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Abstract— Representing a dynamic system demands ment descriptions for expressing persistence. The
a formalism which can both handle uncertainty and expression of default transitions may be also useful

default information. Uncertainty is present because of o ¢oping with the qualification problem. Default
the insufficient knowledge about the evolving system: . I ¢ | rul . hich
the state of the system and the transition rules to reasonllng allows to use. general rules |n. whic

which it obeys are ill known. Moreover, even if the €Xceptions are not mentioned. The benefits of a

knowledge about the system was complete, it would simplified presentation has a counterpart: excep-
be impossible to express it exhaustively. The use of tions can contradict general rules. A way to avoid
default rules can help solving this problem. Default s contradiction is to consider that more specific
rules are also useful for reasoning with incomplete L o

information. We propose a formalism in which it is rule§ have prlorlty upon less specific ones.
possible to express both default and uncertain transi- Besides, the available knowledge about the way
tion rules. Two methods for syntactically computing a real system under study can evolve may be
the new state of the system after a transition are jncomplete. This is why uncertainty should also
presented. Their principle is based on the transla- o renresented, at least in a qualitative way. Notice

tion of a base of default uncertain transition rules that the id f tainty | | should be disti
into a non-defeasible uncertain transition rules base. at the 1dea o uncertainty level shou e distin-

The possibility theory is used for representing both guished from the notion of specificity level: a rule
uncertainty and defeasibility. may have many possible kinds of exceptions but
be quite sure.

I. INTRODUCTION
Representing a dynamic system in artificial intelliin this paper we propose a representation which can
gence research has been a challenging problem faanage both default transition rules and transitions
a long time [13]. The classical action representawith an uncertain conclusion, taking advantage of
tion problems, namely the “frame”, “qualification” the possibility theory framework.
and “ramification” problems are well known now.
Indeed, describing an action only by its precon-
ditions and its effects is not enough to allow tdMe assume a representation languagemade of
deduce the state of the world after the action. Aa set of propositional variable®’. Note that the
automatic system able of reasoning about changariables set may contain occurrences of action.
should know which fluents are persisting and whicMore formally, let< be the set of action symbols.
fluents are changing when the action takes placé/e consider that the variables sgt contains in
The impossibility to enumerate every fluent whictaddition to the symbol representing facts all the
is not changed by an action is called “the frameymbolsdo(a) wherea € 7, representing action
problem”. The difficulty to define exactly all the occurrences. When there is ambiguity, variables
preconditions of an action is called “the qualifi-may be indexed by a number representing the time
cation problem”. “Ramification”, the third action point in which it is considered. We denote byt]
representation problem, is related to the difficultyhe formulay in which all variables are indexed by
of describing every direct or indirect effect of antime pointt. The set of interpretations associated
action, and can be handled by representing statw this language is denoted 6% An interpretation
dependencies. w € Q represents a state of the system under study.
Many proposals have been made to solve th& possibility distribution is a mapping fror to
qualification and frame problems: see for instanc@ numerical scale such as the real interjall].
[10]. A common idea is to use default comportHowever a finite linearly ordered scale could be

[I. BACKGROUND ON POSSIBILITY THEORY



used as well. This possibility distribution rank-The following resolution rule [8] is valid in
orders the interpretations according to their plauspossibilistic logic:
bility level. In particular,7(w) = 0 means that the (aV 3,a); (—~aV §,b) - (8V d,min(a,b)) (R)
interpretation is impossibler is said normalized The resolution rule can be used in order to compute
if Jw such asr(w) = 1 ; there may exist several the maximal certainty degree which can be attached
distinct interpretations with a possibility degredo a formula according to the constraints expressed
equal to 1; they correspond to the most plausibley the knowledge bas&. This can be done by
interpretations. Given a possibility distributian adding to K the clauses obtained by refuting
and a formulay, two measures are defined ovethe proposition to evaluate, with a necessity
the set of models of: degree equal to 1. Then it can be shown that any
o II(p) = max,, m(w) called the possibility lower bound obtained onL, by resolution, is a
of . It measures how unsurprising the forlower bound of the necessity of the proposition
mula is for the agentIl(¢) = 0 means that to evaluate. In case of partial inconsistency of
o is bound to be false. K, a refutation carried out in a situation where
e N(p) = 1—-1(~¢) = 1 —maxyp,m(w) Inc(KU{(-p,1)}) = a > Inc(K) yields the
called the necessity op. It corresponds to nontrivial conclusion(y, a), only using formulas
the impossibility of “noty”. N(¢) = 1 means whose degrees of certainty is strictly greater than

