Formal proofs and certified computation in Coq

Erik Martin-Dorel

http://erik.martin-dorel.org

Equipe ACADIE, Laboratoire IRIT
Université Toulouse Il - Paul Sabatier

French Symposium on Games
26-30 May 2015
Université Paris Diderot

A@ADIE

1
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

http://erik.martin-dorel.org/

Introduction The Coq proof assistant Overview of several Coq libraries
@00 0000 00000
000

Formal Methods

o Gather

e a set of mathematically-based
techniques

o designed to specify and verify
computer systems

Yo

0y
ACADIE

Model
Checking

Deductive
Verifi-
cation

Towards formalized game theory

[e]e]
Abstract
Interpre-
tation
Verification
Techniques
Formal
Proofs
2
/18

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

@00 0000 00000 (e]e]
[e]e]e}

Formal Methods

o Gather Model Abstract
. . Interpre-
- Check
o a set of mathematically-based ecking tation
techniques

o designed to specify and verify
computer systems

@ Used in areas where Verification

. Techniques
e errors can cause loss of life

e errors can cause significant
financial damage

Deductive
o Formal
Verifi-
. Proofs
cation
jClo;
()
ACADIE .
/18

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

Introduction The Coq proof assistant Overview of several Coq libraries

@00 0000 00000

[e]e]e}

Formal Methods

o Gather

e a set of mathematically-based
techniques

o designed to specify and verify
computer systems

@ Used in areas where
e errors can cause loss of life
e errors can cause significant
financial damage
@ For instance
o for the Paris Métro Line 14

e at Intel, AMD, ...
Q)
ACADIE

Model
Checking

Deductive
Verifi-
cation

Towards formalized game theory

(e]e]

Verification
Techniques

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

Abstract
Interpre-
tation

Formal
Proofs

’/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

(o] le} 0000 00000 (e]e]
[e]e]e}

Formal Proofs

@ needs a proof assistant (= proof checker (= theorem prover))
o specify algorithms and theorems
e develop proofs interactively
e check proofs
e but also perform computations, develop automatic tactics. . .

@ various tools: ACL2, Agda, Coq, HOL Light, Isabelle, Mizar, PVS. ..

Yo

&y
ACADIE

3
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

(o] le} 0000 00000 (e]e]
[e]e]e}

Formal Proofs

@ needs a proof assistant (= proof checker (= theorem prover))
specify algorithms and theorems

develop proofs interactively

check proofs

but also perform computations, develop automatic tactics. . .

@ various tools: ACL2, Agda, Coq, HOL Light, Isabelle, Mizar, PVS. ..
@ main criteria to classify them:

o the kind of underlying logic (FOL/HOL, classical/intuitionistic. . .)
o the presence of a proof kernel (De Bruijn’s criterion)

e the degree of automation

e the availability of large libraries of formalized results

@ see also [Freek Wiedijk (2006): The Seventeen Provers of the World]

Yo

&y
ACADIE

3
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

ooe 0000 00000 (e]e]
[e]e]e}

How to Believe a Machine-Checked Proof [R. Pollack 1998]

A@ADIE

4
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

ooe 0000 00000 (e]e]
[e]e]e}

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:

© decide if the putative formal proof is really a derivation in the given
formal system

A@ADIE

4
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
ooe 0000 00000

(e]e]
[e]e]e}

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:

© decide if the putative formal proof is really a derivation in the given
formal system

@ decide if what it proves really has the informal meaning claimed for it

Yo

&y
ACADIE

4
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
ooe 0000 00000

(e]e]
[e]e]e}

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:

© decide if the putative formal proof is really a derivation in the given
formal system

— this question can be answered by a machine
— need to trust the hardware, the OS... and the proof checker (but it is
a simple program: it just need to check the proof, not to “discover” it!)

