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1 Introduction

The recent development of uncertainty theories that account for the notion of belief is linked to
the emergence, in the XXth century, of Decision Theory and Artificial Intelligence. Nevertheless,
this topic was dealt with very differently by each area. Decision Theory insisted on the necessity
to found representations on the empirical observation of individuals choosing between courses of
action, regardless of any other type of information. Any axiom in the theory should be liable of
empirical validation. Probabilistic representations of uncertainty can then be justified with a subjec-
tivist point of view, without necessary reference to frequency. Degrees of probability then evaluate
to what extent an agent believes in the occurrence of an event or in the truth of a proposition.
In contrast, Artificial Intelligence adopted a more introspective approach aiming at formalizing
intuitions, reasoning processes, through the statement of reasonable axioms, often without refer-
ence to probability. Actually, until the nineties Artificial Intelligence essentially focused on purely
qualitative and ordinal (in fact, logical) representations.

Historically, the interest for formalizing uncertainty appears in the middle of the XVIIth century,
involving scholars like Pascal, Fermat, Huyghens, the chevalier de Méré, Jacob Bernoulli, etc. Two
distinct notions were laid bare and studied: the objective notion of chance, related to the analysis
of games, and the subjective notion of probability in connection to the issue of the reliability of wit-
nesses in legal matters. In pioneering works like those of J. Bernoulli, chances were quickly related
to the evaluation of frequency and thus naturally additive, but probabilities were not considered so
in the first stand. However, in the XVIIIth century, with the fast developments of hard sciences,
the interest in the subjective side of probability waned and the additive side of probability became
prominent, so much so as some late works on non-additive probabilities (for instance those of Lam-
bert) became unpalatable to other contemporaneous scholars (see Shafer [105]). From then on,
under the influence of Laplace, and for long, probabilities would be additive, whether frequentist or
not. It was thus very natural that in the XXth century, pioneering proposals formalizing probability
independently from frequency (Ramsey [98], De Finetti [23]) tried to justify the additivity axiom,
in the framework of a theory of gambles for economic decision problems, especially.
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The raise of computer and information sciences in the last part of the XXth century renewed
the interest for human knowledge representation and reasoning often tainted with imprecision,
uncertainty, contradictions, independently of progress made in probability and decision theories,
and focusing on the contrary on qualitative logical formalisms, especially in Artificial Intelligence,
as well as the representation of the gradual nature of linguistic information (especially, fuzzy set
theory). This trend has equally triggered the revival of non-additive probabilities for modelling
uncertainty, a revival already pioneered by the works of Good [70], Smith [117], Shackle [103],
Dempster [25], Kyburg [83], and Shafer [104]. Besides, the logic school rediscovered ancient modal
concepts of possibility and necessity, quite relevant for epistemic issues, introduced by Aristotle
and exploited by medieval religious philosophy. At the heart of the logical approach, the idea of
incomplete knowledge is basic, and comes close to issues in imprecise probability (as opposed to
the use of a unique probability distribution advocated by the Bayesian school). In the imprecise
probability view, possibility and necessity respectively formalise subjective plausibility and certainty
by means of upper and lower probability bounds. Such non-classical probabilistic independently
appeared later on within Decision Theory itself, due to the questioning of the empirical validity of
Savage’s postulates underlying expected utility theory (Schmeidler [102]), after observing systematic
violations of some of these postulates.

The gap created in the early XXith century between logicians (mainly interested by the foundation
of mathematics) and statisticians now tends to reduce. To-date logic in its classical and non-classical
versions (modal, non-monotonic, probabilistic, possibilistic) is again considered as a formal tool for
the representation of human knowledge and the mechanization of reasoning processes, and is no
longer confined to metamathematics. Along this line, it sounds more natural to propose that when
statistical data is missing, the probabilistic knowledge possessed by an individual be represented
by a set of logical propositions each having its probability, rather than by a probability distribution
over an exhaustive set of mutually exclusive elements. However the former representation generally
characterize a family of probability functions and not a unique distribution. This logical view of
probability is present in the XIXth century, in the works of Boole [6], whose magnum opus the Laws
of Thought lays the formal foundations of probabilistic logic at least as much as those of classical
logic. Besides, Artificial Intelligence and Cognitive Psychology do share the concern of studying
the laws of thought (even if with totally different goals).

The aim of this chapter is to propose a unified overview of various approaches to representations
of uncertainty that came to light in the last fifty years or so in the areas of Artificial Intelligence
and Decision Theory. The focus is on ideas and intuitions rather than on mathematical details.
It is pointed out that apart from the central issue of belief representation, other aspects of the
imperfection of information are currently studied for their own sake, such as the non-Boolean
nature of linguistic predicates, and the concept of granularity. This chapter is organized as follows:
the next section considers the notion of information in its semantic side and proposes a typology of
defects of information items possessed by a cognitive entity (a human agent or a computer). Section
3 recalls some basics of probability theory, which in any case stands as a landmark. Injecting
incomplete information into probability theory leads to a hierarchy of representations involving
convex sets of probabilities, including Shafer’s theory of evidence [104] and the numerical variant of
possibility theory [43, 38]. These approaches are reviewed in section 4. This section also discusses
bridges between possibility and probability. It is shown that some results and methods in non-
Bayesian statistics can be reinterpreted and systematized in possibility theory, such as the maximum
likelihood principle and confidence intervals. Moreover, the insufficient reason principle of Laplace



can be extended to derive a probability measure from a possibility measure or conversely so as
to justify possibility distributions as cautious substitutes of subjective probability distributions.
Section 5 presents ordinal and logical representations of uncertainty. Qualitative possibility theory
[51] is tailored to handle incomplete information and is shown to stand as the simplest among ordinal
approaches to uncertainty. Section 6 discusses the important notion of conditioning in uncertainty
theories, using the key-concept of conditional event as a guideline. The bottom line is that, in
probability theory, Bayesian conditioning is a unique tool instrumental for several distinct problems,
but each problem requires a specific conditioning tool in the non-additive frameworks. Finally
Section 7 deals with uncertain fusion information, and shows that the framework of uncertainty
theories leaving room to incompleteness leads to a reconciliation of probabilistic fusion modes (based
on averaging) and logical ones (based on conjunction and disjunction).

2 Information : a typology of defects

The term information refers to any collection of symbols or signs produced either through the
observation of natural or artificial phenomena or by cognitive human activity with a view to help
an agent understand the world or the current situation, making decisions, or communicating with
other human or artificial agents. In this paper we focus on the mathematical representation of
information items. We draw several important distinctions so as to charter this area.

A first distinction separates so-called objective information stemming from sensor measurements
and the direct perception of events from subjective information typically uttered by individuals
(e.g. testimonies) or conceived without resorting to direct observations.

Another distinction is between quantitative information modelled in terms of numbers, typically
objective information (sensor measurements, counting processes), and qualitative or symbolic in-
formation (typically subjective information, e.g. expressed in natural language). Nevertheless,
this partition is not so strict as it looks: subjective information can be numerical, and objective
information can be qualitative (a color identified by means of a symbolic sensor, for instance).
Quantitative information can assume various formats : numbers, intervals, functions. Structured
symbolic information is often encoded in logical or graphical representations. There are hybrid
representations such as weighted logics or probabilistic networks.

Yet another very important distinction must be drawn between singular and generic information.
Singular information refers to a particular situation, a response to a question on the current state
of affairs : for instance, an observation (a patient has fever at a given time point), or a testimony
(the crazy driver’s car was blue). Generic information refers to a collection or a population of
situations (it could be a physical law, a statistical model built from a representative sample of
observations, or yet a piece of commonsense knowledge like “birds fly”). This distinction is impor-
tant when considering problems of inference or revision of uncertain information. Moreover, topic
like induction or learning processes, deal with the construction of generic knowledge from several
items of singular information. Conversely statistical prediction can be viewed as the use of some
piece of generic knowledge on the frequency of an event to derive a degree of belief in the singular
occurrence of this event in a specific situation (Hacking [72]).



An agent is supposed to have some information about the current world. The epistemic state
of the agent is supposed to be made of three components: her generic knowledge, her singular
observations, and her beliefs [34]. Beliefs are understood as pertaining to the current situation.
They are singular and derived from the two former kinds of information. They are instrumental to
make decisions. Decision-making involves another kind of information possessed by an agent, this
chapter does not deal with: her preferences.

In order to represent the epistemic state of an agent, a representation of the states of the world
is needed, in agreement with the point of view of this agent, i.e., highlighting the relevant aspects
by means of suitable attributes. Let v be the vector of attributes relevant for the agent and S the
domain of v. S is called a frame; it is the set of (descriptions of) all states of the world. A subset
A of S, viewed as a disjunction of possible worlds, is called an event, to be seen as a proposition
that asserts v € A. It is not supposed that the set S be explicitly known as a primitive object. It
can as well be reconstructed, at least partially, from pieces of information supplied by the agent in
the form of asserted propositions.

Four kinds of qualification of the imperfection of pieces of information expressible on the frame S
can be considered : incomplete (or yet imprecise), uncertain, gradual, and granular information.

2.1 Incompleteness and Imprecision

A piece of information is said to be incomplete in a given context if it is not sufficient to allow
the agent to answer a relevant question in this context. We interpret imprecision as a form of
incompleteness, in the sense that an imprecise response provides only incomplete information. A
kind of question to which the agent tries to answer is of the form what is the current value of some
quantity v? or more generally : does v satisfy some property of interest? The notion of imprecision
is not an absolute one. For instance, if the quantity of concern is the age of a person, the term
minor is precise if the proper frame is S = {minor, major} and the question of interest is : can
the person vote? On the contrary, if S = {0,1,...,150} (in years), the term minor is imprecise, it
provides incomplete information if the question of interest is to know the birth date of the person.

The typical form of a piece of incomplete information is v € A where A is a subset of S containing
more than one element. An important remark is that elements in A, seen as possible values of
v are mutually exclusive (since the quantity takes on a single value). Hence, a piece of imprecise
information takes the form of a disjunction of mutually exclusive values. For instance, to say that
Pierre is between 20 and 25 years old, i.e., v =age(Pierre) € {20,21,22,23,24,25}, is to suppose
v=200orv=2lorv=220rv =23 orv =24 or v =25 In classical logic, incompleteness
explicitly appears as a disjunction. Asserting the truth of p V ¢, means that one of the following
propositions p A ¢, p A =g, —p A q, is true. More generally, one of the models of p V ¢ is true.

A set used for representing a piece of incomplete information is called a disjunctive set. It contrasts
with the conjunctive view of a set considered as a collection of elements. A conjunctive set represents
a precise piece of information. For instance, consider the quantity v = sisters(Pierre) whose
range is the set of subsets of possible names for Pierre’s sisters. The piece of information v =
{Marie, Sylvie} is precise and means that Pierre’s sisters are Marie and Sylvie. Indeed, the frame
is then S = 2NVAMES where NAMES is the set of all female first names. In this setting, a piece



of incomplete information would be encoded as a disjunction of conjunctive subsets of NAMES.

A piece of incomplete information defines a so-called possibility distribution on S. If the available
information is of the form v € A, it means that any value of v not in A is considered impossible, but
any value of v in the set A is possible. The possibility distribution encoding the piece of information
v € A, denoted by m, is the characteristic function of A. It is a mapping from S to {0,1} such
that m,(s) = 1 if s € A, and 0 otherwise. Conventions for m,(s) are thus 1 for possible and 0 for
mpossible.

In the possibilistic framework, extreme forms of partial knowledge can be captured, namely:

e Complete knowledge: for some state sg, m,(s9) = 1 and m,(s) = 0 for other states s (only s
is possible)

e Complete ignorance: m,(s) =1,Vs € S, (all states are totally possible).

Two pieces of incomplete information can be compared in terms of information content: a piece
of information v € Ay is said to be more specific than a piece of information v € Ay if and only if
Aj is a proper subset of As. In terms of respective possibility distributions, say 71 for v € A; and
o for v € Ag it corresponds to the inequality m; < mo. Note that a possibility distribution always
contains some subjectivity in the sense that it represents information possessed by an agent at a
given time point, i.e. it reflects an epistemic state. This information is likely to evolve upon the
arrival of new pieces of information, in particular it often becomes more specific. The acquisition
of a new piece of information comes down to deleting possible values of v. If v € A; is more specific
than v € Ao, the first epistemic state is accessible from the second one by the acquisition of new
information of the same type.

Given a collection of pieces of incomplete information of the form {v € A; : i = 1,...n} the least
arbitrary possibility distribution that represents this collection is the least specific disjunctive set
among those that are compatible with each piece of information v € A;, ie., v € Ni=1_,A;. It
corresponds to computing the possibility distribution 7, = min;—y, , m;. These notions lie at the
roots of possibility theory [133, 43], in its Boolean version.

This type of representation of incomplete information can be found in two areas : classical logic
and interval analysis. In both settings, either logic or interval analysis, the kind of information
represented is the same. What differs is the type of variable used to describe the state space S:
Boolean in the first case, numerical in the second one.

In propositional logic, a collection of information items is a set K, often called belief base, of
Boolean propositions p; expressed by well-formed formulas by means of literals and connectives.
Given n Boolean variables with domain {true, false}, then S = {true, false}" is made of 2"
elements called interpretations. They are maximal conjunctions of literals, which comes down to
assigning a value in {true, false} to each variable. Models of K form a disjunctive subset of S
containing all interpretations that make all propositions in K true. K is then understood as the
conjunction of propositions p;. If models of p; form the set A;, the set of models of K form the set
Ni=1,..nA;, which does correspond to a possibilistic handling of incomplete information.



In interval analysis [93], numerical information items take the form of closed real intervals v; € [a;, b;]
describing incomplete knowledge of parameters or inputs of a mathematical model described by a
real function f. A typical problem is to compute the set of values of f(vi,...,v,) when the v;’s lie
in the sets [a;, b;] that is, A = {f(s1,...,5n) : s; € [ai, bi],i =1,...n}.

2.2 Uncertainty

A piece of information is said to be uncertain for an agent when the latter does not know whether
this piece of information is true or false. A primitive item of information being a proposition, or the
statement that an event occurred or will occur, and such a proposition being modeled by a subset
of possible values of the form v € A, one may assign a token of uncertainty to it. This token, or
uncertainty qualifier, is located at the metalevel with respect to the pieces of information. It can
be numerical or symbolic (e.g. linguistic). For instance, consider the statements :

e the probability that the activity takes more than one hour is 0.7.
e It is very possible that it snows to-morrow.

e It is not absolutely certain that Jean comes to the meeting to-morrow.

In these examples, uncertainty qualifiers are respectively a number (a probability), and symbolic
modalities (possible, certain). The most usual representation of uncertainty consists of assigning
to each proposition or event A, viewed as a subset of S, a number g(A) in the unit interval. g(A)
evaluates the likelihood of A, the confidence of the agent in the truth of proposition asserting v € A.
This proposition can only be true or false by convention, even if the agent may ignore this truth
value. The following requirements sound natural:

g(0) =0; g(S)=1; (1)
so is the monotonicity with respect to inclusion:

If A C B then g(A) < g(B). (2)

Indeed, the contradictory proposition () is impossible, and the tautology S is certain. Moreover if
A is more specific than B in the wide sense (hence implies it), the agent cannot be more confident
in A than in B: all things being equal, the more imprecise a proposition, the more certain it
is. In an infinite setting, continuity properties with respect to converging monotonic sequences of
sets must be added. Under these properties, the function g is is sometimes called a capacity (after
Choquet [15]1), sometimes a fuzzy measure (after Sugeno [119]). In order to stick to the uncertainty
framework, it is here called a confidence function. Easy but important consequences of postulates
(1) and (2) are:

9(AN B) <min(g(A),9(B)); g(AUB) = max(g(A4),g(B)). 3)

Loriginally, with explicit reference to electricity!