that ¢ is bound to be true. the level of inconsistency of the base. This is the
Definition 1 (certainty level):A possibilistic  syntactic counterpart denoted. of the semantic
knowledge base is a sek = {(p;,a;),i = entailment=.

1...n}. Where ¢; is a propositional formula Example 1:We are going to consider the language
of . and its certainty level a; is such that built on the three variableglio(hm)y, Wo,Wi.
N(p;) > a;, N being a necessity measure. These variables respectively represent the occur-
In possibilistic logic, the models of the knowledgearence of the action “hit the coffee machine” at time
base K are rank-ordered by a possibility distrib-0, the fact that the coffee machine is working at
ution mx. This g is the greatest solution of thetime point 0, and at time point 1. Let us consider
set of constraintsVg (y;) > a;,i = 1...n. It has the following possibilistic knowledge badg, :

been shown in [7] thatx (w) the possibility of a @1 do(hm)o A Wy — W 0.8

state of the worldv is all the smaller as the model 2 Wy — W, 0.6
w falsifies a formula inK with a high certainty @3 do(hm)o 1
level. pg Wy 0.7

The semantic entailment of a weighted formuldhe first formula means that if you hit the machine
(p,a) from a possibilistic knowledge basi is when it is working you may expect that it won't
defined by: work in the next state with a necessity value of
K E (p,a) & Yw £ p,mx(w) < 1 —a or, 0.8. The numbers here are just encoding a certainty
equivalently, K = (p,a) & Nk(¢) > a, where ordering, and their nature in itself is not really
Ny is associated withrg . meaningful. The second formula is a kind of per-
Given a possibilistic knowledge bask, K is sistence law, saying that if the machine is working
consistent if and only if its associated possibilityat time point 0 then it will be working at time point
distribution 75 is normalized (since there is atl with a necessity value of 0.6 (sometimes it can
least one interpretation in agreement withwhich  become out of order for an unknown reason). The
is completely possible). More generally, the degrethird formula expresses that the user has hit the
of inconsistency o [6] is defined by: machine (not necessarily on purpose, but he is sure
Inc(K) =1—maz,cark (w) that he unfortunately has done this action). The
When K is partially inconsistent Iinc(K) > 0) fourth one expresses that the machine is supposed
the semantic entailment can be refined (iktq) to be working but the user is not absolutely sure
by considering as legitimately entailed only thosabout it, it has a necessity of 0.7.
propositions to which a degree of certainty, strictlyrhis knowledge basé, induces the constraints:

higher than the level of inconsistency, can beVw |= do(hm)o A Wo AWy, 7k, (w) < 0.2
attached, namely, Yw = Wo A =W, Ti,(w) < 0.4
Ja, K Er (p,a) < Ni(p) > Inc(K) Yw = —do(hm)g Ti,(w) <0
If the weighted formulas ofK are put under Yw | -W T, (w) < 0.3

the form of weighted clauses (which is alwayshe eight possible interpretations are, =
feasible, sinceV(A;p;) > a < Vi,N(p;) > a). (do(hm)g . Wy . Wi), wy = (do(hm)y . Wy