@ decide if what it proves really has the informal meaning claimed for it

Yo

&y
ACADIE

4
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
ooe 0000 00000

(e]e]
[e]e]e}

How to Believe a Machine-Checked Proof [R. Pollack 1998]

Two sub-problems:

© decide if the putative formal proof is really a derivation in the given
formal system
— this question can be answered by a machine
— need to trust the hardware, the OS... and the proof checker (but it is
a simple program: it just need to check the proof, not to “discover” it!)
@ decide if what it proves really has the informal meaning claimed for it
— this is an informal question

— well surveyable: check that the formalized definitions indeed correspond
to the usual mathematical ones

(no need to dive into proof details: they're fully handled by the checker)

Yo

&y
ACADIE

4
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

@ Written in OCaml

=xa

ACADIE ”
—)

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 (e]e]
[e]e]e}

Focus on the Coq proof assistant

@ Written in OCaml

@ Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)

Yo

&y
ACADIE

5
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 @000 00000 [e]e]
000

Focus on the Coq proof assistant

@ Written in OCaml

@ Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)

@ Provides a strongly-typed functional programming language and proof
framework, based on the Calculus of Inductive Constructions, a
higher-order logic that is constructive (= intuitionistic) and very
expressive

Yo

&y
ACADIE

5
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} @000 00000 (e]e]
[e]e]e}

Focus on the Coq proof assistant

@ Written in OCaml

@ Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)

@ Provides a strongly-typed functional programming language and proof
framework, based on the Calculus of Inductive Constructions, a
higher-order logic that is constructive (= intuitionistic) and very
expressive

@ [Yves Bertot, Pierre Castéran (2004): Coq'Art: The Calculus of
Inductive Constructions]

A@ADIE

5
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 (e]e]
[e]e]e}

Focus on the Coq proof assistant

@ Written in OCaml

@ Initiated by Thierry Coquand and Gérard Huet, and developed by
Inria since 1984 (the latest stable release being version 8.4pl6)

@ Provides a strongly-typed functional programming language and proof
framework, based on the Calculus of Inductive Constructions, a
higher-order logic that is constructive (= intuitionistic) and very
expressive

@ [Yves Bertot, Pierre Castéran (2004): Coq'Art: The Calculus of
Inductive Constructions]

@ Coq has been awarded the 2013 ACM Software System Award,
and the 2013 SIGPLAN Programming Languages Software Award.

&y
ACADIE

5
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries

[e]e]e} 0e00 00000
[e]e]e}

Recap the role of Coq's kernel

The Curry—Howard correspondence

A propositionis a type

Towards formalized game theory
[e]e]

A@ADIE

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

®/18

Introduction The Coq proof assistant Overview of several Coq libraries

[e]e]e} 0e00 00000
[e]e]e}

Recap the role of Coq's kernel

The Curry—Howard correspondence

A propositionis a type

A proof of a proposition is ... a program that inhabits this type

Towards formalized game theory
[e]e]

A@ADIE

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

®/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0e00 00000 (e]e]
[e]e]e}

Recap the role of Coq's kernel

The Curry—Howard correspondence

A propositionis a type
A proof of a proposition is ... a program that inhabits this type
A false propositionis an empty type

A@ADIE

6
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0e00 00000 (e]e]
[e]e]e}

Recap the role of Coq's kernel

The Curry—Howard correspondence

A propositionis a type
A proof of a proposition is ... a program that inhabits this type
A false propositionis an empty type

A proof of P implies) is ... a program p turning any proof of P
into a proof of @); denoted by p: P — @

A@ADIE

6
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 0e00 00000 [e]e]
000

Recap the role of Coq's kernel

The Curry—Howard correspondence

A propositionis a type
A proof of a proposition is ... a program that inhabits this type
A false propositionis an empty type

A proof of P implies) is ... a program p turning any proof of P
into a proof of @); denoted by p: P — @

Checking that p is a proof of a theorem T' (in a proof environment E)
amounts to calculating the type of p (w.r.t. F) and comparing it with T

Yo

(@)
AADIE

6
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 0e00 00000 [e]e]
000

Recap the role of Coq's kernel

The Curry—Howard correspondence

A propositionis a type
A proof of a proposition is ... a program that inhabits this type
A false propositionis an empty type

A proof of P implies) is ... a program p turning any proof of P
into a proof of @); denoted by p: P — @

Checking that p is a proof of a theorem T' (in a proof environment E)
amounts to calculating the type of p (w.r.t. F) and comparing it with T
We say that it is a type judgement EF p: T.

