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Abstract— Representing a dynamic system demands
a formalism which can both handle uncertainty and
default information. Uncertainty is present because of
the insufficient knowledge about the evolving system:
the state of the system and the transition rules to
which it obeys are ill known. Moreover, even if the
knowledge about the system was complete, it would
be impossible to express it exhaustively. The use of
default rules can help solving this problem. Default
rules are also useful for reasoning with incomplete
information. We propose a formalism in which it is
possible to express both default and uncertain transi-
tion rules. Two methods for syntactically computing
the new state of the system after a transition are
presented. Their principle is based on the transla-
tion of a base of default uncertain transition rules
into a non-defeasible uncertain transition rules base.
The possibility theory is used for representing both
uncertainty and defeasibility.

I. I NTRODUCTION

Representing a dynamic system in artificial intelli-
gence research has been a challenging problem for
a long time [13]. The classical action representa-
tion problems, namely the “frame”, “qualification”
and “ramification” problems are well known now.
Indeed, describing an action only by its precon-
ditions and its effects is not enough to allow to
deduce the state of the world after the action. An
automatic system able of reasoning about change
should know which fluents are persisting and which
fluents are changing when the action takes place.
The impossibility to enumerate every fluent which
is not changed by an action is called “the frame
problem”. The difficulty to define exactly all the
preconditions of an action is called “the qualifi-
cation problem”. “Ramification”, the third action
representation problem, is related to the difficulty
of describing every direct or indirect effect of an
action, and can be handled by representing static
dependencies.
Many proposals have been made to solve the
qualification and frame problems: see for instance
[10]. A common idea is to use default comport-

ment descriptions for expressing persistence. The
expression of default transitions may be also useful
for coping with the qualification problem. Default
reasoning allows to use general rules in which
exceptions are not mentioned. The benefits of a
simplified presentation has a counterpart: excep-
tions can contradict general rules. A way to avoid
this contradiction is to consider that more specific
rules have priority upon less specific ones.
Besides, the available knowledge about the way
a real system under study can evolve may be
incomplete. This is why uncertainty should also
be represented, at least in a qualitative way. Notice
that the idea of uncertainty level should be distin-
guished from the notion of specificity level: a rule
may have many possible kinds of exceptions but
be quite sure.

In this paper we propose a representation which can
manage both default transition rules and transitions
with an uncertain conclusion, taking advantage of
the possibility theory framework.

II. BACKGROUND ON POSSIBILITY THEORY

We assume a representation languageL made of
a set of propositional variablesV . Note that the
variables set may contain occurrences of action.
More formally, letA be the set of action symbols.
We consider that the variables setV contains in
addition to the symbol representing facts all the
symbolsdo(a) wherea ∈ A , representing action
occurrences. When there is ambiguity, variables
may be indexed by a number representing the time
point in which it is considered. We denote byϕ[t]
the formulaϕ in which all variables are indexed by
time point t. The set of interpretations associated
to this language is denoted byΩ. An interpretation
ω ∈ Ω represents a state of the system under study.
A possibility distribution is a mapping fromΩ to
a numerical scale such as the real interval[0, 1].
However a finite linearly ordered scale could be



used as well. This possibility distribution rank-
orders the interpretations according to their plausi-
bility level. In particular,π(ω) = 0 means that the
interpretation is impossible;π is said normalized
if ∃ω such asπ(ω) = 1 ; there may exist several
distinct interpretations with a possibility degree
equal to 1; they correspond to the most plausible
interpretations. Given a possibility distributionπ
and a formulaϕ, two measures are defined over
the set of models ofϕ:

• Π(ϕ) = maxω|=ϕ π(ω) called the possibility
of ϕ. It measures how unsurprising the for-
mulaϕ is for the agent.Π(ϕ) = 0 means that
ϕ is bound to be false.

• N(ϕ) = 1 − Π(¬ϕ) = 1 − maxω 6|=ϕ π(ω)
called the necessity ofϕ. It corresponds to
the impossibility of “notϕ”. N(ϕ) = 1 means
that ϕ is bound to be true.