. W), we = (do(hm)y . =Wy . W1), wg = it can be associated [2] a possibilistic formula
(do(hm)o . =Wy . =W1), wy = (—do(hm)y . (a — B,a), wherea is a number representing its
Wo . Wi), ws = (~do(hm)o . Wy . =W1), specificity levela = ZU0EL,

we(—~do(hm)o . =Wy . Wh), wy = (—do(hm)o . Example 2:The classical example given for

Wy . =Wy). instance in [2] illustrates these definitions:

The greatest possibility distributiony, satisfying di1 b~ f  (a bird generally flies),

the constraints is: dy p~ —f (apenguin generally does not fly),
i, (wo) = 0.2 Tr,(ws) =0 d3 p~b  (apenguin is generally a bird).
Tio(w1) =04 7, (ws) =0 It can be easily verified that the rulg is tolerated
Tiy(w2) = 0.3 7, (ws) =0 by d» and ds, since the interpretationd(f.—p)
Tiy(w3) =0.3 7k, (w7) =0 verifies d; and satisfies bothi, and ds. This

There is no interpretation which is totally possiblecontrasts with the other rules for which it is not

so K, is partially inconsistent/nc(Ky) = 1 — possible to find an interpretation which verifiés

0.4 = 0.6. N, (-W1) = 1 —max,w, Tk, (w) = (resp.ds) and satisfies bothl; and ds (resp.d;
0.7 > Inc(Ky). It means thatKy =, =W, i.e., andd,). So, we haveZ(d;) = 0 and Z(dy) =

the coffee machine is likely to be out of order aZ(d;) = 1. The possibilistic knowledge base
time point 1. K constructed from_ the initial default base is:
Inc(Kyp) and this conclusion can also be computedd ¢1 = (b— fr3);
syntactically using the possibilistic resolution rule  ¥2 = (p— b, )
on K, and onK, U {(W71, 1)} respectively. More- p3 = (p— w3

What can we deduce f?Fom the fal? This can be
computed by addingb, 1) to K. We can draw the
following derivations:

Lo (=pVb,3);(=bV f, 3) - (ﬂp\/f, 3) (Rp1, ¢2)
I1l. HANDLING SPECIFICITY IN DEFAULT RULES o (ﬁpvf’ D (pV=F2)F (-p, 1) (RI.,3)

(7w, 5); (b, 1) F (L, 3) (k2. (b, 1))
The specificity level is a degree which is assouatedgh e R Sstands for & resolution appllcatlon to

to a default rule. Let us recall the definition Ofthe formulas explicitly indicated or to the result
default rules [15] encoded in the possibility theonyf the given line. Hencdne(K U {(b,1)}) = L.
framework [2] . A default rule is a formuld/ ~ C' Now, we can prove by refutation thaﬁf is a
where H and C are propositional formulas .gf logical consequence df U {(p,1)}. Since adding
and~» is a new symbok~ is translated byI(H A the piece of information(f,1) we can draw the
C) > II(H A—C), a constraint which expresses tha{OHOWIng derivations:

having C true is strictly more possible than having 5 E 1}\/ ;Jzsz))( (1);;#’ 3) ng”((b 1))))

it false when H is true. SOInc(KU{(b D, (f,D)}) = 2 > Inc(KU{(b,1)}),

In [14] an algorithm based on a “minimal speciAwhich means thaf U {(b, 1)} o (=f,1).

ficity” principle is given which allows to stratify Note that default rules may concern fluents at
the set of default rules in a way that reflects thgifferent time points. The knowledge badé&, ~»
specificity of the rules. Roughly speaking, the firsty, | £, ~» M,, F, ~» =G, is another instance of
stratum contains the most specific rules i.e, whiclhis example. The first rule could be read “usually
do not admit exceptions (at least, expressible if there is money in the coffee machine at time
the considered language), the second stratum haysint 0 then a goblet will be delivered on the tap
exceptions only in the first stratum and so on.  at time point 1”. The second rule could be “a
Definition 2 (System Z stratification [14])A de- faked coin is usually considered as money” and
fault transition rulea ~ (3 is tolerated by a set of the third rule be “usually if there is a faked coin
default rulesA if it exists an interpretation such inserted in the coffee machine then at time point
thatw = o A 3 (the rulea ~ ( is said verified 1 a goblet will not be delivered.” By translation of
by w) andVdi € A, w = —a; V 3; (di is said the previous example we can obtain that if we have
satisfied byw). This definition allows to stratifyA a faked coin at time point O then the goblet will
into (Ao, Az, ...,Ay) such thatA, contains the not be delivered at time point 1.