An important particular case of confidence function is the probability measure g = P which satisfies
the additivity property

If AN B =0, then P(AUB) = P(A) + P(B). (4)

Given an elementary piece of incomplete information of the form v € E, held as certain, other types
of confidence functions, taking on values in {0,1} can be defined:

e a possibility measure I such that II(A) = 1if AN E # (), and 0 otherwise

e a necessity measure N such that N(A) =1if £ C A, and 0 otherwise.

It is easy to see that II(A) = 1 if and only if proposition “v € A” not inconsistent with information
item “v € E”, and that N(A) = 1 if and only if proposition “v € A” is entailed by information
item v € E. This is the Boolean version of possibility theory [44].

II(A) = 0 means that A is impossible if “v € E” is true. N(A) = 1 expresses that A is certain
if “v € E” is true. Moreover to say that A is impossible (AN E = () is to say that the opposite
event is A is certain. So, functions N and II are totally related to each other by the conjugateness

property:

N(A) =1-TI(A). (5)
This conjugateness relation is the main difference between necessity and possibility measures on
the one hand, and probability measures on the other hand, which are self-conjugate in the sense

that P(A) = 1 — P(A).

Uncertainty of the possibilistic type is clearly at work in classical logic. If K is a base propositional
belief base with set of models F, and p is the syntactic form of proposition v € A, then N(A) =1
if and only if K implies p, and II(A) = 0 if and only if K U {p} is logically inconsistent. Note that
the presence of p in K means that N(A) = 1, while its negation —p in K is used to mean II(A) = 0.
However, in propositional logic, it cannot be expressed that N(A) = 0 nor II(A) = 1. To do so, a
modal logic is needed (Chellas [14]), that prefixes propositions with modalities such as possible (<)
and necessary (O): In a modal belief base K¢ Op € K™% encodes I1(A) = 1, and Op € K™o¢
encodes N(A) =1 (which is encoded by p € K in classical logic). The conjugateness relation (5) is
well-known in modal logic, where it reads: $p = —0O-p.

It is easy to check that each of possibility and necessity measures saturates one of the inequalities

(3):
II(A U B) = max(II(A), II(B)). (6)

N(AN B) = min(N(A), N(B)). (7)

Possibility measures are said to be maxitive and characterized (in the finite setting) by the maxi-
tivity property (6). Similarly, necessity measures are said to be minitive and are characterized (in
the finite setting) by the minitivity property (6). These properties are taken as postulates even
when possibility and necessity values lie in [0,1]. In the Boolean setting, they respectively read
O(pVg) =OpV <qand O(p A q) = Op A Og and are well-known in modal logics. In fact, it also



hold that N(A) > 0 implies II(A) = 1, and the Boolean possibilistic setting is thus captured by the
modal logic KD45, which is typical of Hintikka’s epistemic logic [74].

In general, possibility measures are distinct from necessity measures. Maxitivity and minitivity
properties cannot simultaneously hold for all events, except if N = II corresponds to precise infor-
mation (E = {so}). It then also coincide with a Dirac probability measure, since then g(A) =1 if
and only if g(A) = 0. However note that, it may occur that N(A U B) > max(N(A), N(B)) and
II(ANB) < min(II(A),II(B)). Namely, it is easy to check that if it is not known whether A is true
or false (because ANE # ) and AN E # ), then TI(A) = I(A) = 1 and N(A4) = N(A) = 0; but,
by definition TI(A N A) = II(})) = 0 and N(A U A) = N(S) = 1. The possibilistic approach thus
distinguishes between three extreme epistemic states:

e The certainty that v € A is true : N(A) = 1, which implies II(A) = 1;
e The certainty that v € A is false : II(A) = 0, which implies N(A4) = 0:
e The ignorance as to whether v € A: II(4) = 1, and N(A4) = 0.

The item of Boolean information v € F may also lead to define a probability measure. Whenever
this is the only available information, the Insufficient Reason principle of Laplace proposes to assign
(in the finite setting) the same probability weight to each element in E (by symmetry, i.e. lack of
reason not to act so), which comes down to letting

_ Card(ANE)
P4) = Card(E)

The idea is that E should be defined in such a way that all its elements have equal probability.
This probability measure is such that P(A) = 1 if and only if £ C A, and P(A) = 0 if and only if
ENA = 0. Tt plays the same role as the pair (II, N') and it refines it since it measures to what extent
A overlaps E. Nevertheless, probabilities thus computed depend on the number of elements inside
E. In the case of total ignorance (E = S), some contingent events (different from S and §)) will be
more probable than others, which sounds paradoxical. The possibilistic framework proposes a less
committal representation of ignorance: all contingent events and only them are equally possible and
certain (they have possibility 1 and necessity 0). The situation of total ignorance is not faithfully
rendered by a single probability distribution.

2.3 Gradual linguistic information

The representation of a proposition as an entity liable to being true or false (or, of an event that
may occur or not) is a convention. This convention is not always reasonable. Some kinds of in-
formation an agent can assert or understand do not lend themselves easily to this convention. For
instance, the proposition Pierre is young could be neither totally true, nor totally false: it sounds
more true if Pierre is 20 years old than if he is 30 (in the latter case, it nevertheless makes little
sense to say that Pierre is not young). Moreover the meaning of young will be altered by linguistic
hedges expressing intensity : it makes sense to say very young, not too young, etc. In other words,
the proposition Pierre is young is clearly not Boolean. It underlies a ranking, in terms of relevance,



of attribute values to which it refers. This kind of information is taken into account by the concept
of fuzzy set (Zadeh [129]). A fuzzy set F' is an application from S to a (usually) totally ordered
scale L often chosen as the interval [0, 1]. F(s) is the membership degree of element s to F. It is a
measure of the adequacy between situation s and proposition F.

It is natural to use fuzzy sets when dealing with a piece of information expressed in natural language
and referring to a numerical attribute. Zadeh [130, 131, 132] introduced the notion of linguistic
variable ranging in a finite ordered set of linguistic terms. Each term represents a subset of a
numerical scale associated to the attribute and these subsets forms a partition of this scale. For
instance, the set of terms F € {young, adult, old} forms the domain of the linguistic variable
age(Pierre). It partitions the scale of this attribute. Nevertheless, it seems that transitions between
age zones corresponding to terms are gradual rather than abrupt. In the case of the predicate
young, it sounds somewhat arbitrary to define a precise threshold s, on a continuous scale such
that F'(s) = 0if s > s, and 1 otherwise. Such linguistic terms are so-called gradual predicates. You
can spot them by the possibility to alter their meaning by intensity adverbs such as the linguistic
hedge very. The membership scale [0, 1] is but the mirror image of the continuous scale of the
attribute (here: the age). Not all predicates are gradual: for instance, it is clear that single is
Boolean.

It is important to tell degrees of adequacy (often called degrees of truth) from degrees of confidence,
or belief. Already, within natural language, sentences Pierre is very young and Pierre is probably
young convey different meanings. According to the former sentence, the membership degree of
age(Pierre) to F' = youngis clearly high; according to the latter, it is not totally excluded that Pierre
is old. A membership degree is interpreted as a degree of adequacy if the value age(Pierre) = s is
known and the issue under concern is to provide a linguistic qualifier to describe Pierre. The term
young is adequate to degree F'(s).

The standpoint of fuzzy set theory is to consider any evaluation function as a set. For instance,
a utility function can be viewed as a fuzzy set of good decisions. This theory defines gradual,
non-Boolean extensions of classical logic and its connectives (disjunction, conjunction, negation,
implication). Of course, natural questions may be raised such as the measurement of membership
functions, the commensurability between membership functions pertaining to different attributes,
etc. These are the same questions raised in multifactorial evaluation. Actually, the membership
degree F'(s) can be seen as a degree of similarity between the value s and the closest prototype
of F, namely some sg such that F'(sg) = 1; F(s) is inversely proportional to the distance between
this prototype sg and the value s. The membership degree often has such a metric interpretation,
which relies on the existence of a distance in S.

When the only available information is of the form v € F, where F is a fuzzy set (for instance
Pierre is very young) then, like in the Boolean case, the membership function is interpreted as a
possibility distribution attached to v: m, = F (Zadeh [133]). But now, it is a gradual possibility
distribution on the scale L, here [0,1]. Values s such that m,(s) = 1 are the most plausible ones for
v. The plausibility of a value s for v is then all the greater as s is close to a totally plausible value.

Possibility theory is driven by the principle of minimal specificity. It states that any hypothesis
not known to be impossible cannot be ruled out. A possibility distribution is said to be at least
as specific as another one if and only if each state is at least as possible according to the latter



as to the former (Yager [126]). In the absence of sufficient information each state is allocated the
maximal degree of possibility: this is the minimal specificity principle. Then, the least specific
distribution is the least restrictive and informative, or yet the least committal.

Plausibility and certainty evaluations induced by the information item v € F' concerning a propo-
sition v € A can be computed in terms of possibility and necessity degrees of event A:

II(A) = rgleaj(Wv(s); N(A)=1-TI(A) = 1;%12 1 —my(s) (8)

It is clear that a gradual information item is often more informative than Boolean information: v €
F, where F' is gradual, is more specific than v € A when A = support(F') = {s, F'(s) > 0}, because
the former suggests a plausibility ranking between possible values of v in A. This representation of
uncertainty through the use of gradual linguistic terms leads to quantifying plausibility in terms of
distance to an ideally plausible situation, not in terms of frequency of occurrence, for instance.

2.4 Granularity

In the previous subsections, assumptions that underlie the definition of the set S of states of affairs
were not laid bare. Nevertheless the choice of S has a clear impact on the possibility or not to
represent relevant information. In Decision Theory, for instance, it is often supposed that S is
infinite or detailed enough to completely describe the problem under concern. Nevertheless this
assumption is sometimes hard to sustain. On the real line, for instance, only so-called measurable
sets can be assigned a probability even if intuitively it should be possible to do so to any event
that makes sense in a situation [70]. In fact, using reals numbers is often due to the continuous
approximation of information that is intrinsically discrete, or perceived as such. For instance,
probability distributions derived from statistical data can be viewed as idealizations of histograms,
which are finite entities, not only because representing a finite number of observations, but also
from our inability to perceive the difference between very close values. This indistinguishability
can be encountered as well when representing preferences of an agent accounting for indifference
thresholds on the utility function.

Moreover, the set S seldom comes out of the blue. In the approach by De Finetti [24], just like in
the logical approach to Artificial Intelligence, the primitive information consists of a collection of
propositions expressed in some prescribed language, to which an agent assigns degrees of confidence.
The state space S is then generated from these propositions (mathematically, its subsets form the
smallest Boolean algebra containing the subsets of models of these propositions). This way of
proceeding has non-trivial consequences for representing and revising information. For instance, if
a new proposition is added, it may result in a modification, especially a refinement of the set S.
This is called a granularity change for the representation. A set S is a refinement of Sp [104] if
there is an onto mapping p from S to S; such that the reciprocal images of elements in 57 via
p, namely the sets {p~1(s) : s € S1} form a partition of Sy (Zadeh [134] speaks of S; being a
“granulation” of Sg). It is clear that the probabilistic representation of incomplete information by
means of the Insufficient Reason principle does not resist to a change of granularity: the image on
S1 of a uniform probability on Sy via p is not a uniform probability, generally. And this principle
applied to S7 inside equivalence classes of So may not produce a uniform probability on Sy either.
So, the probabilistic representation of ignorance sounds paradoxical as it seems to produce informa-
tion out of the blue while changing the frame. This anomaly does not appear with the possibilistic
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representation: the image of a uniform possibility distribution on S5 via p is a uniform possibility
distribution indeed. Conversely, applying the minimal specificity (or symmetry) principle in two
steps (to Sg2, then Sp) produces a uniform possibility distribution on Sj.

The simplest case of granularity change is the following: let 2 be a set of entities described by
means of attributes V1, Vs, ..., Vi with respective domains D1, Do, ..., Dy. Then S is the Cartesian
product D1 X Dy X -+ X Dy. Each element in S can be refined into several elements if a k + 1th
attribute is added. Suppose a collection of individuals €2 described by such attributes. Nothing
forbids different individuals from sharing the same description in terms of these attributes. Then
let = be a subset of 2. Generally it is not possible to describe it by means of S. Indeed, let R be
the equivalence relation on €2 defined by the identity of descriptions of elements w of €2: wy Rwy if
and only if V;(w1) = Vi(we),Vi =1,..., k. Let [w|r be the equivalence class of w. Each element in
S corresponds to an equivalence class in 2. Then, the the set = can only be approximated by the
language of S but not exactly described by it. Let =* and =, be the upper and lower approximations
of = defined as follows

Er={we:wrnNz#0}; Ei={weQ:|wrCE} 9)

The pair (E%,Z2,) is called rough set by Pawlak [97]. Only sets =Z* and =, of individuals can be
perfectly described by combinations of attribute values Vi, Vs, ..., Vi corresponding to the subsets of
S. Note that histograms and numerical images correspond to this very notion of indistinguishability
and granularity, equivalence classes respectively corresponding to boxes of the histogram and to
pixels.

When changing granularity by adding a new attribute that is logically independent from others,
each element in 57 is refined into as many elements in Sy and a uniform probability on one set is
compatible with a uniform probability on the other one. In the case of adding a proposition that
is not logically independent from others) the induced refinement is not always that homogeneous.

3 Probability theory

Probability theory is the oldest among uncertainty theories and the best mathematically developed
as well as the most widely acknowledged. Probability theory can be envisaged from a purely
mathematical side, as often the case since the emergence of Kolmogorov axioms in the 1930’s 2.
Under this view, the starting point is a sample space €2, an algebra of measurable subsets B and a
measure of probability P i.e., a mapping from B in [0, 1] such that

P0)=0; P(Q)=1; (10)
if AN B =0 then P(AU B) = P(A) + P(B). (11)

The triple (€2, B, P) is called a probability space. A random variable is construed as a mapping V'
from ) in some representation space S (often the real line). In the simplest case, S is supposed to
be a finite set, which prescribes a finite partitioning of €2 according to the procedure described in
subsection 2.4. The family of measurable sets B can be defined as the Boolean algebra induced by

Zand typically in France where statistics is a branch of applied mathematics.
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this partition. The probability distribution associated to the random variable V' is then character-
ized by an assignment of weights p1,p2, ..., Peard(s), to elements of S (i.e., p; = P(V=1(s;)), such

that
card(S

)
Z pi = L
i—1

Beyond a basically consensual mathematical framework (up to discussions on the meaning of zero
probabilities and the issue of infinite additivity), significantly diverging views of what a probability
degree may mean can be found in the literature (Fine [61]). This section reviews some of these
controversies, emphasizing the limitations of uncertainty representations relying on the use of a
unique probability distribution.

3.1 Frequentists and subjectivists

We consider probability theory as a tool for representing information. For this purpose, probabilities
must be given a concrete meaning. Traditionally, there is at least three interpretations of probability
degrees. The oldest and simplest is in terms of counting equally possible cases. It comes back
to Laplace at the turn of the nineteenth century. For instance, €2 is supposed finite and p; is
proportional to the number of elements in V ~!(s;). The probability of an event is the number of
favorable cases, where this event occurs, divided by the total number of possible cases. The validity
of this approach relies on (i) Laplace’s Insufficient Reason principle stating that equally possible
states are equally probable and (ii) the capability of constructing S in such a way that its elements
are indeed equipossible. This can be helped by appealing to symmetry considerations, justifying
assumptions of purely random phenomena (like in games with unbiased coins, dice, etc.).