Yo

&y
ACADIE

6
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant

Overview of several Coq libraries
000 0000

Towards formalized game theory
00000 [e]e]
000

Coq, proofs and computation

Coq comes with a primitive notion of computation, called conversion.
Key feature of Coq's logic: the convertibility rule
In environment F, if p: A and if A and B are convertible, then p : B. J

A@ADIE

7
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant

Overview of several Coq libraries
000 0000

Towards formalized game theory
00000 [e]e]
000

Coq, proofs and computation

Coq comes with a primitive notion of computation, called conversion.
Key feature of Coq's logic: the convertibility rule
In environment F, if p: A and if A and B are convertible, then p : B. J

So roughly speaking, typing is performed “modulo computation”.

A@ADIE

7
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant

Overview of several Coq libraries
000 0000

Towards formalized game theory
00000 [e]e]
000

Coq, proofs and computation

Coq comes with a primitive notion of computation, called conversion.
Key feature of Coq's logic: the convertibility rule

In environment F, if p: A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation

@ Assume we want to prove 4 < 8, not using the axiomatic approach?

“i.e. without relyingon Vn: N, n<n and Vm,n: N, m<n=m<n+1

7
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant

Overview of several Coq libraries
000 0000

Towards formalized game theory
00000 [e]e]
000

Coq, proofs and computation

Coq comes with a primitive notion of computation, called conversion.
Key feature of Coq's logic: the convertibility rule

In environment F, if p: A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation

@ Assume we want to prove 4 < 8, not using the axiomatic approach?

@ We define & as the subtraction over N, i.e. m & n := max(0, m — n).

“i.e. without relyingon Vn: N, n<n and Vm,n: N, m<n=m<n+1

7
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant

Overview of several Coq libraries
000 fele] lo)

Towards formalized game theory
00000 [e]e]
000

Coq, proofs and computation

Coq comes with a primitive notion of computation, called conversion.
Key feature of Coq's logic: the convertibility rule

In environment F, if p: A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation
@ Assume we want to prove 4 < 8, not using the axiomatic approach?

@ We define & as the subtraction over N, i.e. m & n := max(0, m — n).
@ We rewrite 4 <8 as 468 = 0.

“i.e. without relyingon Vn: N, n<n and Vm,n: N, m<n=m<n+1

7
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 fele] lo) 00000

(e]e]
[e]e]e}

Coq, proofs and computation

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment F, if p: A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.
Toy example of proof based on computation
@ Assume we want to prove 4 < 8, not using the axiomatic approach?

@ We define & as the subtraction over N, i.e. m & n := max(0, m — n).
@ We rewrite 4 <8 as 468 = 0.

@ We compute and get 0 = 0, which trivially holds (refl : 0 = 0)

“i.e. without relyingon Vn: N, n<n and Vm,n: N, m<n=m<n+1

7
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries
000 fele] lo) 00000
000

Towards formalized game theory
[e]e]

Coq, proofs and computation

Coq comes with a primitive notion of computation, called conversion.

Key feature of Coq's logic: the convertibility rule
In environment F, if p: A and if A and B are convertible, then p : B.

So roughly speaking, typing is performed “modulo computation”.

Toy example of proof based on computation
@ Assume we want to prove 4 < 8, not using the axiomatic approach?
@ We define & as the subtraction over N, i.e. m & n := max(0, m — n).
@ We rewrite 4 <8 as 468 = 0.
@ We compute and get 0 = 0, which trivially holds (refl : 0 = 0)

o

As 0 =0 and 4 © 8 = 0 are convertible, we also have refl : 4 © 8 = 0,
hence the result.