set of rules tolerated b\, A; contains the set of

rules tolerated byA \ Ay and so on. The number IV. 'UNCERTAIN TRANSITION RULES

Z(r) corresponds to the number of the stratum iff we consider an evolving system, we can repre-
which the ruler is. sent its behavior like in [11] by the mean of:
Definition 3 (possibilistic specificity degreelFor o a possibilistic knowledge baseK =
each default rulee = o ~ (3 of a default base, {(¢i,a:),i = 1,n}, (Vi,p; € Z,a; € [0,1])

over it would be enough to considét, \ {2}
instead of Ky (since N(p2) < Inc(Ky)).



representing what is known about the initiaSince the computation of the closufg* of T

state of the system. is not reasonable in practice, [11] proposes to
« asetl' ={(H,C,a)} (H,C € Z£,a€]0,1]) eliminate the information that is not useful from
of uncertain transition rules. T* by defining the concept of informativeness. A

transition rule(H1, C1) is more informative than

Example 3:For instance, if we imagine a sim—(H2 C2) iff H2 = H1 and C1 = C2. This
ple coffee machine which can be working (W)concept leads to define a transition §& which

or be broken, have got enough money from thg - < bset of the closur&* of T and which is
user (M), have a goblet under the tap (G) Oufficient to keep all information of™*.

be delivering coffee (C). The occurrence of the 7 —  r(v,(n,H:), v (A,Ch))| Y(H;, Ci,ai) € T}
action “hit machine” can be described by this whereI and.J are any independent sets of
uncertain transition rulegdo(hm) A W, =W, 0.8) indices of rules inT.

and (do(hm) A =W, W,0.1). This rule means that The new possibilistic knowledge ba#& obtained

if you hit the machine when it is working you mayfrom K after transition” is given by the equation
expect that it will not work in the next state with a(UTR) in which T is replaced byI'3:

necessity value of 0.8. This action is a conditional g/ = {(C,a)|3Hs.t. (H,C,b) € T3

effect action (its effects depend on the initial state) Aa = min(b, N (H))}
[16] with uncertain result (it does not necessarilfFrom this result, an algorithm which allows to
work). compute directly the possibilistic knowledge base

From the set of uncertain transition rules it igorresponding to the following state of the system
possible to define a fuzzy relatidn representing is given in [11]. An advantage of this algorithm is
transition from a states to another state’ of the that it remains at the syntactical level.
system:

pr(w,w') =1 —Max(g,c a)eT|weHw £C O
with the convention that “max” taken over anin order to have a very expressive representation
empty set yields 0. The fuzzy upper image of formalism, we choose to represent the system un-
possibility distributionw by I' gives a possibility der study by means of transition rules which can
distribution 7’ defined as follows: be defeasible and uncertain. The idea of describing

7' (W) = max,eq min{m(w), ur(w,w’))} pieces of evolution under the form of pairs possibly
It has been shown in [11] that(H,C,b) € T, associated with complementary terms related to
Ngk:(C) > min{Ng(H),b}. It gives a syntactic uncertainty or non-monotonicity can be found in
way to directly build the possibilistic knowledgeseveral authors, e.g., [5].