To-date, the most usual interpretation of probability is frequentist. Observations (that form a
relevant sampling of the set ), are collected, (say a finite subset Q(n) C Q with n elements).
These observations are supposedly independent and made in the same conditions. Frequencies of
observing V = s; can be calculated as :

card(V=1(s;) N Q(n))

n

fi =

or, if S is infinite, a histogram associated to the random variable V' can be set up considering
frequencies of members of a finite partition of S. It is supposed that, as the number of observations
increases, 2(n) becomes fully representative of €2, and that frequencies f; converge to “true” prob-
ability values p; = lim,,—,oo f;- The connection between frequency and probability dates back to J.
Bernoulli’s law of large numbers, proving that when tossing a fair coin a great number of times,
the proportion of heads tends to become equal to the proportion of tails.

This definition of probabilities requires a sufficient number of observations (ideally infinite) of the
phenomenon under concern. Then, assigning a probability to an event requires a population of sit-
uations and reveals a trend in this population. A probability distribution is then viewed as generic
knowledge. This framework also forbids to assign probabilities to non-repeatable events. Only sta-
tistical prediction is allowed, that is, a degree of confidence in getting “head” in the next toss of the
coin reflects the proportion of heads observed so far in a long sequence of experiments. However, the
idea that statistical experiments are rigorously repeatable is debatable. The frequentist assumption
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of independent observations collected in identical conditions is often only approximately verified
(one might suspect some contradiction between the identity of experimental conditions and the
independence of the observations, like when measuring the same quantity several times with the
same sensor). In general, even when they are independent, experimental conditions under which
observations are collected may only be similar to one another. A frequentist approach can then still
be developed [68]. In the case of non-repeatability, (testimonies, elections, for instance), one is led
to a subjectivist view of probabilities, which then directly represent degrees of belief of agent about
the occurrence of singular events or the truth of relevant propositions for the problem at hand. This
point of view meets a caveat: how to justify the additivity law of probabilities seen as degrees of
belief? In the case of repeatable phenomena, considered random, the use of frequencies is in agree-
ment with the additivity axiom (11). What plays the role of frequencies for non-repeatable events,
are amounts of money bet on the occurrence or the non-occurrence of singular events (according
to suggestions originally made by De Finetti [23] and Ramsey [98].

The degree of confidence of an agent in the occurrence of event A is the price P(A) this agent (call
her a player) would accept to pay in order to buy a lottery ticket that brings back 1 euro if event A
occurs (and 0 euro if not). The more the player believes in the occurrence of A, the less she finds
it risky to buy a lottery ticket for a price close to 1 euro. In order to force the latter to propose
a fair price, it is moreover assumed that the person that sells lottery tickets (the banker) will not
accept the transaction if prices she finds too low are proposed by the player. In particular if the
proposed price is too low, the banker is allowed to exchange roles with the player, in which case
the latter is obliged to sell the lottery ticket at price P(A) and to pay 1 euro to the banker if event
A occurs. This approach relies on a principle of coherence that presupposes a rational agent, i.e.,
a player that tries to avoid sure loss. For suppose the player buys two lottery tickets pertaining to
two opposite propositions A and A. The principle of coherence then enforces P(A) + P(A) = 1.
Indeed, only one of the two events A or A occurs in this one-shot setting. So prices must be such

that P(A)+ P(A) < 1, lest the player surely lose P(A)+ P(A)—1 euros. But if the player proposes
prices such that P(A) + P(A) < 1 then the banker would turn into a player in order to avoid sure
loss too. Similarly, with three mutually exclusive propositions A, B and A U B, it can be shown
that only P(A) + P(B)+ P(AU B) =1 is rational, and since P(AU B) =1 — P(AU B), it follows

that P(AU B) = P(A) + P(B).

This framework can be used on problems having a true answer, for instance, what is the birth-date
of the current Brazilian president? Clearly no statistical data can be accurately useful for an agent
to answer this question if this agent does not know the answer beforehand. The above procedure
might end-up with a subjective probability distribution on possible birth-dates, and the resulting
outcome can be checked. Note that here uncertainty is due to incomplete information, while in a
coin-tossing experiment, it is due to the variability of the outcomes.

The subjectivist approach sounds like a simple reinterpretation of the frequentist probability frame-
work. Actually, as pointed out by De Finetti [24] and his followers (Coletti and Scozzafava [16]),
this is not so straightforward. In the the subjectivist approach, there is no sample space. The
starting point is a set of Boolean propositions {A4; : j = 1,n} to which an agent assigns coherent
degrees of confidence ¢;, and a set of logical constraints between these propositions. The state space
S is then constructed on the basis of these propositions and constraints. By virtue of the principle
of coherence, the agent is supposed to choose degrees of confidence according to some probability
measure P in such a way that ¢; = P(A;),Vj =1,...,n. While the frequentist approach is to start
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from a unique probability measure (obtained by estimation from statistical data) that models the
repeatable phenomenon under study, there is nothing of the like in the subjective setting. There
may even be several probability measures such that ¢; = P(A;),Vj = 1,...,n. Each of them is
rational, but the available information may not allow to isolate it. There may also be no probability
measure satisfying these constraints if the agent is not coherent. Computing the probability P(A)
of any event A based on the knowledge of pairs {(A;, ¢;) : i = 1,n} requires the solution of a linear
programming problem whose variables are probability weights p; attached to elementary events (De
Finetti [23]) namely :

maximise (or minimise) >, . 4 p; under the following constraints :

Cj = Z pk,Vj:L...,n.

SkEAj

In this sense, the subjectivist approach to probability is an extension of the logical approach to
knowledge representation, and of classical deduction (see also Adams and Levine [1]). Moreover,
the subjectivist approach does not require the o-additivity of P (i.e., axiom (11) for an infinite
denumerable set of mutually exclusive events), contrary to the frequentist Kolmogorovean approach.
More differences between subjective and frequentist probabilities can be laid bare when the notion
of conditioning comes into play.

3.2 Conditional Probability

It is obvious that assigning a probability to an event is not carried out in the absolute. It is done
inside a certain context embodied by the frame S. In practice, S never contains all possible states
of the world, but only those that our current knowledge or working assumptions do not rule out.
For instance, in the dice-tossing problem, S contains the six facets of the dice, not the possibility
for the dice to break into pieces. It suggests to write the probability P(A) in the form P(A | S) to
highlight this aspect. If later on, the agent obtains new pieces of information than lead to restrict
the set of states of the world further the context of these probabilities will change. Let C' C S
be the current relevant context, and P(A | C) be the probability of A in such a context. The
transformation from P(A) to P(A | C) essentially consists in renormalizing probabilities assigned

to states where C' is true, that is:

pa|cy=LHA0C0) (];4(2)0)

This definition retrieves P(A) under the form P(A | S). This definition is easy to justify in the
frequentist case, since then, P(A | C) is the limit of a relative frequency.

(12)

Two known results can then be derived:

e The total probability theorem : If {C1,...,Cy} forms a partition of S, then

k
P(A) =) _P(A]| Ci)P(Cy).

i=1
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e Bayes theorem:

__ PA]G)P(C)
i P(A]C)P(Cy)

P(C; | 4)

The first result enables the probability of an event to be computed for a general context S given
known probabilities of this event in more specific contexts, provided that these contexts form
a partition of possible states, and that probabilities of each of these contexts are known. It is
instrumental for backward calculations in causal event trees.

Bayes theorem can deal with the following classification problem: Consider k classes C; of objects
forming a partition of S. If the probability P(A | C;) of property A for objects of each class Cj
is known, as well as the prior probabilities P(C}),j = 1...,k that an object is of class C}, then
for any new object which is known to possess property A, it is possible to derive the probability
P(C; | A) that this object belongs to class C;. In diagnosis problems, replace class by fault type
and property by symptom.

Bayes theorem is also instrumental in model inference, or learning from statistical data. Then

e the set of classes is replaced by the range of values 6 € © of the model parameter,

e P(A|6) is the likelihood function known when the type of statistical model is known, and 6
is fixed,

e the set A represents a series of observed outcomes,

e a prior probability distribution is given on the parameter space © (in case of ignorance, a
so-called non-informative prior according to the objective Bayesian school is used)

e the posterior probability P(6 | A) is viewed as the new knowledge about the parameter model
after observing A, which leads to a possible update of this model.

In a subjectivist framework, the situation of conditioning is different. The probability P(A |
() is now assigned by the agent to the hypothetical occurrence of the conditional event A | C.
Conditional probability is now considered as a primitive notion (no longer derived from a probability
measure). Namely, A | C represents the occurrence of event A in the hypothetical context where
C' is true. The quantity P(A | C) is then still interpreted as an amount of money bet on A, but
now this amount is given back to the player if event C' does not occur - the bet is then called off
(De Finetti [24]). In this operational framework, it can be shown that coherence requires that the
equality P(ANC) = P(A|C)- P(C) be satisfied.

The definition of conditional probability under the form of a quotient presupposes that P(C') # 0,
which may turn out to be too restrictive. Indeed, in the framework proposed by De Finetti, where
elicited probabilities may be assigned to any conditional event, the available set of beliefs to be
reasoned from takes the form of a collection of conditional probabilities {P(A4; | Cj),i =1...m;j =
1...n} corresponding to various potential contexts some of which have zero probability of occurring
in the current world. However, by defining conditional probability as any solution to equation
P(ANC)=P(A|C)-P(C), it still makes sense as a non-negative number when P(C) = 0 (see
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details in Coletti and Scozzafava [16]). Besides, in the tradition of probability theory, an event of
zero probability is understood as practically impossible, not intrinsically impossible: in other words,
it is an exceptional event only (like the dice breaking into pieces). The general reasoning problem
in the conditional setting is to compute probability P(A | C') from a set of known conditional
probabilities {P(A; | Cj),i = 1...m;j = 1...n} (Paris [96]), a problem much more general that
the one underlying the theorem of total probability.

Under this view, probabilistic knowledge consists of all values P(A; | C;) known in all contexts.
An agent only selects the appropriate conditional probability based on the available knowledge on
the current situation, a view in full contrast with the one of revising a probability measure based
on the arrival of new knowledge. Indeed, some scholars justify conditional probability as the result
of a revision process. The quantity P(A | C) is then viewed as the new probability of A when the
agent hears that event C' occurred [65]. Basic to belief revision is the principle of minimal change:
the agent minimally revises her beliefs so as to absorb the new information item interpreted by
the constraint P(C) = 1. A simple encoding of the principle of minimal change is to suppose that
probabilities of states that remain possible do not change in relative value, which enforces the usual
definition of conditioning (Teller [120]). Another more general approach is to look for the new
probability measure P, that minimizes an informational distance to the prior probability P under
the constraint P, (C) = 1 (Domotor, [30]). If relative entropy is chosen as a measure of distance,
it can be shown that P, is indeed the conditional probability relative to C. Note that interpreting
the context C' as the constraint P (C) = 1 is questionable in the frequentist setting, for, in this
case, a probability measure refers to a class of situations (a population), while the information
item C' often refers to a unique situation (the one of the specific problem the agent tries to solve).
Indeed, the constraint P(C') = 1 might misleadingly suggest that C' is true for the whole population
while C' occurred only in the specific situation the agent is interested in. In the subjectivist scope,
conditioning is but hypothetical, and the known occurrence of C only helps selecting the right
reference class.

3.3 The unique probability assumption in the subjective setting

The so-called Bayesian approach to subjective probability postulates the unicity of the probabil-
ity measure that represents beliefs of an agent, as a prerequisite to any further consideration (for
instance Lindley [88]). Indeed, if the agent decides to directly assign subjective probabilities to
elements of .S, the principle of coherence leads to the specification of a unique probability distribu-
tion by fear of a sure loss of money (this is also called the Dutch book argument). If the available
knowledge is insufficient to uniquely characterize a probability distribution, the Bayesian approach
may appeal to selection principles such as the one of Insufficient Reason that exploits the symme-
tries of a problem, or yet the maximum entropy principle (Jaynes [76], Paris [96]). Resorting to the
latter in the subjectivist framework is questionable because it only selects the uniform distribution
whenever possible as in the following example

Example Suppose the agent describes her knowledge about a biased coin by providing
rough estimates of the probability p of getting a tail. If she considers the bias is towards
tail, and if cautious she just provides an estimate p in the form of an interval such as
[0.5,0.8]. Applying the maximum entropy principle enforces the choice of the uniform
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distribution, while selecting p = 0.65 (the mid-point of the interval) sounds more sensible
and faithful to the trend expressed by the incomplete information supplied by the agent.

In any case (and even in the above example) the Bayesian credo states that any epistemic state of an
agent is representable by a unique prior probability distribution. An additional argument in favor
of this claim is Savage Decision Theory (see the chapter by Cohen and Jaffray in this volume). It
demonstrates that, in an infinite setting, if the agent makes decisions in an uncertain environment,
while respecting suitable rationality axioms, in particular the fact that the preference between two
acts does not depend on states in which they have the same consequences, then the decision process
can be explained as if the agent’s knowledge were encoded as a unique probability distribution and
decisions were rank-ordered according to their expected utility. Besides, the subjectivist approach is
somewhat convergent with the frequentist approach because it is agreed that if the agent possesses
reliable statistical information in the form of frequencies, they should be used to quantify belief in
the next forthcoming event.

The systematic use of a unique probability as the universal tool for representing uncertainty nev-
ertheless raises some serious difficulties:

e It makes no difference between uncertainty due to incomplete information about a question
under concern and uncertainty due variability in past results observed by the agent. In the
dice game, how to interpret in a non-ambiguous way a uniform distribution provided by an
agent that describes her epistemic state about the dice? Namely, it may be the case that
the agent knows the dice is unbiased and that the limit frequency distribution should be
uniform (pure randomness). However, if the agent ignores everything about that particular
dice, because she was given no chance to try it, then the uniform distribution is but the
result of the symmetry principle (the agent has no reason to bet more money on one facet
rather than another), and it just expresses ignorance. What it means is that there is no
bijection between the possible epistemic states of the agent (which are clearly different in
the above two situations) and probability distributions, even if it is correct to consider that
the proposed prices for buying the lottery tickets by the player do result from her epistemic
state. It does not make perfect sense to identify betting rates to degrees of confidence or
belief. This limitation in expressivity is somewhat problematic in a dynamical framework
where the amount of available information evolves, as shown later on: when a new piece of
information is obtained, should the agent modify his bets by means of a revision rule, or
revise her epistemic state and propose new betting rates accordingly?

e [t was pointed out earlier that the choice of frame S depends on the language used, hence on
the source of information. One agent may perceive distinct situations another agent will not
discern. If several points of view or several languages are simultaneously used in a problem,
there will be several frames Si, S, ..., S, (rightly called “frames of discernment” by Shafer
[104]) involved to describe the same quantity V', and compatibility relations between these
frames. Namely each subset of S; may only be represented by a rough subset of S; (in the
sense of subsection 2.4). It may become impossible to represent mutually consistent epistemic
states on the various frames of discernment by means of a unique probability distribution
on each set 5;. Indeed, a uniform distribution on one set may fail to correspond with a
uniform distribution on another. For instance, consider the example of the possibility of
extra terrestrial life, due to Shafer [104]:
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Example: Generally, people ignore whether there is life or not. Hence Pj(Life) =
Py(Nolife) = % on S1 = {Life, Nolife}. However if the agent discerns between an-
imal life (Alife), and vegetal life only (VIife), with frame Sy = {Alife, Viife, Nolife},
the ignorant agent is bound to propose P(Alife) = Po(Viife) = Py(Nolife) = %
Since Life is the disjunction of Viife and Alife, distributions P; and P, are in-
compatible while they are supposed to stem from the same epistemic state.

