {j}∪ KB \ rD . 
We call URS(D), useless rule set of D, the set of all useless rules of KB for D. 
  
Example 1 D1= <{}, {r1, r3}> D1(KB)={r2, r4, r5}; URS(D1)={r4}, r4 (Am →  
Bball) is useless because Am is not an input literal, and it cannot be deduced from 
{r2, r4, r5} with any input base. 
 
Proposition : minimality and uselessness 
If D = < ED, rD> is a diagnosis for KB, and if ri in rD is useless for D, then D is not 
minimal. 

 
This property means that minimality and uselessness are complementary notions to 
evaluate diagnoses. 

3.3 The penalty approach 

For any formula ϕi of the KB, there is an associated penalty α(ϕi) that represents a 
degree of confidence in  ϕi, it will be understood as the cost that the user must pay in 
order to discard the formula ϕi. Let us present the penalty preference on diagnosis. In 
the basic penalty approach, the philosophy consists in paying α(ϕi) when a formula ϕi 
of the initial knowledge base is discarded, we propose to extend this by taking into 
account formulas which become useless.  

 



 

  

Definition 6 –cost of a diagnosis 
Let D = < ED, rD> be a diagnosis for KB.  
The cost of the diagnosis D, called C(D), is the sum of the penalties associated to the 

rules of KB which are deleted or brought useless by D, so C(D) = )(
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Definition 7 –cost preference 
Let KB be a penalty knowledge base. Let D1 and D2 be two minimal diagnoses of KB. 
D1 is penalty-preferred to D2 iff C(D1) ≤ C(D2) 
 
Example 1 The set of input facts is {Qua, Rep}. We associate a penalty to each rule. 
r1: Qua → Pac  α1 = 5 r2: Rep → ¬Pac  α2 = 5 r3: Rep → A m α3 = 100 
r4: Am → Bball  α4 = 5 r5: Rep → ¬Bball  α5 = 7 
The penalty associated to r3 means that this rule is  very important. 
For each of the minimal diagnoses presented before, we give its cost; the method for 
computing these costs will be presented in the next section. 
D1= <{}, {r1, r3}> C(D1)=110 (r4 is useless);  D2= <{}, {r1, r4}> C(D2)=10;  
D3= <{}, {r1, r5}> C(D3)=12;  D4= <{}, {r2, r3}> C(D4)=110 (r4 is useless);  
D5= <{}, {r2, r4}> C(D5)=10;  D6= <{}, {r2, r5}> C(D6)=12;  
D7= <{{Rep}}, {}> C(D7)=117 (r2, r3, r4, r7 are useless);  
D8= <{{Rep, Qua}}, {r3}> C(D8)=105 (r4 is useless);  
D9= <{{Rep, Qua}}, {r4}> C(D9)=5;   D10= <{{Rep, Qua}}, {r5}> C(D10)=7. 
So, the penalty-preferred minimal diagnosis is D9, and the associated armored KB is :  
Rep∧Qua→⊥ r1: Qua → Pac r2: Rep → ¬Pac  
r3: Rep → A m r5: Rep → ¬Bball 
It means that if a person is a Quaker then he is a pacifist, and if a person is a 
Republican then he is non pacifist, american and does not like baseball. But a person 
can not be both a Quaker and a republican. 
Note that taking into account the uselessness of the rules avoids to prefer D7. The D7 
constraint means that it cannot exist republican, which makes several rules useless. 
 
To apply this approach, a difficulty is to obtain the penalties for all the rules. They 
can be given by an expert. If no penalty is given, each formula can be associated with 
a penalty 1, this approach is equivalent to count the number of formulas. An 
automatic approach can be to associate a penalty to each rule using heuristics. If the 
KB represents a default behavior of some components, penalties can be proportional 
to probabilities associated to a faulty component, as [de Kleer-Williams87].  

4 Algorithms 

Two algorithms are presented. The first one computes the minimal diagnoses of a 
knowledge base. The second one determines the cost of each diagnosis.  



 

  

4.1 Diagnosis computation          

The computation of diagnoses can be made in two steps using first an ATMS 
[deKleer86] and second an algorithm that extends [Reiter87]. The first step computes 
the minimal characterizations of the potential inconsistencies of the KB: such a 
characterization is a conjunction of input literals and a subset of rules sufficient to 
infer a contradiction.  A conjunction of input literals is also called a fact base and will 
be represented as a set of literals. Let FB={f1,...,fn} and FB'={f'1,...,f'p} be two fact 
bases, in the following we denote FB = FB’ the fact that f1 ∧  ... ∧  fn = f'1∧  ... ∧ f'p. 
Notice that [Bouali-Loiseau95] proposes such an algorithm to debug a knowledge 
base and that [Bezzazi&al98] uses a very similar method for a posteriori revision. 
 