“i.e. without relyingon Vn: N, n<n and Vm,n: N, m<n=m<n+1

7
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} [ele]e] } 00000 (e]e]
[e]e]e}

Approaches to certify computation with a Proof Assistant

Borrowing [G. Barthe, G. Ruys, H. Barendregt, 1995]'s terminology
“autarkic approach”: perform all calculations inside the proof assistant

“skeptical approach”: rely on certificates that are produced by a given
tool, external to the proof assistant, then checked

A@ADIE

8
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} [ele]e] } 00000 (e]e]
[e]e]e}

Approaches to certify computation with a Proof Assistant

Borrowing [G. Barthe, G. Ruys, H. Barendregt, 1995]'s terminology
“autarkic approach”: perform all calculations inside the proof assistant

“skeptical approach”: rely on certificates that are produced by a given
tool, external to the proof assistant, then checked

extraction of programs: generate compilable source code (e.g. in OCaml)
correct by construction, from the formalized algorithm:
e.g., the CompCert C compiler has been designed this way
[X. Leroy (2009): A Formally Verified Compiler Back-end].

8
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} [ele]e] } 00000 (e]e]
[e]e]e}

Approaches to certify computation with a Proof Assistant

Borrowing [G. Barthe, G. Ruys, H. Barendregt, 1995]'s terminology
“autarkic approach”: perform all calculations inside the proof assistant

“skeptical approach”: rely on certificates that are produced by a given
tool, external to the proof assistant, then checked

extraction of programs: generate compilable source code (e.g. in OCaml)
correct by construction, from the formalized algorithm:
e.g., the CompCert C compiler has been designed this way
[X. Leroy (2009): A Formally Verified Compiler Back-end].

deductive verification: annotate the (imperative) program code and use
dedicated tools, such as Frama-C/Jessie/Why3, to generate
proof obligations (to be discharged by automated provers or
proof assistants as back-ends)

8
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00000 (o]}
[e]e]e}

Overview of the Reals library (included in Coq's stdlib)

@ originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero's PhD thesis, 2001]

A@ADIE

9
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00000 (o]}
[e]e]e}

Overview of the Reals library (included in Coq's stdlib)

@ originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero's PhD thesis, 2001]

@ classical axiomatization of R as a complete Archimedean ordered field

A@ADIE

9
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00000 (o]}
[e]e]e}

Overview of the Reals library (included in Coq's stdlib)

@ originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero's PhD thesis, 2001]

@ classical axiomatization of R as a complete Archimedean ordered field

o the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)

A@ADIE

9
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00000 (o]}
[e]e]e}

Overview of the Reals library (included in Coq's stdlib)

@ originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero's PhD thesis, 2001]

@ classical axiomatization of R as a complete Archimedean ordered field

o the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)

@ part of the Coq standard library

A@ADIE

9
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00000 (o]}
[e]e]e}

Overview of the Reals library (included in Coq's stdlib)

@ originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero's PhD thesis, 2001]

@ classical axiomatization of R as a complete Archimedean ordered field

@ the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)

@ part of the Coq standard library

@ technicalities: the division is a total function

A@ADIE

9
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00000 (o]}
[e]e]e}

Overview of the Reals library (included in Coq's stdlib)

@ originated in the Coq formalization of the Three Gap Theorem
(Steinhaus’ conjecture), cf. [Micaela Mayero's PhD thesis, 2001]

@ classical axiomatization of R as a complete Archimedean ordered field

o the classical flavor of this formalization is due to the trichotomy axiom
(named total_order_T in the code)

@ part of the Coq standard library
@ technicalities: the division is a total function

@ gathers support results on derivability, Riemann integral (both defined
with dependent types) and reference functions

A@ADIE

9
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0@000 (o]}
[e]e]e}

Overview of the Coquelicot library

@ a new library of real analysis for Coq

A@ADIE

10
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0@000 (o]}
[e]e]e}

Overview of the Coquelicot library

@ a new library of real analysis for Coq

@ conservative extension of the Reals standard library

ACADIE

10
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0@000 (o]}
[e]e]e}

Overview of the Coquelicot library

@ a new library of real analysis for Coq
@ conservative extension of the Reals standard library

e cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]

A@ADIE

10
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0@000 (o]}
[e]e]e}

Overview of the Coquelicot library

@ a new library of real analysis for Coq
@ conservative extension of the Reals standard library

e cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]
@ new features:

A@ADIE

10
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0@000 (o]}
[e]e]e}

Overview of the Coquelicot library

@ a new library of real analysis for Coq

@ conservative extension of the Reals standard library

e cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]

@ new features:

o user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)

A@ADIE

10
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0@000 (o]}
[e]e]e}

Overview of the Coquelicot library

a new library of real analysis for Coq

conservative extension of the Reals standard library

cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]

new features:

o user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)

e comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors

A@ADIE

10
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0@000 (o]}
[e]e]e}

Overview of the Coquelicot library

a new library of real analysis for Coq
conservative extension of the Reals standard library

cf. [Sylvie Boldo, Catherine Lelay, Guillaume Melquiond (2015):
Coquelicot: A User-Friendly Library of Real Analysis for Coq]

new features:

o user-friendly definitions of limits, derivatives, integrals. . . (with total
functions in place of dependent types)

e comprehensive set of theorems on these notions, up to power series,
parametric integrals, two-dimensional differentiability, asymptotic
behaviors

e tactics to automate proofs on derivatives

A@ADIE

10
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00@00 (o]}
[e]e]e}

Overview of the C-CoRN library

@ C-CoRN = Constructive Coq Repository at Nijmegen

A@ADIE

11
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00e00 (e]e]
[e]e]e}

Overview of the C-CoRN library

@ C-CoRN = Constructive Coq Repository at Nijmegen

@ originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively

Yo

&y
ACADIE

11
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00@00 (o]}
[e]e]e}

Overview of the C-CoRN library

@ C-CoRN = Constructive Coq Repository at Nijmegen

@ originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively

@ intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui's PhD thesis, 2004].

A@ADIE

11
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00@00 (o]}
[e]e]e}

Overview of the C-CoRN library

@ C-CoRN = Constructive Coq Repository at Nijmegen
@ originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively

@ intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui's PhD thesis, 2004].

o features:

A@ADIE

11
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00@00 (o]}
[e]e]e}

Overview of the C-CoRN library

@ C-CoRN = Constructive Coq Repository at Nijmegen

@ originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively
@ intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui's PhD thesis, 2004].
o features:
o large and generic library in the spirit of E. Bishop's constructive analysis

ACADIE

11
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00@00 (o]}
[e]e]e}

Overview of the C-CoRN library

@ C-CoRN = Constructive Coq Repository at Nijmegen

@ originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively

@ intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui's PhD thesis, 2004].

o features:

e large and generic library in the spirit of E. Bishop's constructive analysis
e “computational real numbers” ~ “proof by computation” is possible

A@ADIE

11
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00@00 (o]}
[e]e]e}

Overview of the C-CoRN library

@ C-CoRN = Constructive Coq Repository at Nijmegen

@ originated in the FTA project for formalizing the Fundamental
Theorem of Algebra constructively

@ intuitionistic axiomatization via an algebraic hierarchy built upon
constructive setoids + construction of a real number structure via
Cauchy sequences, cf. [Milad Niqui's PhD thesis, 2004].

o features:

e large and generic library in the spirit of E. Bishop's constructive analysis

e “computational real numbers” ~ “proof by computation” is possible

e by construction, all functions overs the constructive reals are continuous
~> hinders the applicability to proofs in standard/numerical analysis

A@ADIE

11
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00000 (o]}
[e]e]e}

Overview of the SSReflect/MathComp libraries

@ SSReflect was born during the formal verification of the Four Color
Theorem by Georges Gonthier collaborating with Benjamin Werner

A@ADIE

12
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 00000 (o]}
[e]e]e}

Overview of the SSReflect/MathComp libraries

@ SSReflect was born during the formal verification of the Four Color
Theorem by Georges Gonthier collaborating with Benjamin Werner

@ SSReflect: extension of the Coq proof language that promotes the
Small Scale Reflection: use reflection (& proof by computation)
whenever possible, even for low-level reasoning

A@ADIE

12
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 0000 fele]e] le) [e]e]
000

Overview of the SSReflect/MathComp libraries

@ SSReflect was born during the formal verification of the Four Color
Theorem by Georges Gonthier collaborating with Benjamin Werner

@ SSReflect: extension of the Coq proof language that promotes the
Small Scale Reflection: use reflection (& proof by computation)
whenever possible, even for low-level reasoning

@ the Mathematical Components project, led by G. Gonthier, culminated
in the formalization of the Feit—Thompson theorem in Sept. 2012
(more than 300 textbook pages and a 6-year formalization effort):

Theorem Feit Thompson (gT: finGroupType) (G: {group gT}):
odd #|G| — solvable G.