V. UNCERTAIN DEFAULT TRANSITION RULES

baseK’ representing the next state: In the present paper, the idea is to extend the
K'= {(C,a)]3Hs1.(H,C,b) €T (UTR)  results in [L1] restated in the previous section to the
Aa = min(b, Nk (H))} case where transition rules are expressed as default

and it shows that the syntactic computation igules, maybe pervaded with uncertainty.
consistent, i.e., each formula &f’ is in the belief Definition 4 (uncertain default transition rule):
set associated with the distributian (made of the An uncertain default transition rule is denoted by
formulas¢ such thaBa > 0, N/ (¢) > a). (H ~ C, a) where H and C are propositional
Hence updating the base can be directly performédrmulas of # anda is the certainty level of the
at the syntactic level from the transitions pairsule. It means “by default” if H is true at time
and the possibilistic logic base. However apoint¢ then C has a necessity degree of at least
it is noticed in [11], this computation is a to be true at time + 1. (if a is not given it is
not complete since there can be a loss afonsidered to be equal to 1).
information in the process. For instance, ifor instance, the description of the action “give
T ={(A,B,a);(C,D,b)} andK = {(AVv C,1)} money” (do(gm) ~ M,0.9) is an uncertain de-
then the syntactic computation gives an emptfault transition rules since, for an unknown reason,
knowledge base (which corresponds to a constdiie machine may not accept the money given. It
distribution equal to 1 everywhere), whereas this also a default transition since it admits known
upper image computation validates the formulaxceptions: for instancédo(gm)AF ~ =M, 0.7)
(B V D,min(a,b,1)). This problem is solved by when the coin is faked (denoted I#).
using the closure of’ denoted7™ given by the In order to handle the frame problem, we need
following formula: to define a frame axiom (this kind of axiom is
T* = {(A, B,a)la =1 —max, 4,/ 2B Ur(ww) defined by many authors see for instance in [10]).



Among all kinds of fluents we can distinguishhow to describe a coffee machine behavior with
persistent fluents (for which a change of valuencertain default transition rules.

is surprising) from non persistent ones (whicticxample 4:Let us consider again the coffee ma-
are also called dynamic [16]). Alternative fluentshine which can be working (W) or be broken, have
represent another type of fluents (which shouldot enough money from the user (M), have a goblet
change their value at each time point); alternativender the tap (G) or be delivering coffee (C). Then
fluents are non persistent fluents, their behavior cave can roughly describe its normal behavior:
easily be described by transition rules of the forme1 : M~ G A-M

f~s —f and—f ~ f. Here, we consider thata set 92 : G~ C

of non persistent literalsV P is defined. Note that The first rule means that if the machine has money
occurrences of actions are clearly non persistefit it then in the next step a goblet is under the

fluents: {do(a)|a € &/} C NP. tap and the money is spent. The second means that
Definition 5 (frame axi(;m):Vf eV, if fe NP when there is a goblet under the tap then in the
then f ~ f and if -f ¢ NP then—f ~» —f. next step coffee is delivered. These first two rules

More generally it is possible to assign to each fluefitéscribe the intended coffee machine comportment
its own persistence degree. For instance, in tHeIPPOSIng it is working correctly. But they admit
Deaf Turkey Problem [5§sleep is persistent but it €XCEpLions:

is less persistent thagea f. It means that instead ¥3 M A=W~ =G
to be considered equal to 0 or 1 as in our examplgf : G A W~ =C .
e can suppose that an agent is able to perform

our formalism allows to adapt the certainty of th%hree actions on this machine : “give money” (gm)

faul i | h fl . We will , .
.de ad t.perS|stence rule to cac uent. We wi Se“?ake goblet” (tg), “hit machine” (hm). Here are the
in section VI that our formalism can also encode

d . : descriptions of the effects of the 3 actions.
ecreasing persistence.