Definition 8 – characterization 
Let KB be a knowledge base.  
A characterization  is a pair <FB, rb> where FB is a set of input literals, and rb  is a 
subset of KB, such that FB ∪  rb = ⊥ . 
A characterization is minimal iff there does not exist another characterization 
<FB’, rb’> such that rb' ⊆ rb  and FB = FB’  
 
ATMS provides a way to compute for each literal a label that defines the necessary 
and sufficient condition, in terms of assumptions, that provides the deduction of the 
literal. ATMS provides also a mechanism to ensure that all parts of labels, called 
environments, are consistent.   
 
Definition 9 – environment and label 
An environment E is a conjunction of assumptions.  
The label of a literal L is a disjunction of environments (E1∨ .. Ei...∨En) such that : 
∀ Ei, Ei ∪ KB ≠ ⊥  -the label is consistent with KB (except if L = ⊥ )-, ∀ Ei, Ej; Ei ≠ 
Ej -the label is minimal-, ∀ Ei, Ei ∪ KB = L -the label is sound-, ∀ E and E ∪ KB= 
L then ∃ Ei / E= Ei -the label is complete-. 
 
So given input literals and rules names as assumptions, and the set of rules KB 
(including for each rule its name as an additional premise), ATMS computes for each 
literal its label. We denote an environment Ei as composed of EiRules the rules figuring 
in Ei, and Eifacts  the facts figuring in Ei. So, the minimal characterizations are 
composed of the Ei facts part and the EiRules part of  the environments Ei of ⊥ . 
 
Example 1 Assumptions: {Qua, Rep, r1, r2, r3, r4, r5}; Implications: { r1 ∧  Qua →  
Pac, r2 ∧  Rep → ¬Pac, r3 ∧  Rep →  Am, r4 ∧  Am → Bball, r5 ∧  Rep → ¬Bball} 
BDatms  :  Label(Pac) = (Qua ∧  r1) Label(¬Pac) = (Rep ∧  r2) 
 Label(Am) = (Rep ∧  r3)  Label(Bball) = (Rep ∧  r3 ∧  r4) 
 Label(¬Bball) = (Rep ∧  r5) Label(Rep) = (Rep) 
 Label(Qua) = (Qua) 
Label(⊥ ) = (Rep ∧  r3 ∧  r4 ∧  r5)∨  (Qua ∧  Rep ∧  r1 ∧  r2). The environment E2 of 
label(⊥ ) can be noted as E2Rules = {r1, r2} and E2 facts = {Qua, Rep}. There exist two 
minimal characterizations, C1=<{Rep}, {r3, r4, r5}> and C2=<{Qua, Rep},{r1, r2}>. 



 

  

The diagnoses for a rule base can be computed from the characterizations using the 
following theorem. 

 
Theorem 
Let KB be a rule base, and C = {C1, ...,  Cn} the collection of minimal 
characterizations, D=<ED, rD> is a diagnosis w.r.t KB iff  
∀ Ci=<EC i, rCi> of C, either rCi ∩ rD ≠ {} or ∃ {p1, .., pn} of ED | ECi ª {p1,..,pn} 
 
The algorithm which computes the set of minimal diagnoses relative to a rule base 
from the minimal characterizations is an extension of the algorithm to compute 
diagnoses [Reiter87]. There are two important differences. First, in the data structure 
there are two different kinds of data taken into account: the rules and the input literals. 
A node corresponds to a characterization , to each node is associated for each rule it 
contains an arc labeled by the rule, and for each node is associated an arc labeled with 
the fact base part of the characterization. Second, the characterizations must be sorted. 
A diagnosis is obtained by keeping all the labels of arcs from root to a leaf V. 