Yo

&y
ACADIE

12
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 (e]e]
[e]e]e}

Overview of the SSReflect/MathComp libraries

@ SSReflect was born during the formal verification of the Four Color
Theorem by Georges Gonthier collaborating with Benjamin Werner

@ SSReflect: extension of the Coq proof language that promotes the
Small Scale Reflection: use reflection (& proof by computation)
whenever possible, even for low-level reasoning

@ the Mathematical Components project, led by G. Gonthier, culminated
in the formalization of the Feit—Thompson theorem in Sept. 2012
(more than 300 textbook pages and a 6-year formalization effort):
Theorem Feit Thompson (gT: finGroupType) (G: {group gT}):

odd #|G| — solvable G.
@ ~ MathComp: comprehensive library of algebra, based on SSReflect

&y
ACADIE

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

12/18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0000e (o]}
[e]e]e}

Overview of the CoqEAL library

@ CoqEAL = the Coq Effective Algebra Library

A@ADIE

13
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0000e (o]}
[e]e]e}

Overview of the CoqEAL library

@ CoqEAL = the Coq Effective Algebra Library
@ originated in the ForMath project

A@ADIE

13
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0000e (o]}
[e]e]e}

Overview of the CoqEAL library

@ CoqEAL = the Coq Effective Algebra Library
@ originated in the ForMath project

@ aim: facilitate the verification of effective symbolic computation
algorithms in Coq

A@ADIE

13
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0000e (o]}
[e]e]e}

Overview of the CoqEAL library

@ CoqEAL = the Coq Effective Algebra Library
@ originated in the ForMath project

@ aim: facilitate the verification of effective symbolic computation
algorithms in Coq

@ idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement

A@ADIE

13
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 [olefele] } (e]e]
[e]e]e}

Overview of the CoqEAL library

@ CoqEAL = the Coq Effective Algebra Library
@ originated in the ForMath project

@ aim: facilitate the verification of effective symbolic computation
algorithms in Coq

@ idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement

@ CoqEAL has been specifically designed to reduce the “bookkeeping”
that occurs in the refinement proofs

Yo

&y
ACADIE

13
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

e]e]e} 0000 0000e (o]}
[e]e]e}

Overview of the CoqEAL library

@ CoqEAL = the Coq Effective Algebra Library

@ originated in the ForMath project

@ aim: facilitate the verification of effective symbolic computation
algorithms in Coq

@ idea: prove a high-level version of the algorithm (e.g. by relying on
SSReflect/MathComp) then proceed by refinement

@ CoqEAL has been specifically designed to reduce the “bookkeeping”
that occurs in the refinement proofs

e [C. Cohen, M. Dénés, A. Mortberg (2013): Refinements for Free!]

A@ADIE

13
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 0000 00000 [e]e]
000

Overview of the Coglnterval library — Issues and methods

@ aim: (automatically) prove in Coq that the distance between f(z) and
some approximation P(z) is bounded by some € > 0 for all z € I.

A@ADIE

14
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 0000 00000 [e]e]
000

Overview of the Coglnterval library — Issues and methods

@ aim: (automatically) prove in Coq that the distance between f(z) and
some approximation P(z) is bounded by some € > 0 for all z € I.

@ [G. Melquiond (2008): Proving bounds on real-valued functions with computations]

A@ADIE

14
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 0000 00000 [e]e]
000

Overview of the Coglnterval library — Issues and methods

@ aim: (automatically) prove in Coq that the distance between f(z) and
some approximation P(z) is bounded by some € > 0 for all z € I.