The same phenomenon occurs on the continuous real line when a piece of incomplete infor-
mation of the form x € [a,b] is represented by a uniform probability density on [a,b]. The
latter representation is not scale-invariant. Indeed, consider a continuous increasing function
f. Then, stating x € [a,b] is equivalent to stating f(z) € [f(a), f(b)]. However, if = has a
probability distribution with uniform density, the density of f(x) is generally not uniform. It
looks as if ignorance on [a, b] can create information on [f(a), f(b)].

e The usual debate between normative and descriptive representations of information is relevant
when dealing with uncertainty. If the Bayesian approach is normatively attractive, it may
prove to be a poor model to account for the way agents handle confidence degrees (Kahnemann
et al. [77]). More recent experimental studies seem to suggest that a human agent may, in
some situations, follow the rules of possibility theory instead [99].

e Finally there is a practical measurement difficulty in the case of subjective probabilities. It
can hardly be sustained that the agent is capable of supplying, even via price assessments,
infinitely precise probability values. What can be expressed consist of fuzzy probabilities (as
surprisingly acknowledged even by Luce and Raiffa [89]). Such probabilities would be more
faithfully represented by intervals, if not fuzzy intervals. In some situation, they are only
linguistic terms (very probable, quite improbable, etc...). One may thus argue that subjective
probabilities should be represented in a purely symbolic way, or on the contrary, by fuzzy
subsets (as in Subsection 2.3) of [0,1] (see Zadeh [128], Budescu and Wallstein [7], and De
Cooman [20]). Some authors even propose higher-order probabilities (for instance, Marschak
[90]), which sounds like recursively solving a problem by creating the same problem one step
higher.

Note that these defects essentially affect the Bayesian representation of subjective belief in the case
of poor information. They are partially irrelevant in the case of frequentist probabilities based on
sufficient experimental data. For instance, the lack of scale-invariance of probability densities is
no paradox in the frequentist view. If the collected information in terms of values for z € [a,b]
justifies a uniform distribution, it is unsurprising that the encoding of the same information in
terms of values for f(z) may not lead to a uniform distribution. But the frequentist framework has
no pretense to express subjective ignorance.

These caveats motivated the development of alternative representations of subjective uncertainty. In
some of them, the numerical framework is given up and replaced by ordinal structures that underlie
subjectivist numerical representations. In other representations, incompleteness is acknowledged
as such and injected into probability theory, yielding various approaches, some being more general
than others. In all approaches, possibility theory (qualitative or quantitative, respectively [51]) is
retrieved as the simplest non trivial non-probabilistic representation of uncertainty.
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4 Incompleteness-tolerant numerical uncertainty theories

It is now clear that representations of belief using subjective probabilities, under the Bayesian
approach, tend to confuse uncertainty due to variability and uncertainty due to incompleteness of
information, on behalf of the principle of symmetry or indifference. This choice of representation is
often motivated by the stress put on the subsequent decision step supposed to justify any attempt at
representing uncertainty. However, it is legitimate to look for representations of uncertainty that
maintain a difference between variability and incompleteness [60]. For instance in risk analysis,
an ambiguous response due to a lack of information does not lead to the same kind of decision
as when it is due to uncontrollable, but precisely measured variability. In sub-section 2.1, it
was pointed out that incompleteness can be conveniently modeled by means of disjunctive sets,
in agreement with interval analysis and classical logic. The introduction of incompleteness in
uncertainty representations thus comes down to combine disjunctive sets and probabilities. There
are two options:

e consider disjunctive sets of probabilities, assuming the agent is not in a position to single out
a probability distribution;

e randomise the disjunctive set-based representation of incompleteness of subsection 2.1.

Representing incompleteness goes along with modal notions of possibility and necessity. The gen-
eralized probability frameworks will be based on numerical extensions of such modalities. The first
line was studied at length by Peter Walley [121], who relies on the use of upper and lower expec-
tations characterizing closed and convex sets of probabilities. The second option, due to Arthur
Dempster [25] and Glenn Shafer [104] was further developed by Philippe Smets [116] [112]. It comes
down to randomizing the modal logic of incompleteness, assigning to each event so-called degrees
of belief and plausibility. The resulting theory turns out to be a special case of the former, math-
ematically, but it is philosophically different. In the first theory, the agent represents subjective
knowledge by means of maximal buying prices of gambles. The imprecise probability approach can
also be interpreted as performing sensitivity analysis on a probabilistic model, i.e., there exists a
true probability distribution but it is ill-known and lies in some subjectively assessed probability
family. In the Shafer-Smets approach, the agent uses degrees of belief and plausibility without
any reference to some unknown probability. Numerical possibility theory [133, 43, 51, 38] whose
axioms were laid bare in subsection 2.2 and used in the representation of linguistic information
in subsection 2.3 turns out to be a special case of the two above approaches, now interpreted in
terms of imprecise probability. The last subsection is dedicated to this special case.

All numerical representations of incompleteness-tolerant uncertainty have the following common
feature: the uncertainty of each event A, subset of S is characterized by two, respectively upper
and lower, evaluations, we shall respectively call (adopting a subjectively biased language) degrees
of epistemic possibility and certainty, that will be denoted Ep and Cer. Epistemic possibility refers
to a lack of surprise. These two degrees define confidence functions on the frame S (in the sense of
section 2.2) such that

VA C S,Cer(A) < Ep(A). (13)
They are supposed conjugate to each other, namely:
VA C S,Cer(A) =1 — Ep(A). (14)
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The first condition (13) postulates that an event must be epistemically possible prior to being
certain, and the second condition (14) says that an event is all the more certain as its opposite is
less epistemically possible. So these functions formally respectively generalize possibility measures
(Ep(A) =1I(A)) and necessity measures (Cer(A) = N(A)) of sections 2.2 and 2.3, and probability
measures as well(P(A) = Ep(A) = Cer(A)). This framework has the merit of unambiguously
encoding three epistemic states pertaining to event A:

e The case when A is certainly true: Cer(A) =1 (hence Ep(A) = 1, Ep(A) = 0,Cer(A) = 0).
e The case when A is certainly false: Ep(A) = 0 (hence Cer(A) =0).

e The case when the agent does not know if A is true or false: Cer(A) =0 et Ep(A) =1 (then

Ep(A) =1;Cer(A) =0).

The amount of incompleteness of the information pertaining to A is the difference Ep(A)—Cer(A).
When information on A is totally missing, there is a maximal gap between certainty and epistemic
possibility. The non-certainty of A (Cer(A) = 0) is carefully distinguished from the certainty
of its negation A. The distinction between ignorance and what could be understood either as
random variability of A (or totally conficting information about it) is also made (the latter is when
Cer(A) = Ep(A) = 3 = P(A)). The two approaches to the representation of uncertainty presented
hereafter, namely, imprecise probabilities and belief functions, do use pairs of set-functions of the
(Cer, Ep) kind.

4.1 Imprecise Probabilities

Suppose that the information possessed by an agent is represented by a family of probability
measures on S. This approach may sometimes correspond to the idea of imprecise probabilistic
model. This imprecision may have various origins:

e In the frequentist framework, the assumptions that frequencies converge may no longer be
assumed. At the limit, you only know that the frequency of each elementary event belongs
to an interval (Walley and Fine [122]).

e There may be incomplete information about which is the right stochastic model of a repeatable
phenomenon. For instance, the nature of a parametric model is known but the value of some
parameter like the mean or the variance is incompletely known. Bayesians then choose a
prior probability distribution on possible values of parameters. This is precisely what is not
assumed by imprecise probabilists [4].

e Pieces of incomplete information are supplied by an agent about a probability distribution
(support, mean value, mode, median, some quantiles) in a non-parametric framework.

e In the subjectivist framework, conditional propositions along with (bounds of) probabilities
incompletely characterize a subjective probability, after De Finetti [23] and his followers [16].
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e Walley [121] gives up the idea of exchangeable bets and allows the agent to propose maximal
buying prices and minimal selling prices for gambles that may differ from each other. Gambles
are functions from S to the real line, where f(s) is the relative gain in state s, generalizing
events. The maximal buying (resp. minimal selling) price of a gamble is interpreted as a
lower (resp. upper) expectation, thus defining closed convex sets of probabilities called credal
sets that can be interpreted as epistemic states [85].

e Gilboa and Schmeidler [66], by relaxing in a suitable way Savage axiom, provide a decision-
theoretic justification of the assumption that an agent uses a family of prior probabilities
for making choices among acts. In order to hedge against uncertainty, the agent selects,
when evaluating the potential worth of each act, the probability measure ensuring the least
expected utility value. See the chapter by Chateauneuf and Cohen in this volume.

In this section, the certainty function Cer(A) and epistemic possibility function Ep(A) are respec-
tively interpreted as lower and upper bounds of a probability P(A) for each event A. The additivity
of P forces the following inequalities to be respected by these bounds (Good [70]): VA, B C S, such
that AN B = 0,

Cer(A)+ Cer(B) < Cer(AU B) < Cer(A) + Ep(B) < Ep(AU B) < Ep(A) + Ep(B).  (15)

Then Cer and Ep are clearly monotonic under inclusion and conjugate to each other (since Cer(A)
must be the lower bound 1 — P(A), it follows that P(A) > Cer(A),VA is equivalent to P(A) <
Ep(A),VA). Nevertheless, this approach is not satisfactory as it may be the case that the set of
probabilities that function Cer is supposed to bound from below (or, for function Ep, from above),
namely the set {P : VA C S, P(A) > Cer(A)} is empty.

Conversely, we may start from a family P of probability measures and compute the bounds (Smith
[117)

P.(A) = inf P(A); P*(A)= sup P(A). (16)

PeP PeP

Letting Cer(A) = P.(A), and Ep(A) = P*(A), functions P, and P* duly verify properties (13,
14), and (15) as well. P, and P* are respectively called lower and upper envelopes (Walley [121]).
The width of interval [P,(A), P*(A)] represents in some way the degree of ignorance of the agent
relative to proposition A. When this interval coincides with the whole unit interval, the agent has
no information about A. When this interval narrows down to a point, probabilistic information is
maximal.

Generally, the only knowledge of upper and lower envelopes of events is not enough to recover P.
This is typically the case if P is not convex. Indeed, the set of probability measures P(P,) = {P :
VA C S,P(A) > P.(A)}, called the core of P,, and derived from the lower envelope, is convex (if
P, € P(Py) and P € P(P,) then, VA € [0,1],\-Pi+(1—\)- P> € P(P;)) and it contains the convex
closure of the original set P. P and P(P,) induce the same lower and upper envelopes. In fact,
the strict inclusion P C P(P,) may hold even if P is convex, because upper and lower probability
bounds on events cannot characterize the sets of closed convex sets of probability functions. To
achieve this characterization, we need all lower expectations of all gambles associated to a convex
set P and the notion of coherence ensuring estimates of these lower expectations are maximal. This
is why Walley [121] uses gambles, as generalizations of events, for developing his theory; the logic
of gambles is the proper language for describing (convex) credal sets.
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Coherent lower probabilities P are lower probabilities that coincide with the lower envelopes of
their core, i.e. for all events A of X, P(A) = minpepp) P(A). It also means for every event A, the
bounds are reachable, i.e., there is a probability distribution P in P(P) such that P(A) = P(A).
A characteristic property of a coherent upper probability (hence generated by a non-empty set of
probabilities) was found by Giles [69]. Let us use the same notation for A and its characteristic
function (a gamble with values in {0,1}: A(s) = 1if s € A and 0 otherwise). A set function Ep
is a coherent lower probability if and only if for any family Ag, A1, ..., A of subsets of S, and any
pair of integers (7, s) such that Zle Ai() >r+s-Ap(:), it holds

k

> Ep(A;) =1+ s- Ep(Ay).
=1

This condition makes sense in terms of gambles and involves optimal minimal selling prices of
an agent who sells k + 1 lottery tickets corresponding to events Ag, Ay, ..., A and is protected
against a sure loss of money. It also provides a tool to compute least upper probability bounds
(in case assigned bounds are not optimal), and in this sense, restoring coherence is like achieving a
deductive closure in the logical sense. Since all representations considered in this paper correspond
to particular instances of coherent lower probabilities, we will restrict ourselves to such lower
probabilities on events.

An important particular case of coherence is obtained by weakening probabilistic additivity by a
condition stronger than (15), called 2-monotonicity (Choquet [15]):

Cer(A) + Cer(B) < Cer(AUB)+ Cer(ANB),VA C S. (17)

A 2-monotonic function is also called a convex capacity. Its conjugate function Ep is said to be
2-alternating, which corresponds to the property (17) where the inequality is reversed. Due to
(17), it is sure that the core P(Cer) = {P : VA C S, P(A) > Cer(A)} is not empty and that Cer
is a coherent lower probability. However, a coherent lower probability is not always 2-monotone.
The property of 2-monotonicity can be extended to k-monotonicity for k = 3,4, ..., changing the
equality, appearing in the probabilistic additivitity property written with k events, into inequality.
However, while probabilistic 2-additivity implies k-additivity Vk > 2, this is no longer true for
k-monotonicity: the latter does not imply k + 1-monotonicity (even if k + 1-monotonicity does
imply k-monotonicity). So there is a countable hierarchy of types of coherent upper and lower
probabilities (see Chateauneuf and Jaffray [13]).

An important example of credal set is generated by so-called probability intervals. They are defined
over a finite space S as lower and upper probability bounds restricted to singletons s; [19]. They
can be seen as a set of intervals L = {[l;,u;],i = 1,...,n} defining the family

Pr, = {P’lZ < p(si) < wu;,Vs; € S}

It is easy to see that Py, is totally determined by only 2|S| values. Py, is non-empty provided that
Sl <1< 377w A set of probability intervals L will be called reachable if, for each s;,
each bound u; and [; can be reached by at least one distribution of the family P;. Reachability is
equivalent to the condition

le—kui <1 and Zuj"’li > 1.

J#i J#i
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Lower and upper probabilities Py(A), P*(A) are calculated by the following expressions

P.(A) = max(zsieAli, 1-— ZsigéA u;),
PA) = min(} o, cquil =D ¢4l

De Campos et al. [19] have shown that these bounds are coherent and the lower bounds are 2-
monotonic.

Another practical example of credal set is a p-box [59]. It is defined by a pair of cumulative
distributions (F, F') on the real line such that F < F, bounding the cumulative distribution of an
imprecisely known probability function P. It is a form of generalized interval. The probability
family Pp_por = {P, F(z) > P((—00,2]) > F(x),Vz € R} is a credal set. A p-box is a covering
approximation of a parameterized probability model whose parameters (like mean and variance)
are only known to belong to an interval.

4.2 Random disjunctive sets and belief functions

The approach adopted in the theory of evidence (Shafer [104]) is somewhat reversed with respect
to the one of the imprecise probability schools. Instead of augmenting the probabilistic approach
with higher order uncertainty due to incompleteness, described by sets of probabilities, the idea is
to inject higher order probabilistic information to the disjunctive set approach to incompleteness.
So, instead of a representation of the form z € A where A is a set of possible values of x, a
(generally) discrete probability distribution is defined over the various possible assertions of the
form x € A (assuming a finite frame S). Let m be a probability distribution over the power set
25 of S. Function m is called mass assignment, m(A) the belief mass allocated to the set A, and
focal set any subset A of S such that m(A) > 0. Let F be the collection of focal sets. Usually, no
positive mass is assigned to the empty set (m(0)) = 0 is assumed). However, the Transferable Belief
Model (TBM) after Smets [116] does not make this assumption. Then m(0) represents the degree of
internal contradiction of the mass assignment. The condition m(0)) = 0 is a form of normalisation.
As m is a probability distribution, the condition ) 4~ ¢m(A) = 1 must hold anyway.