. . . s do(t -
Given the description of an evolving system com-¥? oltg) NG ~ G

. o o d M 0.9
posed of a set of uncertain default transition rules’”® ) olgm) -
T describing its behaviorI{ contains pure dynamic g do(hm) AW~ —W 08
laws and default persistence rules (coming from the’ cdo(hm) A=W ~ W 01

frame axiom)) and a possibilistic knowledge basepﬁge first law means that taking a goblet is a
K which describes the initial state of the worldgeterministic actiowhich leads to make disappear
the problem is to predict the next stak€ of the {he goplet from the tap. The second law has an
world. uncertain effect since giving money can failed if the
« A first idea is to used possibility theory incoin is faked money. The third action has already
order to select which rules i" can be fired peen described in section IV.
when the initial state ig<. Then remove the we consider\/ as the only non persistent fluent (as
rules which are not selected and then appl§oon as it is true, it becomes false because of the
the algorithm in [11]. rule ¢1): NP = {M}. It means that we have the

« Anotheridea is to translate the set of uncertaifp|lowing default transition rules for representing
default transition ruleg” into a set of transi- persistence:

tion rules which are only uncertain and then g5 : G~ G

also apply the algorithm in [11]. The rewrit- ¢, : C ~ C

ing of uncertain default transition rules into ¢, : W~ W

uncertain propositional transition rules can bep,; : F ~ F

done by explicitly naming the exceptions of ¢4 : =M ~» =M

each rule. In order to find exceptions, the ¢5: -G ~ =G

stratification based on the specificity of the ¢,5: -C ~s =C

rules will be used. P17 W~ =W
In both cases, the process has two steps: first, forgetis : = F ~ - F
the certainty degrees and reason on specificity |[A the initial state the agent is not absolutely
order to obtain a set of non-defeasible transitiopure that the coffee machine is working but
formulas. Second, the certainty degrees of tfée puts money in it K = (do(gm)o,1),
transitions are considered and the algorithm giveim£o,0.99), (=Mo,0.9), (Wy,0.8), (=Co,1),
in [11] can be used. (=Go, 1), (=do(z)o,1) if = # gm. A priori the

user thinks that his coin is not faked, there is no

The following example inspired from [11] showsmoney in the machine, no goblet, so no coffee in



it and the user has not committed any other actioithe third stratum is the more specific one, the
rule in it does not admit exceptions. The second
A. Reasoning on the specificity degree stratum contains rules which admit exceptions only

because of rules in the third stratum. The first

:nvtf]lﬁnskecdtl?n ton]IC:E\I/tels r?(rje t?k\;ar; w;tonacc;?ulm' gtratum contains rules which admit exceptions in
eve ed to specificity and a level of uncerta ythe second stratum.

Our proposal is to reason separately on the twi h ibili knowledae b
scales, first use the specificity level to determlnE|ere is the possibilistic knowledge bage asso-

which rules are going to be fired and then deéﬁlated to the transitions given in our example (the
with their uncertain results. We propose to use tHgnored necessity degrees are reminded (in italics)):

system Z stratification principle [14] on the set *7 do(gm)o A Fo — =My 0.75 0.7

of uncertain default rules (ignoring their certainty ¥3 Mo N =Wo = Gy 0.5 1
degrees). If no stratification is possible then it“*" GO N oW = = 05 1
means that two rules of same specificity level are”s do(tg)o A Go — Gy 0.5 1
in contradiction. In the following, we consider that 6« do(gm)o /\_)szl W 82 gz
this is not the case, and thus Z stratification alwayép9 ) dthm%?) A ﬂI?V:—jwi 0'5 0'1
succeed. . . 1 Mo — Gy A~ M, 0.25 1
Definition 6 (specificity degrees principlejet T’ GO 0.25 1
be the set of default transition rules add the 2 '.GO é 0'25 1
possibilistic knowledge base representing what is” 10 ) CO : 01 0'25 1
known about the current state of the system. E ) W?o - I/Il/l 0'25 1
« Compute the stratification of the default rules ¢, : Ffy — F; 0.25 1
in T forgetting their necessity degrees, i.e.,, : =My — —M; 0.25 1
stratify A = {aft] ~ B[t +1]|Fa s.t. (a ~ g5 : =Gy — -Gy 0.25 1
B,a) € T}. It gives a setAg, ..., A,. 16 : "Co — ~C} 0.25 1
« Associate to each default rule=a~ g€ ¢, : =Wy — -, 0.25 1
A its specificity degred(r) = Zﬁfgl. LetE g —Fy — —F 025 1

be the possibilistic knowledge base g%.= The user can check thatic(E U K) = 0.25 since
{(r:alt] = Blt+1],d(r))lr :a~ B €A} EUK k. (M;,0.5) from rule g and from the fact