@ [G. Melquiond (2008): Proving bounds on real-valued functions with computations]

@ main datatype: intervals with floating-point numbers bounds
e.g., we'll consider an interval such as [3.1415,3.1416] in place of 7

A@ADIE

14
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 (e]e]
000

Overview of the Coglnterval library — Issues and methods

@ aim: (automatically) prove in Coq that the distance between f(z) and
some approximation P(z) is bounded by some € > 0 for all z € I.

@ [G. Melquiond (2008): Proving bounds on real-valued functions with computations]

@ main datatype: intervals with floating-point numbers bounds
e.g., we'll consider an interval such as [3.1415,3.1416] in place of 7

@ dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f(z) =z (1 —x) and & = [0, 1], we get evalja (f,) = [0, 1],

while the exact range is f(z) = [0, §]

A@ADIE

14
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 (e]e]
000

Overview of the Coqlnterval library — Issues and methods

@ aim: (automatically) prove in Coq that the distance between f(z) and
some approximation P(z) is bounded by some € > 0 for all z € I.

@ [G. Melquiond (2008): Proving bounds on real-valued functions with computations]

@ main datatype: intervals with floating-point numbers bounds
e.g., we'll consider an interval such as [3.1415,3.1416] in place of 7
@ dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f(z) =z (1 —x) and & = [0, 1], we get evalja (f,) = [0, 1],
while the exact range is f(z) = [0, §]
@ solutions: bisection, automatic differentiation. ..

ACADIE

14
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 0000 00000 [e]e]
000

Overview of the Coglnterval library — Issues and methods

@ aim: (automatically) prove in Coq that the distance between f(z) and
some approximation P(z) is bounded by some € > 0 for all z € I.

@ [G. Melquiond (2008): Proving bounds on real-valued functions with computations]

@ main datatype: intervals with floating-point numbers bounds
e.g., we'll consider an interval such as [3.1415,3.1416] in place of 7

@ dependency problem: when a variable occur several times, it typically
leads to an overestimation of the range
e.g., for f(z) =z (1 —x) and & = [0, 1], we get evalja (f,) = [0, 1],
while the exact range is f(z) = [0, §]
@ solutions: bisection, automatic differentiation. . . or Taylor Models:
[N. Brisebarre, M. Joldes, EMD, M. Mayero, J-M. Muller, |. Pasca, L. Rideau, and

L. Théry (2012): Rigorous Polynomial Approximation Using Taylor Models in Coq]
A@ADlE

14
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 (e]e]
(o] 1o}

Overview of the Coglnterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of
Polynomial Approximations in HOL]

Require Import Reals Interval_tactic.
Local Open Scope R_scope.

Theorem Harrison97 : Vz: R, —% <z < 1(1)833(1)0 i
‘(e“" —1) - (:H— 8388676 ;2 | 11184876 3)‘ <2 27 % 2§3
A@ADIE 15
/18

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory
000 0000 00000 [e]e]
(o] 1o}

Overview of the Coglnterval library — Proof example #1

Example taken from [John Harrison (1997): Verifying the Accuracy of
Polynomial Approximations in HOL]

Require Import Reals Interval_tactic.
Local Open Scope R_scope.

Theorem Harrison97 : Vz: R, —% <z < 1(1)833(1)0 i
‘(e“" —1) - (:H— 8388676 ;2 | 11184876 3)‘ <2 27 % 2§3

Proof.
intros x H.
interval with (i_bisect_taylor x 3, i_prec 50). (* in 0.5s *)

A@ADIE

15
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction
000

The Coq proof assistant

0000

Overview of several Coq libraries

00000
ooe

Towards formalized game theory
[e]e]

Overview of the Coqlnterval library — Proof example #2

bR

HEY, CHECK 1T OUT: @™ -1 15
19.999099979. THATS WEIRD.

YEAH. THAT'S HOW I
GOT KICKED OUT OF
THE ACM N COLLEGE.