Definition 1 (certainty level):A possibilistic
knowledge base is a setK = {(ϕi, ai), i =
1 . . . n}. Where ϕi is a propositional formula
of L and its certainty level ai is such that
N(ϕi) ≥ ai, N being a necessity measure.
In possibilistic logic, the models of the knowledge
baseK are rank-ordered by a possibility distrib-
ution πK . This πK is the greatest solution of the
set of constraintsNK(ϕi) ≥ ai, i = 1 . . . n. It has
been shown in [7] thatπK(ω) the possibility of a
state of the worldω is all the smaller as the model
ω falsifies a formula inK with a high certainty
level.
The semantic entailment of a weighted formula
(ϕ, a) from a possibilistic knowledge baseK is
defined by:
K |= (ϕ, a) ⇔ ∀ω 6|= ϕ, πK(ω) ≤ 1 − a or,
equivalently,K |= (ϕ, a) ⇔ NK(ϕ) ≥ a, where
NK is associated withπK .
Given a possibilistic knowledge baseK, K is
consistent if and only if its associated possibility
distribution πK is normalized (since there is at
least one interpretation in agreement withΣ which
is completely possible). More generally, the degree
of inconsistency ofΣ [6] is defined by:
Inc(K) = 1−maxω∈ΩπK(ω)

When K is partially inconsistent (Inc(K) > 0)
the semantic entailment can be refined (into|=π)
by considering as legitimately entailed only those
propositions to which a degree of certainty, strictly
higher than the level of inconsistency, can be
attached, namely,
∃a, K |=π (ϕ, a) ⇔ NK(ϕ) > Inc(K)

If the weighted formulas ofK are put under
the form of weighted clauses (which is always
feasible, sinceN(∧iϕi) > a ⇔ ∀i,N(ϕi) > a).

The following resolution rule [8] is valid in
possibilistic logic:
(α ∨ β, a); (¬α ∨ δ, b) ` (β ∨ δ,min(a, b)) (R)

The resolution rule can be used in order to compute
the maximal certainty degree which can be attached
to a formula according to the constraints expressed
by the knowledge baseK. This can be done by
adding to K the clauses obtained by refuting
the proposition to evaluate, with a necessity
degree equal to 1. Then it can be shown that any
lower bound obtained on⊥, by resolution, is a
lower bound of the necessity of the proposition
to evaluate. In case of partial inconsistency of
K, a refutation carried out in a situation where
Inc(K ∪ {(¬ϕ, 1)}) = a > Inc(K) yields the
nontrivial conclusion(ϕ, a), only using formulas
whose degrees of certainty is strictly greater than
the level of inconsistency of the base. This is the
syntactic counterpart denoted̀π of the semantic
entailment|=π.
Example 1:We are going to consider the language
built on the three variablesdo(hm)0, W0,W1.
These variables respectively represent the occur-
rence of the action “hit the coffee machine” at time
0, the fact that the coffee machine is working at
time point 0, and at time point 1. Let us consider
the following possibilistic knowledge baseK0 :
ϕ1 do(hm)0 ∧W0 → ¬W1 0.8
ϕ2 W0 → W1 0.6
ϕ3 do(hm)0 1
ϕ4 W0 0.7

The first formula means that if you hit the machine
when it is working you may expect that it won’t
work in the next state with a necessity value of
0.8. The numbers here are just encoding a certainty
ordering, and their nature in itself is not really
meaningful. The second formula is a kind of per-
sistence law, saying that if the machine is working
at time point 0 then it will be working at time point
1 with a necessity value of 0.6 (sometimes it can
become out of order for an unknown reason). The
third formula expresses that the user has hit the
machine (not necessarily on purpose, but he is sure
that he unfortunately has done this action). The
fourth one expresses that the machine is supposed
to be working but the user is not absolutely sure
about it, it has a necessity of 0.7.
This knowledge baseK0 induces the constraints:
∀ω |= do(hm)0 ∧W0 ∧W1, πK0(ω) ≤ 0.2
∀ω |= W0 ∧ ¬W1 πK0(ω) ≤ 0.4
∀ω |= ¬do(hm)0 πK0(ω) ≤ 0
∀ω |= ¬W0 πK0(ω) ≤ 0.3

The eight possible interpretations areω0 =
(do(hm)0 . W0 . W1), ω1 = (do(hm)0 . W0



. ¬W1), ω2 = (do(hm)0 . ¬W0 . W1), ω3 =
(do(hm)0 . ¬W0 . ¬W1), ω4 = (¬do(hm)0 .
W0 . W1), ω5 = (¬do(hm)0 . W0 . ¬W1),
ω6(¬do(hm)0 . ¬W0 . W1), ω7 = (¬do(hm)0 .
¬W0 . ¬W1).
The greatest possibility distributionπK0 satisfying
the constraints is:
πK0(ω0) = 0.2 πK0(ω4) = 0
πK0(ω1) = 0.4 πK0(ω5) = 0
πK0(ω2) = 0.3 πK0(ω6) = 0
πK0(ω3) = 0.3 πK0(ω7) = 0

There is no interpretation which is totally possible,
so K0 is partially inconsistent.Inc(K0) = 1 −
0.4 = 0.6. NK0(¬W1) = 1−maxω|=W1 πK0(ω) =
0.7 > Inc(K0). It means thatK0 |=π ¬W1, i.e.,
the coffee machine is likely to be out of order at
time point 1.
Inc(K0) and this conclusion can also be computed
syntactically using the possibilistic resolution rule
on K0 and onK0 ∪ {(W1, 1)} respectively. More-
over it would be enough to considerK0 \ {ϕ2}
instead ofK0 (sinceN(ϕ2) ≤ Inc(K0)).