« Remove each formul@yp;, a;) of E such that ;,(gm),. And we have als&UK +, (=M, 0.25)
a; < Inc(E U K), the remaining transition from rule 4, and the fac— Mo, 0.9).

rule base forgetting the specificity levels isiance the final uncertain transition baga is:
T1 = {(c, Bi)[Fail(ast] — Bilt +1],a:) € @7 : (do(gm) A F,=M,0.7)

E anda; > Inc(FUK)} w3 (M A=W,-G, 1)

Example 5:System Z gives the following stratifi- ¢, : (GA =W, -C, 1)

cation (necessity degrees are reminded (in italics))ys : (do(tg) A G, -G, 1)
p1: M~ GAN-M 1 ve : (do(gm), M,0.9)
p2: G~ C 1 ws : (do(hm) A W, =W,0.8)
p10: G~ G 1 @9 : (do(hm) A=W, W,0.1)
w11:C~C 1 The above example shows a drawback of this
pr2: W~ W 1 method: all the persistence rules are drowned.
p13: F~ F 1 Hence in the second step, we will not be able to
w14 : M~ M 1 determine the value of the fluents which are not
P15 ¢ G ~ -G 1 concerned by transitions. A way to avoid this prob-
w16 : 7C ~ =C 1 lem is for instance the use of the lexico ordering
P17 W~ =W 1 [1]. This ordering associates to each interpretation
P18 1 W~ o F 1 a tuple which values are the number of violated
w3 M NAN-W -~ =G 1 formulas in each stratum. The problem is that
w4: GNANW ~ =C 1 the lexico ordering is defined on interpretations,
©s5: do(tg) A G~ =G 1 it means that we can not stay at the syntactical
e : do(gm) ~ M 0.9 level. Another way to avoid the drowning effect
wg :do(hm) AW ~ =W 0.8 could be to stratify separately the set of persistence
0y : o( m)A-W~W 0.1 rules. In [4], a local stratification is proposed in
w7 do(gm)ANF~ -M 0.7 order to avoid the drowning effect. In the following




section, we present another way to obtain a set 8t each step, a rule is added to the redlonly if
non-defeasible uncertain transition rules from thiés conclusion is consistent with every conclusion

initial set of default uncertain transition rule.

B. Rewriting the rules by giving explicitly their

exceptions

of a rule of D. For a ruler = o ~ 3 from a
stratumA;,. if it exists a ruler’ = (o/,3') in D
such thats’ A 8 + L, thenr is replaced bya A
-a/ ~ (3. Note thata A —a’ is consistent since,

The idea, close to circumscription [12], is to generby construction, every rule ok, is tolerated by
ate automatically a set of rules in which exceptions, it means that it exists) = a A B A (—a/ V 3'),
are mentioned explicitly. Note that the rules of thge, w = o A =/ A 8. r modified by specifying all
last stratum being the most specific they do nagfs exception is added t® only when there is no
admit exceptions. So the algorithm begin from thenore rule inA ., which conclusion is inconsistent

rules of the stratumm — 1.
Definition 7 (rewriting principle):
Let T be the set of default transition rules.