In this hybrid representation of uncertainty, it is important to understand the meaning of the mass
function, and it is essential not to confuse m(A) with the probability of occurrence of event A.
Shafer [104] says m(A) is the belief mass assigned to A only and to none of its subsets. One may
also see m(A) as the amount of probability pending over elements of A without being assigned
yet, by lack of knowledge. An explanation in the subjective line consists in saying that m(A)
is the probability that the agent only knows that x € A. So, there is an epistemic modality
implicitly present in m(A), but absent from P(A). It explains why function m is not required to
be inclusion-monotonic. It is allowed to have m(A) > m(B) > 0 even if A C B, when the agent is
sure enough that what is known is of the form x € A. In the language of modal logic, one should
write m(A) = P(OA) where O represents a modality such as the agent only knows that .... In
particular, m(S) is the probability that the agent is completely ignorant.

In practice, a mass assignment results from a situation where the available pieces of information only

partially determine the quantity of interest. This is typically the case when only a compatibility
relation (instead of a mapping) between a probability space and the frame S of interest to the agent.
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Let € be a set of possible observations and P a probability measure on €2 supposedly available.
Suppose there is a multimapping I' that defines for each value w € € of the quantity v the set
I'(w) of possible values of the ill-known quantity  in S. If the agent knows v = w, she only knows
that = € I'(w) and nothing else. From the knowledge of a probability function on 2, only a mass
assignment on S is derived, namely: YA C S;m(A) = P{w : T'(w) = A}) if 3w € 2, A =T'(w), and
0 otherwise. This technique for generating a mass assignment from a multiple-valued function was
proposed by Dempster [25].

Exemple: Consider an unreliable watch. The failure probability e is known. The set
) describes the possible states of the watch U = { KO,OK}. The agent cares for the
time it is. So, S is the set of possible time-points. Suppose the watch indicates time t.
Then the multimapping I" is such that I'(OK) = {t} (if the watch is in order, it provides
the right time), and I'(KO) = S (if the watch does not work properly, the time it is is
unknown). The induced mass assignment on S is thus m({t}) = 1 — e and m(S) = e,
which is indeed the probability of not knowing the time it is.

The mass assignment obtained in this example is called a simple support because the mass is shared
between a single subset A of S and S itself. It is a good model of an unreliable source asserting
x € A, that an agent believes is irrelevant with probability e. This value is assigned to S so that
m(A)=1—e.

The probability space €2 can be considered as a sample space like in the framework of frequentist
probabilities. But it is then assumed that observations are imprecise.

Example: Consider an opinion poll pertaining to a French presidential election. The
set of candidates is S = {a,b,c,d,e}. There is a population {2 of n individuals that
supply their preferences. But since the opinion poll takes place well before the election,
individuals may not have made a final choice, even if they do have an opinion. The
opinion of individual 7 is modeled by the subset I'(¢) C S. For instance, a left-wing vote
is modeled by I'(:) = {a, b}; for an individual having no opinion, I'(i) = S, etc. In this
framework, if individual responses of this form are collected, m(A) is the proportion of
opinions of the form I'(i) = A.

Another method for constructing I' can be devised when the frame S is multidimensional 57 x
So, X -+ -x Sk, and a probability distribution P is available on part of the frame, like 57X Ss, X - - -x.S;,
and there is a set of constraints relating the various parameters x1,xs,...,Zx, thus forming a
relation R on S. R represents all admissible tuples in S. Let U = S; X So, x --- x S;. Then if
u=(s1,82,...,5;), denote [u] the set of tuples in S starting by w; then I'(w) = RN [u]. The above
watch example is of this kind.

A mass assignment m induces two set-functions, respectively a belief function Bel and a plausibility
function PI, defined by:

Bel(A)= > m(E); Pl(A)= > m(E). (18)

ECA,E#) ENA#£0
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When m(0) = 0, it is clear that Bel(S) = PI(S) = 1, PI(0) = Bel(0) = 0, and Bel(A) =1— PI(A)
so that these functions are another example of certainty (Cer = Bel) and epistemic possibility
(Ep = Pl). Belief functions Bel are k-monotonic for any positive integer k:

k
Bel(Ui:17_”7kAi) > Z(—l)i—H Z Bel(ﬂje[Aj). (19)
i=1 L|1|=i

Plausibility functions satisfy a similar property, reversing the direction of the above inequality.

Conversely, knowing function Bel, a unique mass assignment m can be recomputed from the equa-
tions that define Bel(A) for all subsets of S, considering values m(E) as unknowns. This is Moebius
transform. This transform, say M (g), actually applies to any set-function g and in particular to the
lower envelope P, of a probability family. Solving these equations is always possible and yields a
unique solution in the form of a set-function m = M (P;) such that ) ;¢ m(A) = 1, that however
may not be everywhere positive. Links between the cardinality of subsets with positive mass, and
the order of the k-monotonicity of a confidence function are studied by Chateauneuf and Jaffray
[13]. The positivity of the Moebius transform of a confidence function is characteristic of belief
functions. This property shows that belief functions are a special case of coherent lower envelopes,
i.e., that Bel(A) = inf{P(A) : P € {P : P > Bel}}. Nevertheless, this property is generally not
exploited in the setting of belief functions. For instance, the Transferable Belief Model by Smets
[116] considers Bel(A) as the degree of belief in A for an agent, not as a lower bound of some ill-
known objective or subjective probability. This non-probabilistic point of view affects calculation
rules (for conditioning, or combination) that must then be devised independently, instead of being
induced by probability theory. Smets [111] tried to justify Bel(A) as a genuine non-probabilistic
degree of belief through an axiomatic derivation.

Two important particular cases of belief functions must be pointed out:

e Probability functions are retrieved by assuming focal sets are singletons. It is clear that if
m(A) > 0 implies Is € S, A = {s}, then Bel(A) = PI(A) = P(A) for the probability function
such that P({s}) = m({s}),Vs € S. Conversely, Bel is a probability function if and only if
Bel(A) = PI(A),YA C S.

e Plausibility functions are possibility measures (or via adjunction, belief functions are necessity
measures) if and only if focal sets are nested, i.e., VA # B € F,A C B or B C A. Then,
Pl(AU B) = max(PI(A), PI(B)) and Bel(AN B) = min(Bel(A), Bel(B)).

Belief functions have first been defined on finite frames. Their extension to infinite sets pose tricky
mathematical problems in the general case [106]. Nevertheless, it is possible to define a belief
function on the reals, based on a continuous mass density bearing on closed intervals [118]. For any
pair of real numbers z < y, the mass density m([x,y]) is defined by the bi-dimensional probability
density p(z,y) taking value 0 if z > y. Then, belief and plausibility degrees of intervals of the
form [—o0,s| (which are actually a lower cumulative distribution Fi(s) = Bel([—o0,s]) and an
upper distribution F*(s) = Pl([—o0, s]), respectively) can be obtained as integrals of p(x,y) on the
respective domains {(z,y),y < s} and {(z,y),z < s}. More details in Smets [114]. Contrary to the
case of probabilities, these cumulative functions are not sufficient to reconstruct the mass density
function (except when focal intervals are nested), nor to compute belief and plausibility or other
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events. Clearly the pairs (Fj, F™*) are p-boxes that provide a useful summary of the information
contained in a belief function, when the question of interest is one of violating a threshold. The
lack of information is all the greater as F, and F* stand far away from each other. The credal set
P(F,F) induced by any p-box is in fact representable by a belief function whose focal elements
are of the form {z, F(z) > a} \ {z, F(x) > a} [82]. However, the belief function equivalent to the
probability box induced by a belief function is less informative than the original one.

Smets [110] tried to reconcile the theory of exchangeable bets (justifying subjective probabilities)
and the postulate that beliefs of an agent are represented by belief functions. A major objection
to subjective probability theory is its lack of distinction between situations of known variability
(unbiased dice) and ignorance (unknown dice), as emphasized in Section 3.2. The theory of belief
functions enables this distinction to be captured: the case of total ignorance is expressed by the
mass assignment m’(S) = 1, encoding a situation where Bel(A) = 0, PI(A) = 1,YA # S, (cor-
responding to the uninformative possibility distribution 7° in Section 2.1). In contrast, a uniform
probability distribution correctly expresses that all realisations of a variable v are known to be
equiprobable.

If an agent ignores all about variable v, she is thus led to propose a uniform probability distribution
on S, following the Insufficient Reason principle of Laplace; if the agent has some knowledge in
the form of a belief function with mass assignment m, Smets [110] suggests that the agent should
bet with a probability distribution defined by replacing each focal set £ by a uniform probability
distribution with support E, then computing the convex mixing of these probabilities, weighted by
masses m(E). This is the so-called pignistic probability defined by the distribution BetP:

_ m(E)
BetP(s) = EXE:E Card(E) (20)

This transformation of a belief function into a probability function was originally proposed by
Dubois and Prade [39] with a view to generalize Laplace principle. Smets [110] provided an ax-
iomatic justification, finding the probability function satisfying a linearity property (the pignistic
probability of a convex sum of belief functions is the convex sum of their pignistic probabilities) and
a property of anonymity (the pignistic probability of an event should not change when realisations
of this event are exchanged). It turns out that the pignistic probability has been known in coopera-
tive game theory since the 1950’s under the name Shapley value. Smets axioms are mathematically
the same as the ones proposed by Shapley [107] in a quite different context.

Belief functions can be compared in terms of their informative content. Note that belief functions
model at the same time imprecise and uncertain information, and one may wish to evaluate their
imprecision and their uncertainty separately. A natural imprecision index of a belief function is the
expected cardinality of its mass assignment :

Imp(m) = Z m(E) - Card(E) (21)
ECS

It is clear that Imp(m”) = Card(S) and Imp(m) = 1 if the mass assignment is a probability. It can
be checked that Imp(m) = > g PI({s}), i.e. it only depends on the plausibility of the singletons.
This numerical index is in agreement with relations comparing belief functions in terms of their
imprecision:
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e A mass assignment m; is said to be at least as specific as a mass assignment mo if Vs €
S, Pl1({s}) < Pla({s}). This is a natural requirement due to the property of the cardinality-
based imprecision index, viewing the function Pl({s})Vs € S (called contour function by
Shafer [104]) as a possibility distribution.

e A mass assignment my is said to be more precise than a mass assignment mso if and only if
for all events A, the interval [Bel;(A), Pli(A)] is included in the interval [Bely(A), Pla(A)].
Due to the adjunction property between Pl and Bl, it is enough that inequality VA, Pl;(A) <
Ply(A), holds. In other words, the narrower the interval [Bel(A), PI(A)], the closer it is to
a single probability. If P(m) = {P, P(A) < PI(A),VA}, m; is more precise than my means
that the credal set P(m;1) is a subset of P(mg). The function m is thus maximally precise
when it coincides with a unique probability, and minimally precise if m = m”.

e A mass function my is a specialization of a mass assignment meo if and only if the three
following conditions are verified:

— Any focal set of mg contains at least one focal set of m;.
— Any focal set of m; is included in at least one focal set of mo

— There is a stochastic matrix W whose term w;; is the fraction of the mass mi(E;) of
the focal set E; of my that can be reallocated to the focal set F; of msa so as to retrieve
the mass mo(F}), namely, mo(F;) = >, wi; - mi(FE;), with constraint w;; > 0 only if
E; C Fj.

The latter relation is more demanding than the former ones : if mj is a specialisation of
msg, then mq is also more precise and more specific than ms. It is also obvious that if m;y
is a specialization of mg, then Imp(m;) < Imp(ms). The converse properties do not hold.
Comparing contour functions is less demanding than comparing plausibilities, and Pl; < Plsy
does not imply that m; is a specialisation of mg (see Dubois and Prade [41]).

Example : S = {s1, s, s3}. Suppose m1({s1, s2}) = 3 and m1({s1,s3}) = 3; ma({s1}) =
% and ma(S) = % It is easy to see that none of these mass assignments is a specializa-
tion of the other one (the inclusion requirements between focal sets are violated). But
my is less precise than mg (because Plj(A) = Pla(A) except if A = {s2,s3}, for which
Pli({s2,s3}) = 1 > Pla({s2,s3}) = 0.5). However the two contour functions are the
same.

The uncertainty of a belief function can be evaluated by a generalization of entropy H(P) =

- anrd(S)

i—1 _ Di-Inp;. Several extensions were proposed (Dubois and Prade [42]):

e A measure of dissonance: D(m) = — > pcgm(E)-InPI(E), maximal for uniform probability
distributions, minimal (= 0) as soon as PI(F) = 1 for all focal sets E (i.e., they intersect :

N E : m(E) > 0} #0).

e A measure of confusion: D(m) = — > pcgm(E) - InBel(E), high 3 for uniform mass assign-

ments over all sets with cardinality %‘“s), and minimal (= 0) as soon as m(E) = 1 for some

focal set (incomplete and crisp information).

3In fact maximizing the index obtained by deleting the logarithm (and the minus sign) from this expression; see
Dubois and Ramer [57]
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e Klir and Parviz [79] proposed to measure the uncertainty of a mass assignment m by means
of the entropy of its pignistic probability, which does evaluate the amount of indecision of
an agent faced with a betting situation under uncertainty. More recently, other suggestions
include maximizing and minimizing H(P) when P ranges in the credal set associated with
the belief function.

4.3 Quantitative Possibility Theory

Like imprecise probability and evidence theories, possibility theory represents uncertainty by means
of two conjugate set function: a necessity measure N that is ‘minitive’, and a possibility measure I1
that is ‘maxitive’. They have already been introduced above in sections 2.2 and 2.3. Nevertheless,
in this section, one sees these set-functions as lower and upper probabilities, since they can be
generated from mass functions associated to nested focal sets. While Zadeh [133] defines possibility
distributions from linguistic pieces of information, the idea of considering possibility measures as
counterparts to probability measures is due to the economist G.L.S. Shackle [103] who named degree
of potential surprise of event A the quantity N(A) = 1 —II(A). Possibility theory, in its numerical
variant, proposes a very simple model of uncertainty tailored for imprecise information and it can
encode particular families of probabilities in a very concise way. This model not only enables
us to represent linguistic information (according to Zadeh), but it also generalizes the set-based
representation of information (propositional logic, interval analysis), and it can, in an approximate
way, represent imprecise statistical information [38].

4.3.1 Possibility theory and belief functions

More precisely, let m be a mass function on a finite set S. One defines the possibility distribution 7
induced by m, also called its contour function, by letting 7(s) = P1({s}) (plausibility of singletons),
ie.

Vs € S,m(s) =Y _ m(E). (22)

sek

It is easy to see that 7 takes its values on [0, 1], is normalized (w(s) = 1 for some state s € S)
as soon as the focal sets have a common non-empty intersection (it is in particular the case when
they are nested). Recovering m from  is possible only when the focal sets are nested or disjoint.
Assume that the focal sets are nested. Then they can be rank-ordered in an increasing sequence
E,CEyC,...,C E,, where E; = {s1,...5;}, then

w(si) =Y _ m(Ej).
j=i

The possibility and necessity measures IT and N, defined by the equations (8) from 7, coincide with
the plausibility and belief functions induced by m. Then the mass function can be recomputed from
7 as follows (letting m(s,+1) = 0):

mq(E;) = m(s;) —m(si—1),i=1,...,n. (23)
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Thus, we can see that, in the finite consonant case, m, and 7w contain the same information, and
then Pl = 1II and Bel = N. However, in the infinite case, the relation between consonant random
sets and possibility measures is more complex in the general case (see Miranda et al. [91, 92]).

For possibility measures, the precision and specialisation orderings coincide with the specificity
ordering of possibility distributions on the singletons: m,, is a specialisation of m,, if and only if
IT; (A) <TIy(A),VA C S if and only if 71 (s) < ma(s),Vs € S (Dubois and Prade [41]).