III. H ANDLING SPECIFICITY IN DEFAULT RULES

The specificity level is a degree which is associated
to a default rule. Let us recall the definition of
default rules [15] encoded in the possibility theory
framework [2] . A default rule is a formulaH ; C
where H and C are propositional formulas ofL
and; is a new symbol.; is translated byΠ(H∧
C) > Π(H∧¬C), a constraint which expresses that
having C true is strictly more possible than having
it false when H is true.
In [14] an algorithm based on a “minimal speci-
ficity” principle is given which allows to stratify
the set of default rules in a way that reflects the
specificity of the rules. Roughly speaking, the first
stratum contains the most specific rules i.e, which
do not admit exceptions (at least, expressible in
the considered language), the second stratum have
exceptions only in the first stratum and so on.
Definition 2 (System Z stratification [14]):A de-
fault transition ruleα ; β is tolerated by a set of
default rules∆ if it exists an interpretationω such
that ω |= α ∧ β (the ruleα ; β is said verified
by ω) and ∀di ∈ ∆, ω |= ¬αi ∨ βi (di is said
satisfied byω). This definition allows to stratify∆
into (∆0,∆2, . . . ,∆n) such that∆0 contains the
set of rules tolerated by∆, ∆1 contains the set of
rules tolerated by∆ \∆0 and so on. The number
Z(r) corresponds to the number of the stratum in
which the ruler is.
Definition 3 (possibilistic specificity degree):For
each default ruler = α ; β of a default base,

it can be associated [2] a possibilistic formula
(α → β, a), wherea is a number representing its
specificity levela = Z(r)+1

n+2 .
Example 2:The classical example given for
instance in [2] illustrates these definitions:
d1 b ; f (a bird generally flies),
d2 p ; ¬f (a penguin generally does not fly),
d3 p ; b (a penguin is generally a bird).

It can be easily verified that the ruled1 is tolerated
by d2 and d3, since the interpretation (b.f.¬p)
verifies d1 and satisfies bothd2 and d3. This
contrasts with the other rules for which it is not
possible to find an interpretation which verifiesd2

(resp.d3) and satisfies bothd1 and d3 (resp.d1

and d2). So, we haveZ(d1) = 0 and Z(d2) =
Z(d3) = 1. The possibilistic knowledge base
K constructed from the initial default base is:
{ ϕ1 = (b → f, 1

3 ),
ϕ2 = (p → b, 2

3 ),
ϕ3 = (p → ¬v, 2

3 )}
.

What can we deduce from the factb? This can be
computed by adding(b, 1) to K. We can draw the
following derivations:
1. (¬p ∨ b, 2

3
); (¬b ∨ f, 1

3
) ` (¬p ∨ f, 1

3
) (Rϕ1, ϕ2)

2. (¬p ∨ f, 1
3
); (¬p ∨ ¬f, 2

3
) ` (¬p, 1

3
) (R1., ϕ3)

3. (¬p, 1
3
); (b, 1) ` (⊥, 1

3
) (R2., (b, 1))

where R stands for a resolution application to
the formulas explicitly indicated or to the result
of the given line. HenceInc(K ∪ {(b, 1)}) = 1

3 .
Now, we can prove by refutation that¬f is a
logical consequence ofK ∪{(p, 1)}. Since adding
the piece of information(f, 1) we can draw the
following derivations:
4.(¬p ∨ ¬f, 2

3
); (p, 1) ` (¬f, 2

3
) (Rϕ3, (b, 1))

5.(¬f, 2
3
); (f, 1) ` (⊥, 2

3
) (R4., (f, 1))

So Inc(K ∪{(b, 1), (f, 1)}) = 2
3

> Inc(K ∪{(b, 1)}),
Which means thatK ∪ {(b, 1)} `π (¬f, 1).
Note that default rules may concern fluents at
different time points. The knowledge baseM0 ;

G1, F0 ; M0, F0 ; ¬G1 is another instance of
this example. The first rule could be read “usually
if there is money in the coffee machine at time
point 0 then a goblet will be delivered on the tap
at time point 1”. The second rule could be “a
faked coin is usually considered as money” and
the third rule be “usually if there is a faked coin
inserted in the coffee machine then at time point
1 a goblet will not be delivered.” By translation of
the previous example we can obtain that if we have
a faked coin at time point 0 then the goblet will
not be delivered at time point 1.