DURING A COMPETITION, T
TOLD THE PROGRAMMERS (N
OUR TEAM THAT o™-11

POINT HANDLERS -- IT WOULD

COME QUT To 20 UNLESS

THEY HAD ROUNDING ERRORS.
|

K

A@ADIE

Erik Martin-Dorel (IRIT)

THATS

WHS A STANDARD TEST OF FLOATING-

kA

YEAW, THEY DUG THRoUGH
HALF THEIR ALGORITHMS
LODKING FOR THE BUG
BEFORE THEY FIGURED
IT 0UT.

Formal proofs and certified computation in Coq

(xked.com/217)

16/18

http://xkcd.com/217/

Introduction

[e]e]e} 0000

The Coq proof assistant

00000
ooe

Overview of several Coq libraries

(e]e]

Towards formalized game theory

Overview of the Coqlnterval library — Proof example #2

HEY, CHECK 1T OUT: @™ -1 15
19.999099979. THATS WEIRD.

YEAH. THAT'S HOW I
GOT KICKED OUT OF
THE ACM N COLLEGE.

bR

DURING A COMPETITION, T
TOLD THE PROGRAMMERS (N
OUR TEAM THAT o™-11

COME QUT To 20 UNLESS

K

Lemma xkcd217 :
Proof.

split'

A@ADIE

Erik Martin-Dorel (IRIT)

WHS A STANDARD TEST OF FLOATING-
POINT HANDLERS -- IT WOULD

THEY HAD ROUNDING ERRORS.
1

THATS

YEAW, THEY DUG THRoUGH
HALF THEIR ALGORITHMS
LODKING FOR THE BUG
BEFORE THEY FIGURED
IT 0UT.

kA

(xked.com/217)

19999099979/10° < ™ — 7 < 19999099 980/10°.

interval with (i_prec 40).

(* in 0.15s *)

Formal proofs and certified computation in Coq

16/18

http://xkcd.com/217/

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 o0
[e]e]e}

Related works on formalized game theory

@ [René Vestergaard (2005): A constructive approach to sequential Nash equilibria]
~» proof, formalized in Coq, that all non-cooperative, sequential games
have a Nash equilibrium
@ [Stéphane Le Roux’ PhD thesis, 2008]
~> generalizes and formalizes in Coq the notions of strategic game and
Nash equilibrium (notably, not requiring payoffs to be real numbers)
@ [Evgeny Dantsin, Jan-Georg Smaus, Sergei Soloviev (2012): Algorithms in Games
Evolving in Time: Winning Strategies Based on Testing]

~> formalizes in Isabelle/HOL sufficient conditions for the computability
of a winning strategy function (for two-player games evolving in time)

/@ADE -
/18

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 oe
[e]e]e}

Perspectives

@ Motivation: results of game theory have a key role in decision
making and numerous applications = providing a formal certificate
would facilitate the audit of such decisions by independent experts.

A@ADIE

18
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 oe
[e]e]e}

Perspectives

@ Motivation: results of game theory have a key role in decision
making and numerous applications = providing a formal certificate
would facilitate the audit of such decisions by independent experts.

@ Aim: identify key problems in game theory that are amenable to
formal proof.

/@ADE -
/18

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 oe
[e]e]e}

Perspectives

@ Motivation: results of game theory have a key role in decision
making and numerous applications = providing a formal certificate
would facilitate the audit of such decisions by independent experts.

@ Aim: identify key problems in game theory that are amenable to
formal proof.

@ Long-term goal: obtain some game-theoretic and formally-certified
components that may be extended, combined, and reused.

A@ADIE

18
Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq /18

Introduction The Coq proof assistant Overview of several Coq libraries Towards formalized game theory

[e]e]e} 0000 00000 oe
[e]e]e}

Perspectives

@ Motivation: results of game theory have a key role in decision
making and numerous applications = providing a formal certificate
would facilitate the audit of such decisions by independent experts.

@ Aim: identify key problems in game theory that are amenable to
formal proof.

@ Long-term goal: obtain some game-theoretic and formally-certified
components that may be extended, combined, and reused.

Thank you for your attention!

ACADIE s
/18

Erik Martin-Dorel (IRIT) Formal proofs and certified computation in Coq

	Introduction
	The Coq proof assistant
	Overview of several Coq libraries
	–CoqInterval–

	Towards formalized game theory