In the general case, 7 is only an approximation of m, and it can be checked that 7 is the least
specific possibility distribution such that Pl > II and Bel < N (Dubois and Prade [46]). It is
worth noticing that if the focal sets are imprecise observations coming from a random experiment,
equation (22) represents the possibilistic counterpart of an histogram.

4.3.2 Possibility theory and imprecise probabilities

As belief functions mathematically correspond to a particular case of family of probability measures,
it is a fortiori the case for possibility distributions. Let us again consider the case of an increasing
sequence of nested sets £1 C Fy C,...,C Ey. Let 1 < 1y <,...,< 1, be lower bounds of
probability, and let P= {P, P(E;) > v;,Vi = 1,...,k}. This is typically the kind of information
provided by an expert who expresses himself in an imprecise way about the value of a parameter.
He suggests that x € E; with a confidence degree a least equal to v;. Then P, (A) = infpep P(A) is
a necessity measure; and P*(A) = suppcp P(A) is a possibility measure, based on the possibility
distribution (Dubois and Prade [48]):

Vs € S,m(s) = min max(E;(s),1 — v;). (24)
i=1,...,

with E;(s) = 1if s € E; and 0 otherwise. See (De Cooman and Aeyels [21]) for an extension of
this result to the infinite case. In this framework, each F; is a kind of confidence set (an interval in
the case where S = R) and the probability of belonging to this set is at least v;. The probability
of not belonging to E; is thus at most 1 — ;. This confidence set weighted by a certainty degree
corresponds to the possibility distribution max(F;(s),1 — ;). The above equation is nothing but
the conjunction of these local distributions. It is clear that distribution 7 encodes in a very compact

way the family of probabilities P. Conversely, a possibility distribution 7 encodes the credal set
defined by P(mw) = {P, P(A) <II(A),VA measurable} = {P, P(A) > N(A),VA measurable}.

In the case where S = R, an important particular case of possibility distribution is a fuzzy interval.
Distribution 7 is supposed to be upper semi-continuous and quasi-concave (Va,b,c € R,7m(c) >
min(rw(a), 7(b))); its level cuts {s,7(s) > a},a € (0,1] are then nested closed intervals [a,a]].
One can associate to m a mass density m, uniformly distributed over its level cuts. The lower and
upper cumulative functions F(s) = N([—o0,s]) and F*(s) = II([—o0, s]) are respectively of the
form:

F*(s) =m(s),s € (—oo,aj ], and 1 if s > a’; (25)
F.(s) =1—7(s),s € [a],+00) and 0 if s < a. (26)

Let us consider an interval A = [z,y| including the core of w. The inequality P(A) < II(A) writes
F(z)+1— F(y) < max(m(x),n(y)) where F is the cumulative function of P. One can check that
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the credal set P(7) is precisely equal to {P,Vx < aj,Yy > af, F(z) +1— F(y) < max(r(z), 7 (y))}.
It is generally strictly included in the credal set {P, F* > F' > F,} [47] of the corresponding p-box.
The mean interval [e~ (m),e™ (m)] of 7 is the set of mean values of the probability distributions in
P(). Its bounds are nevertheless the mean values respectively induced by F* and F.

4.3.3 Clouds and generalized p-boxes

Interestingly, the notion of cumulative distribution is based on the existence of the natural ordering
of numbers. On a finite set, no obvious notion of cumulative distribution exists. In order to make
sense of this notion over X, one must equip it with a complete preordering. It comes down to a
family of nested confidence sets ) C A} C Ay C ... C A, C S, with 4; = {s1,...,s;}. Consider
two cumulative distributions according to this ordering, that form a p-box. The credal set P can
then be represented by the following restrictions on probability measures

withay <as<...<a,<land f; < P2 <...<f, <1. If we take S =R and A; = (—o0, s;], it
is easy to see that we retrieve the usual definition of a p-box.

The credal set P described by such a generalized P-box can be encoded by a pair of possibility
distributions 7y, e s.t. P = P(mw1) NP (me) where m comes from constraints a; < P(A;) and 7o
from constraints P(A;) < ;. Again, it is representable by a belief function [29].

A cloud [95] can be seen as an interval-valued fuzzy set F' such that (0,1) C U,esF(s) C [0,1],
where F(s) is an interval [d(s),7(s)]. It implies that w(s) = 1 for some s (7 is a possibility
distribution) and &(s’) = 0 for some s’ (1 — § is also a possibility distribution). A probability
measure P on S is said to belong to a cloud F' if and only if Vo € [0, 1]:

Po(s) >a)<1—a< P(r(s) > a) (28)

under all suitable measurability assumptions. From this definition, a cloud (J,7) is equivalent to
the cloud (1 —m,1 —4). If S is a finite space of cardinality n, let A; = {s;,7(s;) > a;+1} and
B; = {si,0(s;) > a;4+1}. A cloud can thus be defined by the following restrictions [29]:

P(B,)gl—ang(Az)andegAl izl,...,n (29)
where 1l =g >a; >as > ... >a, >ap 1 =0and 0 = Ay C A C A C...C A, C Ay =
S;0=ByC B CByC...C B, C By =5.

Let P (9, ) be the credal set described by the cloud (4, 7) on a frame S. Clouds are closely related
to possibility distributions and p-boxes as follows [29]:

e P(0,m) =P(m) NP(1 —9) using the credal sets induced by the two possibility distributions
mand 1 — 6.

e A cloud is a generalized p-box with m; = 7 and ma(s;11) = 1 — d(s;) iff the sets {A;, By, i =
1,...,n} form a nested sequence (i.e. there is a complete order with respect to inclusion); in
other words, it means that m and § are comonotonic. So a comonotonic cloud is a generalized
p-box and it generates upper and lower probabilities that are plausibility and belief functions.
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e When the cloud is not comonotonic, P(J, ) generates lower probabilities that are not even
2-monotone. It is anyway possible to approximate upper and lower probabilities of events
from the outside by possibility and necessity measures based on 7 and 1 — §:

max(Nz(A), N1_5(A)) < P(A) < min(II:(A),II1_s(A)).

The belief and plausibility functions of the random set s.t. m(A; \ B;—1) = «a;—1 — «; are inner
approximations of P(d, ), which become exact when the cloud is monotonic.

When 7 = 6 the cloud is said to be thin. In the finite case, P(mw,7) = 0. To make it not
empty, we need a one-step index shift, such that (assuming the m(s;)’s are decreasingly ordered)
d(si) = m(si+1) (with w(sp+1) = 0). Then, P(d, 7) contains a single probability distribution p such
that p(s;) = 7(s;) — m(s;+1). In the continuous case P(w,7) contains an infinity of probability
measures and corresponds to a random set whose realizations are doubletons (the end-points of the
cuts of 7).

The strong complementarity between possibilistic and probabilistic representations of uncertainty
is noticeable. While a probability distribution naturally represents precise pieces of information
with their variability (what is called statistical data), a possibility distribution encodes imprecise,
but consonant, pieces of information (what is expressed by the nestedness of focal sets). One may
consider that the possibilistic representation is more natural for uncertain subjective information,
in the sense that from a human agent one rather expects consonant pieces of information, with
some imprecision, rather than artificially precise but scattered pieces of information. The fact that
a probability measure is lower bounded by a necessity measure and upper bounded by a possibility
measure (N(A) < P(A) <II(A),VA) expresses a compatibility principle between possibility and
probability: for any event, being probable is more demanding than being possible, and being
somewhat certain is more demanding than being probable (Zadeh [133]). A probability measure P
and a possibility measure II are said to be compatible if and only if P €P(r).

4.3.4 Possibility-probability transformations

It is legitimate to look for transformations between probabilistic and possibilistic representations
of information. There are several reasons for that. On the one hand, with a view of fusing hetero-
geneous pieces of information (linguistic pieces of information, measurements issued from sensors),
one may wish to have a unique representation framework at our disposal. Besides, the useful in-
formation extracted from probability distributions is often much less informative than the original
distribution (a prediction interval, a mean value...). Conversely, the subjectivist interpretation of
probabilities by the betting theory can be regarded as a probabilistic formalization of the often
incomplete pieces of information provided by an agent. Lastly, possibility theory allows us to sys-
tematize notions that already exist in the practice of statisticians under an incompletely developed
form. The transformation between a probability measure P and a possibility measure II should
obey natural requirements :

e Possibility-probability consistency : P and II should be compatible.
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e Ordinal faithfulness. One cannot require the equivalence between P(A) > P(B) and
II(A) > II(B),YA,B C S, since the ordering induced on the events by P will be always
more refined than the one induced by II. Then one should only insure an ordinal equivalence
between the distributions p and 7, i.e., p(s;) > p(s;) if and only if 7(s;) > 7(s;),Vss, 85 € S.
One may also only require a weaker ordinal equivalence, for instance considering that p(s;) >
p(s;) implies 7(s;) > 7(s;) but p(s;) = p(s;) does not entail m(s;) = 7(s;).

e Informativity. Probabilistic representation is more precise, thus richer than possibilistic
representation. Information is lost when going from the first to the second, information is
gained in the converse way. From possibility to probability, one should try to preserve the
symmetries existing in the possibilistic representation. From probability — to possibility, one
should try to lose as little information as possible if the probability measure is statistically
meaningful. The case of a subjective probability is different since it often corresponds to
poorer knowledge artificially increased by the probabilistic representation, so that a least
commitment principle might prevail.

From possibility to probability

For changing a possibility distribution into a probability distribution, it is natural to use the
pignistic transformation. If card(S) = n, let us denote m; = 7(s;),i = 1,...,n, assuming that
m > o > -+ > my. The pignistic transform is a probability distribution p ordinally equivalent to
m, such that py > pe2 > -+ > py, with p; = p(s;),i=1,...,n:

n

pizzﬂj —jﬂj+17w:17...,n (30)

j=i
In the case of a fuzzy interval, the mass density associated to [a,al] is changed into a uniform
probability over this interval, and one considers the uniform probabilistic mixture obtained by
integrating over a € [0, 1]. This amounts to build the probability measure of the process obtained
by picking a number « € [0, 1] at random, and then an element s € [a,,a] at random (Chanas and
Nowakowski [10]). The mean value of the pignistic probability is the middle of the mean interval of
7 introduced in the previous subsection 4.3.2. This transformation generalizes Laplace Insufficient
Reason principle, since applied to a uniform possibility distribution over an interval, it yields the
corresponding uniform probability.

From subjective probability to possibility

For the converse change, from probability to possibility, one should distinguish the case where
one starts from a subjective probability from the situation where there exist statistics justifying
the probability distribution. In the subjectivist framework, and in agreement with the debatable
nature of the unique probability provided by an expert, one assumes that the knowledge of the
agent is a belief function with mass m over a finite frame S. The elicitation process forces him to
provide a probability distribution p that is considered as being the pignistic transform of m. By
default, one considers that the least biased belief function is the least informative one, if it exists,
among those whose pignistic transform is p (Smets [113]). If one looks for the mass assignment
that maximizes the imprecision index I'mp(m) = 7, 7; (equation (21)), it can be proved that
this mass assignment is unique, that it is consonant, and that it is also minimally specific (w. r.
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t. the plausibility of singletons) (Dubois et al. [56]). By noticing that the pignistic transformation
is a one-to-one mapping between probability and possibility, the least biased representation of the
agent’s knowledge leading to the subjective probability distribution p is obtained by reversing the
equation (30):

n
™ =Y min(p;,p;),Vi=1,...,n (31)
j=1

This transformation has been independently introduced by Dubois and Prade [40].
From objective probability to possibility

In the case of an objective probability distribution, one should try, when changing representation,
to lose as little information as possible. This leads to look for a possibility distribution 7 among
the most specific ones such that P €P(w) and which is ordinally equivalent to p.

Let us first consider the discrete case. If p; > pa > -+ > p,, and denoting E; = {s1,...s;}, it
is enough to let II(F;) > P(E;)Vi = 1,...,n in order to make p and 7 compatible. By forcing
equalities, one gets a unique possibility distribution, maximally specific and ordinally equivalent yo
p (Dubois and Prade [39]):

Wi:ij,Vizl,...,n (32)
j=i

Unicity is preserved when the inequalities between the p; are no longer strict but the transformation
writes m; = ) Jipy<ps Pi> Vi =1,...,n, which maintains the constraint : two equiprobable states are
equipossible. If we relax this constraint, one may get possibility distributions compatible with p that
are more specific than this one. In particular, equation (32) always yields a possibility distribution
that is maximally specific and consistent with p. For instance, if p is a uniform distribution,
there are n! ways of ordering S, and equation (32) gives n! non-uniform possibility distributions,
maximally specific and consistent with p.

In the case of a unimodal continuous density p over R, this possibility-probability transformation
can be extended by considering the level cuts of p, i.e. the subsets E) = {s,p(s) > A}, A € (0, sup p].
If we denote E\ = [z(A),y(N)], then the possibility distribution maximally specific and ordinally
equivalent to p is defined by

m(z(A) = 7(y(A)) =1 - P(E)) (33)

Indeed,it can be proved more generally that, if P(E)) = ¢, the measurable set A having the
smallest measure such that P(A) = ¢ is E (Dubois et al. [53]; Dubois et al. [35]). If p is unimodal,
E) is the interval with length L = y(\) — s(\) that is the most legitimate representative of the
probability density p, in the sense where E)y is the interval with length L having maximal probability:
P(E\) > P([a,b]),Va,bsuch that b—a = L. Thus, the transformation (33) can be related to a view
of a prediction interval as an imprecise substitute of a probability density, with a given confidence
level (often 0.95). Most of the time, this type of interval is defined for symmetrical densities and
the considered intervals are centered around the mean. The interval with confidence 0.95 is often
defined by the 0.025 and 0.975 percentiles. Characterizing the prediction interval with confidence
0.95 by these percentiles when the distributions are non-symmetrical is not very convincing since
this may eliminate values with higher density than the one of some values in this interval. It is much
more natural to look for A such that P(E)) = 0.95. More generally, the « level cut of the possibility
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distribution 7 obtained by (33) from p, is the smallest interval with confidence 1 —a deducible from
p. One can find in the statistical literature a proposal for comparing probability densities according
to their ‘peakedness’ (Birnbaum [5]). It comes down to comparing their possibilistic transforms
in terms of their relative specificity; moreover the information ordering of probability measures by
means of the entropy index refines the partial specificity of their possibilistic transforms; see Dubois
and Huellermeier [31] on this topic.

The transformation (33) builds a family of nested sets around the mode of p. One may systemati-
cally build a possibility measure consistent with p by considering any characteristic value s* in the
support of p, and a family of subsets A nested around s*, indexed by A € [0, w| such that A, = {s*},
and Ay = support(p). For instance, if s* is the mean mea of p, with standard deviation o, and
that one takes Ay = [mea — \ - o, mea + A - o], Chebychev inequality gives us P(A)) < min(1, %)
The possibility distribution obtained by letting m(mea — A - o) = w(mea + X - 0) = min(1, %)
is thus consistent with any probability measure with mean mea and standard deviation . The
probability-possibility transforms can thus yield probabilistic inequalities. It has been shown that
a symmetrical triangular possibility distribution with bounded support [a, b] is consistent with any
unimodal symmetrical probability function having the same support, and contains the prediction
intervals of all these probability measures (Dubois et al. [35]). Moreover, it is the most specific
one having these properties (it is consistent with the uniform density over [a, b]). This provides, for
this distribution family, a probabilistic inequality that is much stronger than the one of Chebychev,
and justifies the use of triangular fuzzy intervals for representing incomplete probabilistic informa-
tion. See Baudrit and Dubois [2] for possibilistic representations of probability families induced by
partial knowledge of distribution characteristics.