IV. U NCERTAIN TRANSITION RULES

If we consider an evolving system, we can repre-
sent its behavior like in [11] by the mean of:

• a possibilistic knowledge baseK =
{(ϕi, ai), i = 1, n}, (∀i, ϕi ∈ L , ai ∈ [0, 1])



representing what is known about the initial
state of the system.

• a setT = {(H,C, a)} (H,C ∈ L , a ∈ [0, 1])
of uncertain transition rules.

Example 3:For instance, if we imagine a sim-
ple coffee machine which can be working (W)
or be broken, have got enough money from the
user (M), have a goblet under the tap (G) or
be delivering coffee (C). The occurrence of the
action “hit machine” can be described by this
uncertain transition rules:(do(hm) ∧W,¬W, 0.8)
and (do(hm) ∧ ¬W,W, 0.1). This rule means that
if you hit the machine when it is working you may
expect that it will not work in the next state with a
necessity value of 0.8. This action is a conditional
effect action (its effects depend on the initial state)
[16] with uncertain result (it does not necessarily
work).

From the set of uncertain transition rules it is
possible to define a fuzzy relationΓ representing
transition from a stateω to another stateω′ of the
system:
µΓ(ω, ω′) = 1−max(H,C,a)∈T |ω|=H;ω′ 6|=C a

with the convention that “max” taken over an
empty set yields 0. The fuzzy upper image of a
possibility distributionπ by Γ gives a possibility
distributionπ′ defined as follows:
π′(ω′) = maxω∈Ω min{π(ω), µΓ(ω, ω′))}

It has been shown in [11] that∀(H,C, b) ∈ T ,
NK′(C) ≥ min{NK(H), b}. It gives a syntactic
way to directly build the possibilistic knowledge
baseK ′ representing the next state:
K ′ = {(C, a)|∃Hs.t. (H,C, b) ∈ T

∧a = min(b, NK(H))} (UTR)

and it shows that the syntactic computation is
consistent, i.e., each formula ofK ′ is in the belief
set associated with the distributionπ′ (made of the
formulasϕ such that∃a > 0, Nπ′(ϕ) ≥ a).

Hence updating the base can be directly performed
at the syntactic level from the transitions pairs
and the possibilistic logic base. However as
it is noticed in [11], this computation is
not complete since there can be a loss of
information in the process. For instance, if
T = {(A,B, a); (C,D, b)} andK = {(A ∨ C, 1)}
then the syntactic computation gives an empty
knowledge base (which corresponds to a constant
distribution equal to 1 everywhere), whereas the
upper image computation validates the formula
(B ∨ D,min(a, b, 1)). This problem is solved by
using the closure ofT denotedT ∗ given by the
following formula:
T ∗ = {(A,B, a)|a = 1−maxω|=A;ω′ 6|=B µΓ(ω,ω′)

Since the computation of the closureT ∗ of T
is not reasonable in practice, [11] proposes to
eliminate the information that is not useful from
T ∗ by defining the concept of informativeness. A
transition rule(H1, C1) is more informative than
(H2, C2) iff H2 |= H1 and C1 |= C2. This
concept leads to define a transition setT3 which
is a subset of the closureT ∗ of T and which is
sufficient to keep all information ofT ∗.
T3 = {(∨I(∧JHi),∨I(∧JCi))| ∀(Hi, Ci, ai) ∈ T}

whereI andJ are any independent sets of
indices of rules inT .

The new possibilistic knowledge baseK ′ obtained
from K after transitionT is given by the equation
(UTR) in which T is replaced byT3:
K ′ = {(C, a)|∃Hs.t. (H,C, b) ∈ T3

∧a = min(b, NK(H))}
From this result, an algorithm which allows to
compute directly the possibilistic knowledge base
corresponding to the following state of the system
is given in [11]. An advantage of this algorithm is
that it remains at the syntactical level.

