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Computing within Coq: Example

From mathcomp Require Import all_ssreflect.
Eval compute in filter prime (mkseq (fun n ⇒ n) 100).

 [:: 2; 3; 5; 7; 11; 13; 17; 19; 23; 29; 31; 37; 41;
43; 47; 53; 59; 61; 67; 71; 73; 79; 83; 89; 97]

: seq nat
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Datatypes for arithmetic in Coq

1984: birth of Coq
1989: primitive inductive definitions, e.g. nat  radix-1 integers

1994: positive, N, Z  radix-2 integers

2006: bigN, bigZ, bigQ  binary trees of 31-bit machine integers
Reference implementation in Coq (using lists of bits)
Optimization with processor integers in {vm,native}_compute
Implicit assumption that both implementations match

2013: int unsigned 63-bit machine integers + "primitive computation"
Compact representation of integers in the kernel
Efficient operations available for all reduction strategies
Explicit axioms to specify the primitive operations

2019: float  binary64 machine floating-point numbers (this work).
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The validsdp tactic: relying on proof by reflection in Coq

Goal

xi : R ` 0 ≤ r

0 ≤ interp(x, p)

tactics

≡
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The validsdp tactic: relying on proof by reflection in Coq

Goal

xi : R ` 0 ≤ r (x, p) : list(R)×AST

P : list(list(N)×Q)

(z,Q) : list(list(N))×list(list(F))

check(x, p, (z,Q)) = true0 ≤ interp(x, p)

tactics
parse the goal

transform to effective datatypes

SDP solver (external)

computation

correctness
theorem

≡
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Wrap-up and Positioning

Coq offers some computation capabilities
and computations can be used in proofs

Coq offers efficient integers (63-bit or multiple-precision)

Until now, floating-point numbers were emulated with integers
→ Bottleneck in ValidSDP and CoqInterval libraries

Goal 1: Implement primitive floats (binary64) in Coq’s standard library
Goal 2: Refactor ValidSDP and CoqInterval to use primitive floats
Goal 3: Evaluate the performance gain
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Agenda

1 Introduction and motivations

2 Implement primitive floats

3 Refactor ValidSDP and CoqInterval

4 Experimental results

5 Conclusion
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Floating-point formats

Definition
A floating-point format F is a subset of R. x ∈ F iff x ∈ {±∞,NaN} or

x = mβe

for some m, e ∈ Z, |m| < βp and emin ≤ e ≤ emax.

m: mantissa of x
β: radix of F (2 in practice)
p: precision of F

e: exponent of x
emin: minimal exponent of F
emax: maximal exponent of F

red: parameters of the format
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IEEE 754 standard

The IEEE 754 standard defines floating-point formats and operations.

Example
For binary64 format (type double in C): β = 2, p = 53 and emin = −1074.
Binary representation:

sign exponent (11 bits) mantissa (52 bits)

& Special values: ±∞ and NaNs (Not A Number, e.g., 0/0 or
√
−1)

Remarks
two zeros: +0 and −0 (1/+ 0 = +∞ whereas 1/− 0 = −∞)
many NaN values (used to carry error messages)
+0 = −0 but NaN 6= NaN (for all NaN)
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Overview of the Flocq library [Boldo, Melquiond, 2011]
(see also Guillaume Melquiond’s talk)

Flocq is a Coq library formalizing floating-point arithmetic
very generic formalization (multi-radix, multi-precision)
linked with real numbers of the Coq standard library
multiple models available

without overflow nor underflow
with underflow (either gradual or abrupt)
IEEE 754 binary format (used in CompCert)

many classical results about roundings and specialized algorithms
effective numerical computations

https://flocq.gitlabpages.inria.fr/
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Applied workflow

1 Define a minimal interface for the IEEE 754 binary64 format.
2 Define a fully-specified spec reusing a minimal excerpt of Flocq.
3 Setup a compatibility layer and add it to Flocq.
4 Implement support for all reduction tactics, in OCaml and C layers.
5 Add convenience features (warnings, decimal/hexadecimal notations. . . )
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Interface and Specification (1/4)

From Coq Require Import Floats.