4.4 Possibility theory and non-Bayesian statistics

Another interpretation of numerical possibility distributions is the likelihood function in non-
Bayesian statistics (Smets, [109], Dubois et al. [36]). In the framework of an estimation problem,
one is interested in the determination of the value of some parameter 8 € © that defines a proba-
bility distribution P(- | €) over S. Suppose that we observed event A. The function P(A | 0),0 € ©
is not a probability distribution, but a likelihood function £(#): A value a of 6 is considered as
being all the more plausible as P(A | a) is higher, and the hypothesis § = a will be rejected if
P(A | a) =0 (or is below some relevance threshold). Often, this function is renormalized so that
its maximum be equal to 1. We are allowed to let 7(a) = P(A | a) (thanks to this renormalisation)
and to interpret this likelihood function in terms of possibility degrees. In particular, it can be
checked that VB C O, bounds for the value of P(A | B) can be computed as:

i < <
BEEP(A |0) < P(A|B) < reneaécP(A | 0)

which shows that the maxitivity axiom corresponds to an optimistic computation of P(A | B) =
II(B). It is easy to check that letting P(A | B) = maxgep P(A | 0) is the only way for building a
confidence function about © from P(A | #),0 € ©. Indeed, the monotonicity w. r. t. inclusion of
the likelihood function £ forces P(A | B) > maxgep P(A | 6) to hold [17].

The maximum likelihood principle originally due to Fisher consists in choosing for the value of the
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parameter, induced by the observation A, § = 6* that maximizes P(A | #). It is clear that this
selection principle for the estimation of a parameter is in total agreement with possibility theory.

Another element of non-Bayesian statistical analysis is the extraction of a confidence interval for
f on the basis of repeated observations. Let us suppose that the observations si, ss, - - - s result
in an estimation 6 of the actual value 6*. Let Iy be a confidence interval for 6 such that P(Iy |
S1,82,-+-Sk) > 1 —e. On can choose the tightest interval E. of values of 6 with probability
1 — ¢, by taking a cut of the density p(Iy | s1,s2, - si) (as suggested by the probability-possibility
transformations). It is the smallest confidence interval containing the value of #* with a confidence
level 1 — e. One often takes e = 0,05, which is arbitrary. It is clear that letting e varying between
0 and 1, one gets a family of nested sets E. informing about #*. Statistical analysis by means of
confidence intervals can thus be understood as the construction of a possibility distribution that
provides an imprecise estimate of the value of parameter 6. It can be viewed as an order two
possibility distribution over probability measures P(-|6).

5 Qualitative uncertainty representations

It seems more natural in an ordinal framework to represent the relative confidence that an agent
has between various propositions expressing his/her knowledge rather than trying to force him/her
to deliver numerical evaluations. It is indeed easier to assert that a proposition is more credible
than another, rather than assessing a belief degree (whose meaning is not always simple to grasp),
or even to guess a frequency for each of them. The idea of representing uncertainty by means of
relations over a set of events dates back to De Finetti [23], Koopman [80] and Ramsey [98]. They
tried to find an ordinal counterpart to subjective probabilities. Later, philosophers of logic such as
David Lewis [87] have considered other types of relations, including comparative possibilities in the
framework of modal logic. This section offers an overview of ordinal representations of uncertainty,
in relation with their numerical counterparts.

The ordinal approaches represent uncertainty by means of a relative confidence relation between
propositions (or events) interpreted as subsets of the set S of the states of the world. Such a relation
expresses the more or less high confidence of an agent in some propositions rather than in others.
Let us denote >,; the confidence relation defined on the set of propositions (subsets of S): A >, B
means that the agent is at least as confident in the truth of A as in the truth of B. This relation
is in general a partial preorder, since the agent may not know the relative confidence between all
the propositions. >, denotes the strict part of >, (i.e., A >, B if and only if A >, B but not
B >, A). It expresses that the agent is strictly more confident in A than in B. The agent has
equal confidence in A and in B when both A >, B and B >, A hold, which is denoted A =, B.
These relations are supposed to satisfy the following properties:

o Reflexivity of >, 1 A >, A, VA,
e Non-triviality S >, 0;
e (Coherence with logical deduction. This is expressed by two properties:

A C B entails B >, A (monotony w. r. t. inclusion of >)
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If ACBand CCDand A >, D, then B >, C (well ordered relation);

o Transitivity of >,: if A >, B and B >, C then A >, C.

These three hypotheses are difficult to challenge. The two coherence conditions w. r. t. deduction
are independent except if the relation is complete (i.e. we have A >, B or B >, A,VA,B) or
transitive. Transitivity and completeness of >, become natural if the confidence relation can be
represented by a confidence function g with values in [0, 1]. In this case, the confidence relation >
is a complete preorder. A confidence function g represents a confidence relation as soon as

A >, B if and only if g(A) < g(B),VA, B.

All the set functions used for modeling uncertainty (probability measures, possibility measures,
belief functions,...) correspond to complete preorders between propositions, satisfying particular
properties, if we except the set functions studied by Friedman and Halpern [64] under thename of
plausibility measures® that induce partial preorders of relative confidence.

Comparative probability relations are the first relations of uncertainty that have been introduced
(De Finetti [23]; Koopman [80]). They have been studied in detail by Savage [101] in the framework
of Decision Theory. A comparative probability relation >, is a complete and transitive confidence
relation on the propositions, which satisfies a preadditivity property: if A, B,C are three subsets
such as AN (BUC) = 0:

B >0, C if and only if AUB >, AUC.

It is clear that any relation between events induced by a probability measure is preadditive. The
converse is false as shown by Kraft et al. [81] by means of the following counter-example on a
set S with five elements: Let a comparative probability relation that satisfy the following prop-
erties: s4 >prop {51, 53} {52, 53} >prov {51,854} {51,855} >prob {53, 54}; {s1,83,54} >prov {52, 55}
The reader can easily check that a comparative probability relation satisfying the above condi-
tions exists, but that there does not exist a probability measure satisfying them. A comparative
probability relation is thus an object that is partially non probabilistic, less easy to handle than a
probability function. In particular, a probability measure on a finite set is completely defined by
the probabilities of the elements, but a comparative probability relation is not fully characterized
by its restriction on singletons.

Confidence relations that have this simplicity are possibility and necessity relations. Comparative
possibility relations have been independently introduced by David Lewis [87] in the seventies, in the
framework of modal logics of counterfactuals, and by Dubois [32] in a Decision Theory perspective.
Comparative possibility relations > are complete and transitive confidence relations satisfying the
following characteristic property of disjunctive stability:

VC,B > A entails CUB>3 CUA

Their numerical counterparts, in the finite setting, are (and only are) the possibility functions II
with values in a totally ordered set I with bottom element 0 and top element 1. Each possibility
relation can be entirely specified by means of a unique complete preorder >, on the states of

“This name is misleading as they have no relationship to Shafer’s plausibility functions.
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the world. s; >, so means that the state s; is in general at least as plausible (i.e., normal, not
surprizing) as state s3. The possibility relation on events is then defined as follows :

B >n A if and only if ds; € B,VSQ S A,81 > S92

The degree of possibility of event A thus reflects the plausibility of the state of the world which
is the most normal where A is true. The case where the preorder on the events is induced by a
partial order on S is studied by Halpern [73]. Possibility relations are not invariant by negation.
Comparative necessity relations are defined by duality : B >y A if and only if A >11 B. The
relation B >x5 A means that A is at least as certain as B. These necessity relations satisfy a
characteristic property called conjunctive stability:

VC,B >Ny A entails CNB>yCNA

The corresponding set functions are necessity measures such that N(A N B) = min(N(A), N(B)).
Any possibility distribution 7 from S to a totally ordered set L representing >, (i.e. 7(s1) > m(s2)
if and only if s; >, s2) is defined up to a monotonic transformation. The complete preorder >,
encodes under a very simple form the generic knowledge of an agent about the relative plausibility
of the states of the world. Then one often assumes that for each state s,m(s) > 0, thus expressing
that no state of the world is totally excluded.

Possibility and necessity relations enjoy a remarkable property. Let us call ‘belief’ any event A
such that A > A, then the set of beliefs induced by a possibility relation >y is deductively closed.
In particular if A and B are beliefs, the conjunction A N B is also a belief. A belief is said to
be accepted if an agent accepts to reason as if it is true (and thus to apply the inference rules of
classical logic to it). This means that possibility relations account for the notion of accepted belief
(Dubois et al. [33]). This property remains when the possibility relation is restricted to a context
C C S. One calls ‘belief in context C’ any event A such that AN C > AN C. The set of beliefs
induced by a possibility relation >11 in a context C' is also deductively closed. This result relies
on the following property of possibility relations (called ‘negligibility’): if A, B, C are three disjoint
sets,
AUC > B and AUB > C entails A > BUC.

This property clearly indicates that A >y B means that the plausibility of B is negligible w. r. t.
the one of A, since in cumulating with B events that are less plausible than A, the plausibility of
A is attained. This feature is typical of possibility theory.

There are two main ways for generalizing comparative probability and possibility relations in weak-
ening their characteristic axioms. A first method consists in adopting a restricted form of disjunc-
tive stability, replacing equivalence by implication in the preadditivity axiom: if A, B, C are three
subsets such as AN (BUC) = 0:

B >, C entails AUB >, AUC. (34)

The results proved in Dubois [32] and Chateauneuf [12] show that the class of set functions cap-
tured by the weak preadditivity axiom (34) exactly contains the pseudo-additive (or decomposable)
confidence functions g, i.e.,which are such that there exists an operation @& on the codomain of g
such that for each pair of disjoint subsets A, B, g(AUB) = g(A) @ g(B). The cases where & = max
and & = + cover possibility and probability measures, respectively.

37



The other extension consists in restricting the scope of the weak preadditivity axiom to subsets
A,B,C such as AN (BUC) = and C C B. Any relative confidence relation >, obeying this
restriction of the preadditivity axiom is representable by a plausibility function in the sense of
Shafer (see Wong et al. [124]).

6 Conditioning in non-additive representations

The generalisation of the notion of probabilistic conditioning to other theories of uncertainty is not
straightforward for at least two reasons:

e As pointed out in section 3.2, probabilistic conditioning is often directly defined as a ratio of
two quantities and not as the probability of a genuine conditional event. However, splitting the
conditional event from the probability measure, one may better understand how to generalise
the notion of conditioning.

e Probabilistic conditioning has been used for several types of very different tasks: learning
from observations, prediction from observations, and the revision of uncertain information.
Moreover, there are several ways of formally generalising the probabilistic conditioning. It is
not obvious that the various tasks can be modelled by the same form of conditioning.

First a clarification is in order. The quantity P(A | C) is often presented as the probability of event
A when C' is true. The example below shows that it is a misconception.

Example: Let us consider balls drawn from a bag S containing five balls numbered
from 1 to 5. It is clear that P(even | {1,2,3}) = P(even | {3,4,5}) = %. If one
understands these results as: if the ball is in {1,2,3}, then the probability that it is
even is % and if the ball is in {3,4,5}, then the probability that it is even is %, one is
logically led to conclude that the probability that the ball is even is % in any case since
S =1{1,2,3} U{3,4,5}. However P(Pair | S) = 2.

The reason for this paradox, is a misinterpretation of the conditional probability P(A | C). In
fact, this is the probability of A when one does not know anything else than the truth of C' (in
the example: if one only knows that the number of the ball is in the set {1,2,3}). Note that
“knowing only that the ball is in {1,2,3} or that the ball is in {3,4,5}” is not equivalent to knowing
nothing. Thus, one should understand P(A | C) as the probability of an event A | C' which involves
a non classical implication, different from the material one C' U A, since in general it is false that
P(A | C) = P(C U A), and moreover it is not true that P(A | C) < P(A | C N B) (lack of
monotonicity) while of course P(C U A) < P(C N B U A).

Besides, it is important to distinguish the prediction problem from the revision problem. When
dealing with prediction, we have at our disposal a model of the world under the form of probability
distribution P issued for instance from a representative set of statistical data. This is what we call
‘generic information’ or ‘generic knowledge’ (for instance, medical knowledge synthesized by causal
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relations between diseases and symptoms). Assume we have some observations on the current state
of the world, i.e. a particular situation, what we call singular information, under the form of a
proposition C' (e.g. some medical test results for a patient). Then, one tries to formulate some
statements A about the current world with their associated degrees of belief (e.g. predict the disease
of the patient). Then the conditional probability P(A | C') (which is for instance the frequency
of observation of A in context C') is used for estimating a degree of belief that the current world
satisfies A.

The revision scenario is different: given a probability distribution P (which may represent generic
information or not), one learns that the probability of an event C is 1 (and not P(C) < 1 as it
was supposed before). Then the problem is to determine the new probability measure P’; such
that P(C) = 1, which is the closest to P in some sense, in order to comply with a minimal change
principle. Then, it can be shown that if we use an appropriate relative information measure, it
follows that P'(A) = P(A | C),VA [123].

Note that, in the prediction problem, generic knowledge remains unaffected by singular evidence,
which is handled apart. Finally, learning can be viewed as bridging the gap between generic and
singular information. Bayes theorem is instrumental to let prior knowledge be altered by singular
evidence, when checking the validity of predictions. An important problem is to see what remains
of Bayesian learning when prior knowledge is incomplete. While the answer to this question is
not well-understood yet, the imprecise Dirichlet model [4] provides some insight on this problem
for imprecise probabilities. For belief functions, little has be done as it is a theory of handling
singular uncertain evidence, and not so much an extension of Bayesian probabilistic modeling. In
the following, we focus on prediction, revision and later on the fusion of evidence.

6.1 Conditional events and qualitative conditioning

De Finetti [22] was the first to regard the conditional probability P(A | C') as the probability of a
tri-event A | C that should be read “if what is known is described by C then conclude A”, where A
and C represents classical propositions (interpreted as subsets of S). A tri-event A | C' partitions
the set of states s € S into three subsets:

e cither s € AN, then s is said to be an example of the rule “if C then A”. The tri-event is
then true (value 1) at s;

e or s € ANC; then s is said to be a counter-ezample of the rule “if C' then A”. The tri-event
is then false (value 0) at s;

e or s € C; then s is said to be irrelevant for the rule “if C' then A”, i.e. the rule does not
apply to s. The tri-event then takes a third truth value (I) at s.

The third truth value can be interpreted in various ways. According to Goodman et al. [71],
it corresponds to an hesitation between true and false, i.e. I = {0,1}. This is philosophically
debatable but suggests the equivalence between a tri-event and a family of subsets of .S, lower
bounded by ANC (this is the case when we choose I = 0) and upper bounded by C'U A representing
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material implication (this is the case when we choose I = 1). It is easy to check that any subset B
such as ANC C B C C U A satisfies the identity AN C = BN C. Thus, one has an Bayesian-like
equality of the form:

AnC=(A]C)nC. (35)

as this identity is valid for any representative of the family {B: ANC C B C C'U A}. This family
is an interval in the algebra of subsets of S, fully characterized by the nested pair (AN C,C U A).

The third truth-value I may be also seen as really expressing “inapplicable” [8], which underlies
the definition of a conjunction of conditional events by means of a truth table with three values, in
a non-monotonic three-valued extension of propositional logic (Dubois and Prade [49]). Lastly, for
De Finetti and his followers [16], the truth value I should be changed into the probability P(A | C).
Indeed,the probability P(A | C) is then seen as the price of a lottery ticket in a conditional bet that
yields, if condition C' is satisfied, 1 euro when A takes place, 0 when A does not take place, and
where the price paid is reimbursed (the bet is called off) if condition C' (which is the precondition
for the game to take place) turns to be false.