V. UNCERTAIN DEFAULT TRANSITION RULES

In order to have a very expressive representation
formalism, we choose to represent the system un-
der study by means of transition rules which can
be defeasible and uncertain. The idea of describing
pieces of evolution under the form of pairs possibly
associated with complementary terms related to
uncertainty or non-monotonicity can be found in
several authors, e.g., [5].
In the present paper, the idea is to extend the
results in [11] restated in the previous section to the
case where transition rules are expressed as default
rules, maybe pervaded with uncertainty.
Definition 4 (uncertain default transition rule):
An uncertain default transition rule is denoted by
(H ; C, a) whereH and C are propositional
formulas ofL and a is the certainty level of the
rule. It means “by default” if H is true at time
point t then C has a necessity degree of at least
a to be true at timet + 1. (if a is not given it is
considered to be equal to 1).
For instance, the description of the action “give
money” (do(gm) ; M, 0.9) is an uncertain de-
fault transition rules since, for an unknown reason,
the machine may not accept the money given. It
is also a default transition since it admits known
exceptions: for instance,(do(gm)∧F ; ¬M, 0.7)
when the coin is faked (denoted byF ).
In order to handle the frame problem, we need
to define a frame axiom (this kind of axiom is
defined by many authors see for instance in [10]).



Among all kinds of fluents we can distinguish
persistent fluents (for which a change of value
is surprising) from non persistent ones (which
are also called dynamic [16]). Alternative fluents
represent another type of fluents (which should
change their value at each time point); alternative
fluents are non persistent fluents, their behavior can
easily be described by transition rules of the form
f ; ¬f and¬f ; f . Here, we consider that a set
of non persistent literalsNP is defined. Note that
occurrences of actions are clearly non persistent
fluents:{do(a)|a ∈ A } ⊆ NP .
Definition 5 (frame axiom):∀f ∈ V , if f 6∈ NP
thenf ; f and if ¬f 6∈ NP then¬f ; ¬f .
More generally it is possible to assign to each fluent
its own persistence degree. For instance, in the
Deaf Turkey Problem [5]asleep is persistent but it
is less persistent thandeaf . It means that instead
to be considered equal to 0 or 1 as in our example,
our formalism allows to adapt the certainty of the
default persistence rule to each fluent. We will see
in section VI that our formalism can also encode
decreasing persistence.
Given the description of an evolving system com-
posed of a set of uncertain default transition rules
T describing its behavior (T contains pure dynamic
laws and default persistence rules (coming from the
frame axiom)) and a possibilistic knowledge base
K which describes the initial state of the world,
the problem is to predict the next stateK ′ of the
world.

• A first idea is to used possibility theory in
order to select which rules inT can be fired
when the initial state isK. Then remove the
rules which are not selected and then apply
the algorithm in [11].

• Another idea is to translate the set of uncertain
default transition rulesT into a set of transi-
tion rules which are only uncertain and then
also apply the algorithm in [11]. The rewrit-
ing of uncertain default transition rules into
uncertain propositional transition rules can be
done by explicitly naming the exceptions of
each rule. In order to find exceptions, the
stratification based on the specificity of the
rules will be used.

In both cases, the process has two steps: first, forget
the certainty degrees and reason on specificity in
order to obtain a set of non-defeasible transition
formulas. Second, the certainty degrees of the
transitions are considered and the algorithm given
in [11] can be used.

The following example inspired from [11] shows

how to describe a coffee machine behavior with
uncertain default transition rules.
Example 4:Let us consider again the coffee ma-
chine which can be working (W) or be broken, have
got enough money from the user (M), have a goblet
under the tap (G) or be delivering coffee (C). Then
we can roughly describe its normal behavior:
ϕ1 : M ; G ∧ ¬M
ϕ2 : G ; C

The first rule means that if the machine has money
in it then in the next step a goblet is under the
tap and the money is spent. The second means that
when there is a goblet under the tap then in the
next step coffee is delivered. These first two rules
describe the intended coffee machine comportment
supposing it is working correctly. But they admit
exceptions:
ϕ3 : M ∧ ¬W ; ¬G
ϕ4 : G ∧ ¬W ; ¬C

We can suppose that an agent is able to perform
three actions on this machine : “give money” (gm),
“take goblet” (tg), “hit machine” (hm). Here are the
descriptions of the effects of the 3 actions.
ϕ5 : do(tg) ∧G ; ¬G
ϕ6 : do(gm) ; M 0.9
ϕ7 : do(gm) ∧ F ; ¬M 0.7
ϕ8 : do(hm) ∧W ; ¬W 0.8
ϕ9 : do(hm) ∧ ¬W ; W 0.1

The first law means that taking a goblet is a
deterministic actionwhich leads to make disappear
the goblet from the tap. The second law has an
uncertain effect since giving money can failed if the
coin is faked money. The third action has already
been described in section IV.
We considerM as the only non persistent fluent (as
soon as it is true, it becomes false because of the
rule ϕ1): NP = {M}. It means that we have the
following default transition rules for representing
persistence:
ϕ10 : G ; G
ϕ11 : C ; C
ϕ12 : W ; W
ϕ13 : F ; F
ϕ14 : ¬M ; ¬M
ϕ15 : ¬G ; ¬G
ϕ16 : ¬C ; ¬C
ϕ17 : ¬W ; ¬W
ϕ18 : ¬F ; ¬F

In the initial state the agent is not absolutely
sure that the coffee machine is working but
he puts money in it. K = (do(gm)0, 1),
(¬F0, 0.99), (¬M0, 0.9), (W0, 0.8), (¬C0, 1),
(¬G0, 1), (¬do(x)0, 1) if x 6= gm. A priori the
user thinks that his coin is not faked, there is no
money in the machine, no goblet, so no coffee in



it and the user has not committed any other action.