(* contains *)

Parameter float : Set.
Parameter opp : float → float.
Parameter abs : float → float.

Variant float_comparison : Set :=
| FEq | FLt | FGt | FNotComparable.

Variant float_class : Set :=
| PNormal | NNormal | PSubn | NSubn | PZero | NZero
| PInf | NInf | NaN.

Parameter compare : float → float → float_comparison.
Parameter classify : float → float_class.
Érik Martin-Dorel et al. Hardware floating-point computations in Coq
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Interface and Specification (2/4)

Parameters mul add sub div : float → float → float.
Parameter sqrt : float → float.
(* using correct rounding with the dflt rounding mode. *)
Parameter of_int63 : Int63.int → float.
(* if input inside [0.5; 1.) then return its mantissa. *)
Parameter normfr_mantissa : float → Int63.int.
Definition shift := (2101)%int63. (* = 2*emax + prec *)
(* frshiftexp f = (m, e)

s.t. m ∈ [0.5, 1) and f = m * 2^(e-shift) *)
Parameter frshiftexp : float → float * Int63.int.
(* ldshiftexp f e = f * 2^(e-shift) *)
Parameter ldshiftexp : float → Int63.int → float.
Parameter next_up : float → float.
Parameter next_down : float → float.
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Interface and Specification (3/4)
All this computes; but useless for proofs; we need a specification:
Variant spec_float :=

| S754_zero (s : bool)
| S754_infinity (s : bool)
| S754_nan
| S754_finite (s : bool) (m : positive) (e : Z).

Definition SFopp x :=
match x with
| S754_zero sx ⇒ S754_zero (negb sx)
| S754_infinity sx ⇒ S754_infinity (negb sx)
| S754_nan ⇒ S754_nan
| S754_finite sx mx ex ⇒ S754_finite (negb sx) mx ex
end.

(* and so on (mostly borrowed from Flocq) *)
Érik Martin-Dorel et al. Hardware floating-point computations in Coq
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Interface and Specification (4/4)

And axioms to link everything

Definition Prim2SF : float → spec_float.
Definition SF2Prim : spec_float → float.

Axiom opp_spec :
forall x, Prim2SF (-x)%float = SFopp (Prim2SF x).

Axiom mul_spec :
forall x y, Prim2SF (x * y)%float

= SF64mul (Prim2SF x) (Prim2SF y).
(* and likewise for other operators. *)
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Pitfalls
Specification issues Naturally, axioms are in the Trusted Computing Base.
Portability is critical The implementation of all reduction tactics must

return the same results, whatever is the IEEE 754 compliant
processor used.

NaN payloads are hardware-dependent (weakly IEEE-754 specified)
 this could easily lead to a proof of False

x87 registers Double-roundings issues (especially with OCaml on 32 bits)
Comparisons Can’t use IEEE 754 comparison for Coq’s standard equality

(equates +0 and −0 whereas 1
+0 = +∞ and 1

−0 = −∞)
Primitive int63 are unsigned  requires some care with signed exponents
OCaml floats are boxed  take care of garbage collector
Parsing and pretty-printing

hexadecimal (0xap-3) & decimal (1.25) notions in float_scope
formally proved that using 17 decimal digits entails (parse ◦ print) is
the identity over binary64

Érik Martin-Dorel et al. Hardware floating-point computations in Coq
14/28



Introduction and motivations Implement primitive floats Refactor ValidSDP and CoqInterval Experimental results Conclusion

Bugs identified and fixed since 2019

Specification issues:
#12483 Incorrect spec of leb (had written Le, i/o Lt|Eq)

→ new warning.