 
function MinDiag(C): a set of diagnoses 
/* C = {C1,...,Cn} is the sorted collection of characterizations; let Ci = <FBi, ri>, Cj = 
<FBj, rj>, Ci < Cj iff FBj={p’1,...,p’m} = FBi = {p1,...,pn}; the function makes a tree 
whose nodes are labeled by some Ci=<Fb i, ri>, and the arcs issued of Ci=<FBi, ri> are 
labeled by FBi or a rule of ri. Hfb(Ni) is the set of FB that label the arcs that go from the root 
to Ni;. Hr(Ni) is the set of rules that  label the arcs that are going from the root to N i */ 
MinDiag := {} 
Label the root of the Tree with the first element of C 
For each leaf Nk of Tree labeled by an element Ck=<FBk, rk> 
 create a node Nj; create an arc from Nk to Nj labeled by FBk 
 For each r of rk 
  create node Nj; create an arc from Nk to Nj labeled by rk 
 For each node Nj created with an arc from Nk to Nj  
  If ∃ Ci=<FBi, ri>  of C that verifies Hr(Nj) ∩ ri = {} and 
   ∀ {f1,..,fn} of Hfb(Nj), FBi={f’1,...,f’m}=/= {f1,..,fn}  
    Nj := the first Ci verifying the preceding condition 
  elseif  ∃ Nj’ = V, Hr(Nj’) ⊆ Hr(Nj), and  
   ∀ {f’1,..,f’m} of HFB(Nj’), ∃ {f1,..,fn} of HFB(Nj)  / 
         {f’1,..,f’m}= {f1,..,fn}  
    close Nj with X 
  else  close Nj with V, MinDiag:=MinDiag∪{<Hfb(Nj), Hr(Nj)>} 

 
Example 1: the schema shows how we find the diagnoses: <{{Rep}}, {}>… 

{Rep},{r3,r4,r5}

{Qua, Rep},{r1,r2}V

{Rep} r3

{Qua,Rep},{r1,r2}
{Qua,Rep},{r1,r2}

{Qua,Rep} r2r1

V V V

{Qua,Rep} r2r1
V V V

{Qua,Rep} r2r1
V V V

r4
r5

 



 

  

4.2 Diagnosis cost computation 

The following algorithm computes the cost of a given diagnosis. It uses the labels 
(BDatms ) computed by ATMS during the diagnosis computation. The cost is composed 
of the cost of the rules of the diagnosis, plus the cost of the rules that are not useful 
when the integrity constraints are added and the rules of the diagnosis suppressed. 

 
function Cost(D; BDatms) : integer/* Determine the cost of D */ 
Cost :=0 
/* Cost of r of rD*/ 
For each r of rD 
 Cost := Cost + C(r)  
/*cost of useless rules*/ 
For each r of rD 
 Suppress all environments of BDatms that contains r 
Let RED be the set of the integrity constraints ∧j lij → ⊥ 
associated to ED 
UpDate BDatms by adding the integrity constraints RED 
For each r of KB \ rD 
 If it does not exist a non contradictory environment in BDatms  
 that contains r 
  Then Cost := Cost + C(r)  

 
Example 1 If we call Cost(D1= <{}, {r1, r3}>, BDatms ) /* Cost of r of rD*/ Cost := 
c(r1) + c(r3) = 5 + 100 /*cost of useless rules*/ BDatms  modified: Label(Pac) = (Qua ∧  
r1); Label(¬Pac) = (Rep ∧  r2); Label(American) = (Rep ∧  r3); Label(Bball) = (Rep ∧ 
r3 ∧  r4); Label(¬Bball) = (Rep ∧  r5); Label(Rep) = (Rep); Label(Qua) = (Qua); 
Label(⊥ ) = (Rep ∧  r3 ∧  r4 ∧  r5)∨  (Qua ∧  Rep ∧  r1 ∧  r2) . It does not exist a non 
contradictory environment in BDatms  modified that contains r4; Cost:=105+C(r4)=110 

5 Conclusion 

This paper presents a way to armor a knowledge base, by removing some rules and 
providing some integrity constraints. The adding, in the armored KB, of a new 
information, consistent with the constraints, does not provide inconsistency, 
consequently our approach avoids to make non monotonic inference when a new 
information is added to a KB. So a priori revision is clearly not a AGM revision. 
Nevertheless it could be interesting to study the links of our approach with contraction 
[Gärdenfors88]. 
In previous works [Dupin-Loiseau00], we compared validation versus revision. The 
validation approach attempts to measure the KB quality so that, if necessary, it can 
suggest to the expert to improve it. The KB refinement is supported by such a quality 
measurement. Our new approach for a priori revision extends the notion of diagnosis 
for validation [Bouali&al97] to diagnosis for revision. The computation of possible 
diagnoses led us to make restrictions about the syntactical form of the KB and about 
the new information, these restrictions are directly inspired from the validation field. 
A point to study is to see if considering any kind of formula as new information is of 



 

  

any interest for a priori revision. If it is the case, we must study how the algorithms 
given for a priori revision can be extended in order to deal with any knowledge base 
in propositional logic.  
We can remark that our minimality criterion is purely syntactic and does not 
recognize that different sets of constraints are equivalent. So further study can 
examine when it is interesting to propose a reformulation of the set of constraints. 
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