A. Reasoning on the specificity degree

In this section, two levels are taken into account: a
level linked to specificity and a level of uncertainty.
Our proposal is to reason separately on the two
scales, first use the specificity level to determine
which rules are going to be fired and then deal
with their uncertain results. We propose to use the
system Z stratification principle [14] on the set
of uncertain default rules (ignoring their certainty
degrees). If no stratification is possible then it
means that two rules of same specificity level are
in contradiction. In the following, we consider that
this is not the case, and thus Z stratification always
succeed.
Definition 6 (specificity degrees principle):Let T
be the set of default transition rules andK the
possibilistic knowledge base representing what is
known about the current state of the system.

• Compute the stratification of the default rules
in T forgetting their necessity degrees, i.e.,
stratify ∆ = {α[t] ; β[t + 1]|∃a s.t. (α ;

β, a) ∈ T}. It gives a set∆0, . . . ,∆n.
• Associate to each default ruler = α ; β ∈

∆ its specificity degreed(r) = Z(r)+1
n+2 . Let E

be the possibilistic knowledge base s.t.E =
{(r : α[t] → β[t + 1], d(r))|r : α ; β ∈ ∆}.

• Remove each formula(ϕi, ai) of E such that
ai ≤ Inc(E ∪ K), the remaining transition
rule base forgetting the specificity levels is:
T1 = {(αi, βi)|∃ai|(αi[t] → βi[t + 1], ai) ∈
E andai > Inc(E ∪K)}

Example 5:System Z gives the following stratifi-
cation (necessity degrees are reminded (in italics)):

ϕ1 : M ; G ∧ ¬M 1
ϕ2 : G ; C 1
ϕ10 : G ; G 1
ϕ11 : C ; C 1
ϕ12 : W ; W 1
ϕ13 : F ; F 1
ϕ14 : ¬M ; ¬M 1
ϕ15 : ¬G ; ¬G 1
ϕ16 : ¬C ; ¬C 1
ϕ17 : ¬W ; ¬W 1
ϕ18 : ¬F ; ¬F 1
ϕ3 : M ∧ ¬W ; ¬G 1
ϕ4 : G ∧ ¬W ; ¬C 1
ϕ5 : do(tg) ∧G ; ¬G 1
ϕ6 : do(gm) ; M 0 .9
ϕ8 : do(hm) ∧W ; ¬W 0 .8
ϕ9 : do(hm) ∧ ¬W ; W 0 .1
ϕ7 : do(gm) ∧ F ; ¬M 0 .7

The third stratum is the more specific one, the
rule in it does not admit exceptions. The second
stratum contains rules which admit exceptions only
because of rules in the third stratum. The first
stratum contains rules which admit exceptions in
the second stratum.
Here is the possibilistic knowledge baseE asso-
ciated to the transitions given in our example (the
ignored necessity degrees are reminded (in italics)):
ϕ7 : do(gm)0 ∧ F0 → ¬M1 0.75 0 .7
ϕ3 : M0 ∧ ¬W0 → ¬G1 0.5 1
ϕ4 : G0 ∧ ¬W0 → ¬C1 0.5 1
ϕ5 : do(tg)0 ∧G0 → ¬G1 0.5 1
ϕ6 : do(gm)0 → M1 0.5 0 .9
ϕ8 : do(hm)0 ∧W0 → ¬W1 0.5 0 .8
ϕ9 : do(hm)0 ∧ ¬W0 → W1 0.5 0 .1
ϕ1 : M0 → G1 ∧ ¬M1 0.25 1
ϕ2 : G0 → C1 0.25 1
ϕ10 : G0 → G1 0.25 1
ϕ11 : C0 → C1 0.25 1
ϕ12 : W0 → W1 0.25 1
ϕ13 : F0 → F1 0.25 1
ϕ14 : ¬M0 → ¬M1 0.25 1
ϕ15 : ¬G0 → ¬G1 0.25 1
ϕ16 : ¬C0 → ¬C1 0.25 1
ϕ17 : ¬W0 → ¬W1 0.25 1
ϕ18 : ¬F0 → ¬F1 0.25 1