#16096 Incorrect spec of classify (the value of the sign bit was reversed)

Interaction with other primitive types:
#15070 Primitive persistent arrays (dev. concurrently with primitive floats)

led to an incompatibility w.r.t. OCaml runtime memory invariants.
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Overview of the ValidSDP library [Martin-Dorel, Roux, 2017]
(see also Pierre Roux’s talk)

ValidSDP is a package of Coq tactics for multivariate polynomial positivity
provide tactics: validsdp, validsdp_intro (and posdef_check)
input: polynomials inequalities under polynomial constraints
involving real-valued variables and rational constants
use proof-by-reflection and Ltac2 meta-programming
use off-the-shelf SDP solvers as untrusted oracles
use symbolic-numeric computations (matrices and floating-point
arithmetic)

https://github.com/validsdp/validsdp#readme

Érik Martin-Dorel et al. Hardware floating-point computations in Coq
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Refactoring ValidSDP to add support for primitive floats

initially: several Records formalizing floating-point formats based on
“the standard model of FP arith.” (involving ε and η error bounds)

outcome: fortunately, the already formalized structures were precise
enough to account for underflows, overflows, and NaNs;

we just needed to implement two instances (binary64, ◦ := RNE) and
(binary64, ◦ := RU); without needing to alter the existing Records.
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Overview of the CoqInterval library [Melquiond, 2008]
(see also Guillaume Melquiond’s talk)

CoqInterval is a Coq library formalizing Interval Arithmetic
tactics to automatically prove inequalities on real-valued expressions
(interval, interval_intro, integral, integral_intro, etc.)
modular formalization involving Coq signatures and modules
intervals with floating-point bounds
radix-2 floating-point numbers (pairs of bigZ, no underflow/overflow)

 efficient numerical computations
support of elementary functions such as exp, ln and atan

https://coqinterval.gitlabpages.inria.fr/
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Refactoring CoqInterval to add support for primitive floats
initially: the basic operators are exactly-rounded, using emulated,
directed roundings. Example spec:
Parameter add_correct : forall mode p x y,

toX (add mode p x y)
= Xround radix mode (prec p) (Xadd (toX x) (toX y)).

use hardware rounding-to-nearest along with next_up, next_down
we obtain a new interval arithmetic kernel without exact rounding
( trade off exact-computation proofs for performance). Spec:
Parameter add_UP_correct : forall p x y,

x 6= −∞ → y 6= −∞ → (add_UP p x y) 6= −∞ ∧
le_upper (Xadd (toX x) (toX y)) (toX (add_UP p x y)).

Other adaptations needed: some functions were incompatible with
overflows, or just with the fixed precision of hardware floating-point
numbers. Overall, the refactoring led to (+9700, −4300) LOC.
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Computing within Coq: Several powerful tactics

Three main reduction tactics are available:

1984: compute: reduction machine
2004: vm_compute: virtual machine (byte-code)
2011: native_compute: compilation (ocaml native-code; dynlink)

method speed TCB size
compute + ∗
vm_compute ++ ∗ ∗
native_compute +++ ∗ ∗ ∗

Trusted
Computing Base

Érik Martin-Dorel et al. Hardware floating-point computations in Coq
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Benchmarks (1/6) – ValidSDP

ValidSDP: Measure the elapsed time with/without primitive floats
for the tactic “posdef_check” using vm_compute.

Source Emulated Hardware Speedup

mat0050 0.228s ±9.5% 0.013s ±16.7% 17.3×
mat0100 1.451s ±2.4% 0.113s ±8.2% 12.9×
mat0150 4.572s ±6.8% 0.276s ±13.0% 16.6×
mat0200 10.724s ±3.4% 0.557s ±9.8% 19.2×
mat0250 21.839s ±1.2% 1.032s ±3.5% 21.2×
mat0300 37.706s ±1.6% 1.810s ±4.7% 20.8×
mat0350 60.616s ±1.5% 2.802s ±4.1% 21.6×
mat0400 89.343s ±1.5% 4.110s ±0.9% 21.7×

Érik Martin-Dorel et al. Hardware floating-point computations in Coq
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Benchmarks (2/6) – ValidSDP

ValidSDP: measure the speed-up on the individual arithmetic
operations (for a Cholesky decomposition of random square matrices)

Op compute Emulated Hardware SpeedupCPU times (Op×2−Op) CPU times (Op×1001−Op)

add vm 101.54±1.6% – 77.91±1.2% 163.50±0.5% – 4.12±0.9% 148×
mul vm 116.68±1.5% – 77.91±1.2% 163.54±0.5% – 4.12±0.9% 243×
add native 25.08±2.0% – 20.10±4.8% 88.67±2.2% – 1.66±0.9% 57×
mul native 29.13±1.2% – 20.10±4.8% 92.79±1.7% – 1.66±0.9% 99×