e Compute the stratification of’ forgetting necessity

degrees, i.e., stratifA = {aft] ~ B[t + 1]|Ja s.t.
(a~ B,a) € T}. It gives a setAg, ..., A,.
{Let s be the number of the current stratum andresp.
D,) be the set of all transition rules & (resp. ofAj)
already rewritteh
Sets =n—1andD = {(a,f)|a ~ B € Ay} and
Ds = 2.
while A, is not emptydo repeat
for each ruler = a~ B € A; do
remover from A, {r is being examined
if it exists a transition rule0 = (o, 3')
in D such that3’ A B F L
then add toA, the new default rule
aA—a ~ 3
elseadd the non-defeasible transition

rule (o, 8) to D,
if s # 0 thenaddD; to D; s := s — 1 {examine the

previous stratuny
elseend.

e T'1 is the uncertain transition rules base corresponding’1 *

to D in which necessity degrees appedr. to the
corresponding formulas ab

Proposition 1: If the Z stratification is possible 11 :

then this algorithm terminates.

Proof: The algorithm examines each rule of ¥13:

each stratum. For a rule of a stratuh,, the

algorithm executes at most two consistency test$1s
with each rule of the stratum + 1. Since each ®i6:

stratum is finite, the algorithm terminates. =
Def|n|t|on 8: A transmon rules base{(al,ﬁl)}

with S.

So D remains consistent. ]
Note that each rule of the initial default transition
base is present, modified or not, in the resulting
transition rules base. So, there is no loss of in-
formation as with the previous method. However,
for a one-step reasoning some rules may not be
useful, because not applicable in the initial step.
But it is interesting to keep them for a several-steps
reasoning.

Example 6:Now we can rewrite the rule by de-
scribing explicitly their exceptions starting from
the last stratum. It gives the following uncertain
transition setl'1:

7 : (do(gm) AN F,—=M,0.7)
w3 (M A=W, -G, 1)
ws: (GAN-W,=C,1)
@5 : (do(tg) NG, ~G, 1)
©6 : (do(gm)N—F, M,0.9)
vs : (do(hm) A W,=W,0.8)
g : (do(hm) A =W, W,0.1)
(MAW A —~do(tg) A ~do(gm), G A =M, 1)
Y2 ! (G/\W C ].)
10 : (GA(CMV W) A (-do(tg)), G, 1)

CA(—-G VW), C,1)
WA-do(hm), W, 1)

F,F,1)

014 : ("MA(—do(gm) vV F),-M, 1)

(
e12: (
(
(
1 (-G, -G, 1)
(
(
(

-C,-C, 1)
17 : ("\WA-do(hm), W, 1)
(plg N _‘F _‘F 1)

A

i0] —

Bi[1]) is consistent.

Proposition 2: This algorithm gives a consistent

transition rule base.

Proof: At the beginningD = {(ay, 5;)} is
consistent since it is built on the s&t,, of rules
tolerated by the sefA \ (AgU...A,_1) = A,.
Hence, it existsvy verifying the first rule ofA,,
and satisfying every other rules d,. It means
thatwy = an1 A Bn1 AanioBrica, (M0 V Bni).
So at the beginnind is consistent.

occurrences which seems very natural.
C. Second step: reasoning with an uncertain tran-
sition base

In this step we start from the uncertain transition
baseT'1 obtained after the first step. We then

compute
K = {(C,a)3Hst. (H,C,b) € T3
A a = min(b,Ng(H))} where T3 =

{(Vi(AJH;), V(AN Cy))| for all (H;, Ci,a;) €



T1} wherel and J are any independent sets ofand by default. This tool is useful in the context

indices of rules inl'1.
Example 7:In our example Nk (do(gm)A—F) =

of dynamic systems since it helps solving the
“frame” and “qualification” problems, thanks to

0.99 so K’ contains (M,0.9) where 0.9 is the default rules.

min of Ng(do(gm) A —F) = 0.99 and of the
degree of the transitiopg : (do(gm)A—F, M,0.9)
of T1. (W,0.8) can be deduced by rule;;

W A =do(hm), W, 1) and Ng (Wy A =do(hm)) =
0.8. The user can check thatC and -G persist:
N(=C;) =1 and N(=G;) = 1. All this compu-
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VIl. CONCLUSION

We propose a representation language which allows
to handle transition rules which are both uncertain