The user can check thatInc(E ∪K) = 0.25 since
E∪K `π (M1, 0.5) from ruleϕ6 and from the fact
do(gm)0. And we have alsoE∪K `π (¬M1, 0.25)
from rule ϕ14 and the fact(¬M0, 0.9).
Hence the final uncertain transition baseT1 is:
ϕ7 : (do(gm) ∧ F,¬M, 0.7)
ϕ3 : (M ∧ ¬W,¬G, 1)
ϕ4 : (G ∧ ¬W,¬C, 1)
ϕ5 : (do(tg) ∧G,¬G, 1)
ϕ6 : (do(gm),M, 0.9)
ϕ8 : (do(hm) ∧W,¬W, 0.8)
ϕ9 : (do(hm) ∧ ¬W,W, 0.1)

The above example shows a drawback of this
method: all the persistence rules are drowned.
Hence in the second step, we will not be able to
determine the value of the fluents which are not
concerned by transitions. A way to avoid this prob-
lem is for instance the use of the lexico ordering
[1]. This ordering associates to each interpretation
a tuple which values are the number of violated
formulas in each stratum. The problem is that
the lexico ordering is defined on interpretations,
it means that we can not stay at the syntactical
level. Another way to avoid the drowning effect
could be to stratify separately the set of persistence
rules. In [4], a local stratification is proposed in
order to avoid the drowning effect. In the following



section, we present another way to obtain a set of
non-defeasible uncertain transition rules from the
initial set of default uncertain transition rule.

B. Rewriting the rules by giving explicitly their
exceptions

The idea, close to circumscription [12], is to gener-
ate automatically a set of rules in which exceptions
are mentioned explicitly. Note that the rules of the
last stratum being the most specific they do not
admit exceptions. So the algorithm begin from the
rules of the stratumn− 1.
Definition 7 (rewriting principle):
Let T be the set of default transition rules.
• Compute the stratification ofT forgetting necessity
degrees, i.e., stratify∆ = {α[t] ; β[t + 1]|∃a s.t.
(α ; β, a) ∈ T}. It gives a set∆0, . . . , ∆n.
{Let s be the number of the current stratum andD (resp.
Ds) be the set of all transition rules of∆ (resp. of∆s)
already rewritten}
Set s = n − 1 and D = {(α, β)|α ; β ∈ ∆n} and
Ds = ∅.
while ∆s is not emptydo repeat

for each ruler = α ; β ∈ ∆s do:
remover from ∆s {r is being examined}
if it exists a transition ruler0 = (α′, β′)

in D such thatβ′ ∧ β ` ⊥
then add to∆s the new default rule

α ∧ ¬α′ ; β
elseadd the non-defeasible transition

rule (α, β) to Ds

if s 6= 0 then add Ds to D; s := s − 1 {examine the
previous stratum}
elseend.
• T1 is the uncertain transition rules base corresponding
to D in which necessity degrees appear.T to the
corresponding formulas ofD
Proposition 1: If the Z stratification is possible
then this algorithm terminates.

Proof: The algorithm examines each rule of
each stratum. For a rule of a stratum∆s, the
algorithm executes at most two consistency tests
with each rule of the stratums + 1. Since each
stratum is finite, the algorithm terminates.
Definition 8: A transition rules base{(αi, βi)}
is said consistent if the propositional formula
∧(αi[0] → βi[1]) is consistent.
Proposition 2: This algorithm gives a consistent
transition rule base.

Proof: At the beginningD = {(αi, βi)} is
consistent since it is built on the set∆n of rules
tolerated by the set∆ \ (∆0 ∪ . . .∆n−1) = ∆n.
Hence, it existsω0 verifying the first rule of∆n

and satisfying every other rules of∆n. It means
that ω0 |= αn1 ∧ βn1 ∧αni;βni∈∆n

(¬αni ∨ βni).
So at the beginningD is consistent.