Érik Martin-Dorel et al. Hardware floating-point computations in Coq
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Benchmarks (3/6) – CoqInterval

10−3 10−2 10−1 100 101 102 10310−3

10−2

10−1

100

101

102

103

prec53-vm (s)

hardware-vm (s)

×10
×20

Fig. 1 Comparison of
proof times: hardware vs.
emulated 53-bit FPA
using vm_compute

log-log scale (diagonals
= equivalent speedups)

Out of the 101 examples,
4 proofs fail with
hardware numbers due to
the pessimistic outward
rounding (points at the
top of the graph)
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Benchmarks (4/6) – CoqInterval

10−3 10−2 10−1 100 101 102 10310−3

10−2

10−1

100

101

102

103

prec53-vm (s)

prec30-vm (s)

×2

Fig. 2 Comparison of
proof times: emulated
53-bit vs. 30-bit FPA
using vm_compute

Out of the 101 examples,
14 proofs fail with the
reduced precision

Before this work, 30 bits
= CoqInterval default
precision (enough to
prove 86% of the suite,
but with a smaller
speedup wrt. for Fig. 1!)
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Benchmarks (5/6) – CoqInterval
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Fig. 3 Comparison of
proof times:
vm_compute vs.
native_compute, for
emulated 53-bit FPA.
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Benchmarks (6/6) – CoqInterval
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×3 Fig. 4 Comparison of
proof times:
vm_compute vs.
native_compute, for
hardware FPA.

Out of the 101 examples,
4 fail (points at the top
of the graph)
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Agenda

1 Introduction and motivations

2 Implement primitive floats

3 Refactor ValidSDP and CoqInterval

4 Experimental results

5 Conclusion
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Concluding remarks

Wrap-up
Add hardware floating-point support in Coq’s stdlib and kernel
Builds on the methodology of primitive 63-bit integers
Focus on binary64 and on portability (IEEE 754, no NaN payloads. . . )
Speedup: 2 OOM for +/×, 1 OOM for reflexive tacticsValidSDP/CoqInterval

Perspectives
Implement roundToIntegral and convertToIntegral?
Replace unsigned integers with signed integers? (cf. slide 11/26)
Nice applications (e.g., floating-point expansions?; other ideas?)
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Thank you!

From Coq Require Import Floats.

(* Questions *)

?
https://coq.github.io/doc/master/refman/language/core/

primitive.html#primitive-floats
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Proofs involving floating-point computations (1/2)

Example (Cholesky decomposition)
To prove that a matrix A ∈ Rn×n is positive semi-definite
we can similarly expose R such that A = RTR

(since xT
(
RTR

)
x = (Rx)T (Rx) = ‖Rx‖22 ≥ 0).

The Cholesky decomposition computes such a matrix R:
R := 0;
for j from 1 to n do

for i from 1 to j − 1 do
Ri,j :=

(
Ai,j − Σi−1

k=1Rk,iRk,j

)
/Ri,i;

od

Rj,j :=
√

Mj,j − Σj−1
k=1Rk,j

2;
od

With rounding errors A 6= RTR

but error is bounded and for some (tiny) cA ∈ R:
if Cholesky succeeds on A− cA I then A � 0.
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Proofs involving floating-point computations (2/2)

Example (Interval Arithmetic)
Datatype: interval = pair of (computable) real numbers
E.g., [3.1415, 3.1416] 3 π
Operations on intervals, e.g., [2, 4]− [0, 1] := [2− 1, 4− 0] = [1, 4],
with the containment property: ∀x ∈ [2, 4], ∀y ∈ [0, 1], x− y ∈ [1, 4].
Tool for bounding the range of functions

In practice, interval arithmetic can be efficiently implemented
with floating-point arithmetic and directed roundings (towards ±∞).
Thus floating-point computations (of interval bounds)
can be used to prove numerical facts.
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