At each step, a rule is added to the resultD only if
its conclusion is consistent with every conclusion
of a rule of D. For a ruler = α ; β from a
stratum∆s. if it exists a ruler′ = (α′, β′) in D
such thatβ′ ∧ β ` ⊥, then r is replaced byα ∧
¬α′ ; β. Note thatα ∧ ¬α′ is consistent since,
by construction, every rule of∆s+1 is tolerated by
r, it means that it existsω |= α ∧ β ∧ (¬α′ ∨ β′),
i.e, ω |= α∧¬α′ ∧ β. r modified by specifying all
its exception is added toD only when there is no
more rule in∆s+1 which conclusion is inconsistent
with β.
So D remains consistent.
Note that each rule of the initial default transition
base is present, modified or not, in the resulting
transition rules base. So, there is no loss of in-
formation as with the previous method. However,
for a one-step reasoning some rules may not be
useful, because not applicable in the initial step.
But it is interesting to keep them for a several-steps
reasoning.
Example 6:Now we can rewrite the rule by de-
scribing explicitly their exceptions starting from
the last stratum. It gives the following uncertain
transition setT1:
ϕ7 : (do(gm) ∧ F,¬M, 0.7)
ϕ3 : (M ∧ ¬W,¬G, 1)
ϕ4 : (G ∧ ¬W,¬C, 1)
ϕ5 : (do(tg) ∧G,¬G, 1)
ϕ6 : (do(gm)∧¬F,M, 0.9)
ϕ8 : (do(hm) ∧W,¬W, 0.8)
ϕ9 : (do(hm) ∧ ¬W,W, 0.1)
ϕ1 : (M∧W ∧ ¬do(tg) ∧ ¬do(gm), G ∧ ¬M, 1)
ϕ2 : (G∧W, C, 1)
ϕ10 : (G∧(¬M ∨W) ∧ (¬do(tg)), G, 1)
ϕ11 : (C∧(¬G ∨W), C, 1)
ϕ12 : (W∧¬do(hm),W, 1)
ϕ13 : (F, F, 1)
ϕ14 : (¬M∧(¬do(gm) ∨ F),¬M, 1)
ϕ15 : (¬G,¬G, 1)
ϕ16 : (¬C,¬C, 1)
ϕ17 : (¬W∧¬do(hm),¬W, 1)
ϕ18 : (¬F,¬F, 1)

Notice that persistence laws exceptions are actions
occurrences which seems very natural.

C. Second step: reasoning with an uncertain tran-
sition base

In this step we start from the uncertain transition
base T1 obtained after the first step. We then
compute
K ′ = {(C, a)|∃Hs.t. (H,C, b) ∈ T3
∧ a = min(b, NK(H))} where T3 =
{(∨I(∧JHi),∨I(∧JCi))| for all (Hi, Ci, ai) ∈



T1} where I and J are any independent sets of
indices of rules inT1.
Example 7: In our example,NK(do(gm)∧¬F ) =
0.99 so K ′ contains (M, 0.9) where 0.9 is the
min of NK(do(gm) ∧ ¬F ) = 0.99 and of the
degree of the transitionϕ6 : (do(gm)∧¬F,M, 0.9)
of T1. (W, 0.8) can be deduced by ruleϕ17 :
W ∧¬do(hm),W, 1) andNK(W0 ∧¬do(hm)) =
0.8. The user can check that¬C and¬G persist:
N(¬C1) = 1 and N(¬G1) = 1. All this compu-
tation can be done again for time point 2, if no
action is done at step 1, it will give a possibilistic
knowledge baseK ′′ in which the goblet is on the
tap with a necessity of 0.8.

VI. A PPLICATION TO FUZZY DEFAULT RULES

In the preceding section, the necessity degrees
associated to rules are levels which are fixed by the
user. An interesting application is to use variable
weights. Let us first remind that a possibilistic
formula of the form(α∧β → γ, a) is semantically
equivalent to(α → γ, min(a, v(β)) wherev(β) =
0 if β is false andv(β) = 1 if β is true [7].
It expresses thatα → γ is a-certain given the
proviso thatβ is true. More generally,β can be
a vague predicate andv(β) can take its value in
the [0, 1] interval, in this casev(β) corresponds to
the membership function ofβ. This result allows
us to handle fuzzy default rules [3] of the form “the
more β, the more it is certain thatα implies γ is
true”. For instance, “the smaller a bird is, the more
certain it flies”. This kind of rule can be encoded by
(b ; f, µs) whereµs is the membership function
of small. Note that this certainty degreeµs should
not be confused with the specificity level of the
rule. In our example, we can imagine a rule of
this kind, for instance: “the more strongly you
hit the coffee machine, the more it is certain that
it will not work in the next state” encoded by
(do(hm) ∧W ; ¬W,µstrongly).
The possibility to affect variable degrees to a rule
may be also very useful in representing dynamic
systems. Since they can express decreasing persis-
tence [9]: the more the time has passed the less
it is certain that a fluent has kept its value. A
decreasing persistence rule is generally of the form
(Mt ; Mt+n, f(M,n)) where the degree attached
to the rule is function of the fluent quality (highly
persistent or dynamic) and of the length of the time
interval.

VII. C ONCLUSION

We propose a representation language which allows
to handle transition rules which are both uncertain

and by default. This tool is useful in the context
of dynamic systems since it helps solving the
“frame” and “qualification” problems, thanks to
default rules.
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