Relation (35) is the Boolean variant of Bayes equation P(ANC) = P(A | C) - P(C). Moreover
P(A | C) is indeed a function of P(AN C) and P(C U A) only, since (if P(C) > 0):

P(A|C) = P(ANC)

 P(ANC)4+1—P(CUA) (36)

Thus, it is possible to separate the tri-event from the conditional probability. Therefore they are
two ways of generalizing the probabilistic conditioning to confidence functions ¢ that differ from
probabilities.

e Either one states that g(ANC) only depends on g(A | C') and g(C), via a function ¢. This is
the approach followed by Cox (see Paris [96]). The constraints induced by the Boolean algebra

of events, together with some natural technical conditions such as the strict increasingness of
¢ enforce g(ANC) =g(A|C)-g(C) in practice.

e Or, the conditional measure g(A | C) is directly defined by replacing P by ¢ in (36).

The equivalence between the two approaches, which holds for probabilities, is no longer true for
more general set functions. In the case of non-numerical possibility theory, with possibility values
on a finite scale L, only the first option, generalizing (35) is possible. Then, we state

(AN C) = min(II(A | C), II(C)). (37)

This equation has no unique solution. Nevertheless, in the spirit of possibility theory, one is led to
select the least informative solution, i.e., for C' # (), and A # (:

II(A|C)=1ifII(ANC) =1I(C), and II(A N C) otherwise. (38)

This is similar to conditional probability, but there is no longer any division of II(A N C). If
II(C) = 0, then II(A | C') = 1 provided that A # (). Conditioning by an impossible event destroys
information.
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The conditional necessity measure is then defined by N(A | C) = 1 — (A | C). It coincides
with the necessity of the material implication except if II(A N C) = II(C'). Note that the dual
equation N(ANC) = min(N(A | C), N(C)) is not very interesting, since its minimal solution is
N(A|C)=N(ANC)=min(N(A), N(C)), which comes down to stating I1(A | C') = II(C U A).
On the other hand, the solution of equation (37) captures ordinal conditioning of the previous
section, since it can be checked that N(A | C) > 0 < H(ANC) > (AN C) when II(C) > 0.
This means that a proposition A is accepted as true in context C' if it is more plausible than its
negation in this context. The non monotonic nature of this type of conditional possibility can be
seen by noticing that we may have both N(A | C) > 0 and N(A | BN C) > 0, i.e., the arrival
of information B may lead to reject proposition A, which was accepted before in context C. See
Benferhat et al. [3] for a more detailed study of non-monotonicity in this framework.

6.2 Conditioning for belief functions and imprecise probabilities

Most of the time, the information encoded by a probability distribution refers to a population
(the set of situations that correspond to the results of the statistical tests). This is a form of
generic information, typically frequentist. This information can be used for inferring beliefs about
a particular situation for which we have incomplete but clear-cut observations. This is called
prediction. If P(A | C) is the (frequentist) probability of having A in context C, the confidence
of the agent in proposition A, when he/she knows information C| is estimated by quantity P(A |
('), assuming that the current situation is typical of environment C. The belief of the agent in
proposition A in the current situation changes from P(A) to P(A | C') when it has been observed
that C' is true in the current situation and nothing else. Conditioning here is used for updating the
beliefs of the agent about the current situation by exploiting generic information. In the example
used above, the probability measure P represents the medical knowledge (often compiled under
the form of a Bayesian network). The singular information C' represents the results of tests for a
patient. P(A | C) is the probability of having disease A for patients for whom C' has been observed;
this value also estimates the singular probability (belief) that this patient has this disease. Note
that in this type of inference, the probability measure P does not change, only singular beliefs
change. One only applies the available generic knowledge to a reference class C', what is called
focusing in (Dubois, Moral, and Prade [37]).

When probability P is subjective, it may have a singular nature as well (when betting on the
occurrence of a non-repetable event). In this case conditioning can be interpreted as an updating
of a singular probability by a piece of information of the same nature. In this case, information
C is interpreted as P(C) = 1, which represents a constraint that has to be taken into account
when revising P. For instance [54], in a criminal affair where the investigator suspects Peter, Paul
and Mary with probabilistic confidence degrees %, i and % respectively, and then learns that Peter
has an alibi, i.e. P({Mary, Paul}) = 1. We then have to revise these singular probabilities. The
use of conditional probability for handling this revision of the probabilities is often proposed (and
justified by the minimal change principle, already mentioned above), which yields probabilities %
and % for Paul and Mary respectively. However, the problem of revising P is different from the one

of updating singular beliefs on the basis of generic information.

Lastly, one may also want to justify the revision of a frequentist probability after the occurrence of
major events. In the example of the opinion poll about a future election, let suppose that for each
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candidate, his/her frequentist probability to be elected has been obtained (i.e. everybody supplied
a precise favourite candidate). Suppose now that a candidate withdraws. What becomes of the
probabilities? Applying Bayesian conditioning in this situation is questionable, since it assumes
that the votes of the electors that previously supporting the withdrawn candidate are transferred
to the other candidates proportionally to the number of the potential votes previously estimated.
It would be more convincing to make the assumption that the transfers will be done towards the
nearest neighbors of the withdrawn candidate in terms political affinity (which corresponds to the
‘imaging’ rule proposed by Lewis ([86]). This case questions the alleged universality of Bayesian
conditioning, even for probabilities. In such a situation, it would be even better to run the opinion
poll again.

In the case where the generic knowledge of the agent is represented by imprecise probabilities,
Bayesian plausible inference is generalized by performing a sensitivity analysis on the conditional
probability. Let P be a family of probability measures on .S. For each proposition A a lower bound
P.(A) and an upper bound P*(A) of the probability degree of A are known. In presence of singular
observations summarized under the form of a context C, the belief of an agent in a proposition A
is represented by the interval [Py (A | C), P*(A | C)] defined by

P.(A|C)=inf{P(A|C),P(C)>0,P ¢ P}

P*(A|C)=sup{P(A|C),P(C)>0,P e P}

It may happen that the interval [P.(A | C), P*(A | C)] is larger than [P.(A), P*(A)], which corre-
sponds to a loss of information in specific contexts. This property reflects the idea that the more
singular information is available about a situation, the less informative is the application of generic
information to it (since the number of statistical data that fit this situation may become very
small). We see that this form of conditioning does not correspond at all to the idea of enriching
generic information, it is only a matter of querying it.

Belief and plausibility functions in the sense of Shafer [104] are mathematically speaking important
particular cases of lower and upper probabilities, although these functions were independently
introduced, without any reference to the idea of imprecise probability. Information is supposed to
be represented by the assignment of non-negative weights m(F) to subsets E of S. In a generic
knowledge representation perspective, m(FE) is, for instance, the proportion of imprecise results, of
the form = € FE, in a statistical test on a random variable z. In this framework, plausible inference
in context C' consists in evaluating the weight function m(- | C) induced by the mass function m
on the set of states C, taken as the new frame. Three cases should be considered:

e E C C: In this case, m(F) remains assigned to E.
e ENC = {: In this case, m(F) no longer matters and is eliminated.

e ENC #0and ENC # () : In this case, some fraction ag - m(E) of m(E) remains assigned
to ENC and the rest, i.e. (1 —ag)-m(E), is allocated to ENC. But this sharing process is
unknown.

The third case corresponds to incomplete observations E that neither confirm nor disconfirm C.
We have not enough information in order to know if, in each of the situations corresponding to these
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observations, C'is true or not, since only E is known. Suppose that the values {ag, E C S} were re
known. It is always known that ag = 1 and ag = 0 in the first and second cases respectively. Then,
we can build a mass function m&(-). Note that a renormalisation of this mass function is necessary,
in general, as soon as PI(C) < 1 (letting mq(- | C) = Tgfczég) If one denotes by Bel,(A | C) and
Pl,(A | C) the belief and plausibility functions obtained by focusing on C, based on the allocation
vector «, the conditional belief and plausibility degrees on C' are defined by

Bel(A | C) =inf Belo,(A | C),

and
PI(A|C)=supPl,(A]|C)

One still obtains belief and plausibility functions (Jaffray [75]), and necessity and possibility mea-
sures if we start with such measures (Dubois and Prade [48]). The following results show that what
is obtained is a generalization of Bayesian inference:

Bel(ANC)

Bel(A| C)=mf{P(A|C): P(C)>0,P > Bel} = Bel(AnC) + PIANC)

PI(ANC)
PI(ANC)+ Bel(ANC)

It is easy to see that PI(A | C) =1 — Bel(A | C), and that these formulas generalize probabilistic
conditioning under form (36): Bel(A | C) is indeed a function of Bel(ANC) and of Bel(CUA) (and
similarly for PI(A | C)). Note that if Bel(C) = 0 and PI(C) = 1 (complete ignorance regarding C')
then all the focal sets of m overlap C' without being contained in C. In this case, Bel(A | C) =0
and PI(A | C) =1,VA # S,0: one cannot infer anything in context C.

PI(A|C)=sup{P(A|C): P(C)>0,P> Bel} =

The other conditioning, called ‘Dempster conditioning’, proposed by Shafer [104] and Smets [116],
systematically assumes ag = 1 as soon as E N C # (). It supposes a transfer of the full mass of
each focal set E to ENC # ) (followed by a renormalisation). This means that we interpret the
new information C' as modifying the initial belief function in such a way that PI(C) = 0: situations
where C' is false are considered as impossible. If one denotes PI(A || C) the plausibility function
after revision, we have:

PI(ANC)
PI(C)

This constitutes another generalisation of probabilistic conditioning in the sense of equation (35).
The conditional belief is then obtained by duality Bel(A || C) = 1 — PI(A || C). Note that with
this conditioning, the size of focal sets diminishes, thus information becomes more precise, and the
intervals [Bel, Pl] become more tighter (they are always tighter than those obtained by focusing).
Dempster conditioning thus corresponds to a process where information is enriched, which contrasts
with focusing. If Bel(C) = 0 and PI(C) = 1 (complete ignorance about C'), conditioning on C' in
the sense of Dempster rule significantly increases the precision of resulting beliefs.

PUA|| C) =

In the more general framework of imprecise probabilities, a blind application of revision by a piece
of information C' consists in adding the supplementary constraint P(C) = 1 to the family P, i.e.

P.(A|| C) =inf{P(A|C),P(C) =1,P € P};
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P*(A|| C) = sup{P(A | C),P(C) = 1, P € P}.

But, it may happen that the set {P € P, P(C) = 1} is empty (it is always the case in the classical
Bayesian framework since P is a singleton). One then applies the maximal likelihood principle
(Gilboa and Schmeidler,[67]) and we replace the condition P(C) = 1 by P(C) = P*(C) in the
above equation. In this way, we generalize Dempster rule (which is recovered if P* is a plausibility
function).

This type of conditioning has nothing to do with the previously described focusing problem, since in
the view of Shafer and Smets, the mass function m does not represent generic knowledge, but rather
uncertain singular information (non fully reliable testimonies, more or less certain clues) collected
about a particular situation. These authors consider a form of reasoning under uncertainty where
generic knowledge is not taken into account, but where all the pieces of information are singular. In
the crime example, suppose that the organizer of the crime tossed a coin for deciding whether a man
or a woman is recruited to be the killer. This piece of uncertain singular information is represented
by the mass function m({Peter, Paul}) = % (there is no information available about Peter alone
and Paul alone), and m({Mary}) = . Now, if we learn that Peter has an alibi, the focal set {Peter,
Paul} reduces to {Paul} and we deduce after revision, that P({Mary}) = P({Paul}) = 1. Note
that the Bayesian approach would split the mass m({Peter, Paul}) equally between Peter and Paul.
Bayesian conditioning then yields P({Mary}) = 2 - P({Paul}) = Z, which may sound debatable
when dealing with uncertain singular pieces of information (let alone at a court of law).

7 Fusion of imprecise and uncertain information

The problem of fusing distinct pieces of information coming from different sources has become
increasingly important in several areas, such as robotics (multi-sensor fusion), image processing
(merging of several images), risk analysis (expert opinions fusion), or databases (fusion of knowledge
bases). However, fusion has received little attention in the probabilistic tradition. In the frequentist
view, one works with a unique probability distribution issued from a set of observations. In the
subjectivist tradition, one often considers that uncertainty is expressed by a unique agent. In the
last thirty years, the problem of fusing pieces of information has emerged as a fundamental issue
when representing information coming from several sources. The fusion of pieces of information
differs from the fusion of multiple criteria or multiple agent preferences. In that latter case one
usually looks for a compromise between points of views or agents. Each agent may be led to accept
options that he/she had not proposed at the beginning. In contrast, the aim of information fusion
is to lay bare what is true among a collection of data that are often imprecise and inconsistent.
Consequently, the operations that are natural for fusing different pieces of information are not
necessarily those needed for fusing preferences. The fusion problem can be stated in similar terms
independently from the representation of uncertainty that is used: in each uncertainty theory, one
can find the same fusion modes, even if they are expressed by different operations. Besides, the
fusion problem differs from the revision of information upon the arrival of a new piece of information
(which is based on the notion of conditioning). The fusion problem is by nature symmetrical:
sources play similar role even if they may be (are often) heterogeneous. This contrasts with revision,
where prior information is minimally changes on the basis of new information. When fusing pieces
of information, there may be no prior knowledge available, and if any, it is modified by the pieces
of information coming from several sources in parallel.
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In its simplest form a fusion problem can be stated as follows, when the sources provide incomplete
pieces of information: Assume there are two sources 1 and 2 that inform us about the value of
a variable z taking its value in S. According to the first source, z € A;, while according to the
second one, x € Ay. The fusion problem consists in deducing the most useful plausible information
contained in what sources delivered. It is obvious that the result should depend on hypotheses on
the quality of the sources. There are three kinds of assumptions:

1. The two sources are reliable. One concludes that x € A3 N As. This reasoning presupposes
that the pieces of information that we start with are coherent. If A; N Ay = (), then the
hypothesis that the two sources are reliable no longer holds.

2. At least one of the two sources is reliable. One concludes that x € Ay U As. This reasoning
no longer presupposes that the pieces of information that we start with are coherent. Thus
if A1 N Ay = 0, one can still deduce a non trivial piece of information (except if x is an
all-or-nothing variable). But there is an important loss in precision.

3. The two sources are identical and provide independent information. In this case one can
consider that A; N Ay is the set of values that are the most plausible (since both sources
declare them as feasible), while the values in (A; N A2) U (A5 N Ay) are less plausible, but not
excluded (since, at least one of the two sources declare them as possible).

These three kinds of combination can be found in all formalisms. The first one is called conjunctive
fusion, since it performs the intersection of the sets of values that are possible for z according to
each source. This is the usual fusion mode in classical logic. If several propositions of the form
x € A; are asserted as true, the values resulting from the combination are the ones for which all the
propositions are true. The second is called disjunctive fusion. It corresponds to a classical mode
for dealing with inconsistency in logic (Rescher and Manor [100]): If the propositions of the form
x € A; are contradictory, then one looks for maximal consistent subsets of propositions, assuming
that reality corresponds to one of these subsets (here reduced to {A1} and {As}). The third mode
is of another nature: the hypothesis of independence of the sources allows for a counting process.
For each value of x, one counts the number of sources that do not exclude it, this number reflects
the plausibility of each of these values. This is typically what is done in statistics, but in that latter
case each observation is supposed to be precise (x = a;) and comes from the same unique aleatory
source in an independent way. Moreover, it is also supposed that many more than two observations
are reported. Up to these remarks, collecting statistical data agrees with the third fusion mode,
which may be thus termed cumulative fusion. In the above elementary case, it can be expressed by
the arithmetic mean of the characteristic functions of A; and As, or yet under the form of a mass
distribution such that m(A;) = m(A4s) = 3.

In the following, we explain how these three modes of fusion can be expressed in the different
uncertainty formalisms studied in this paper: probabilities, possibilities, belief functions, imprecise
probabilities. We shall see that the closure condition, which supposes that when one fuses pieces
of information that are expressed in a given formalism, the combination result should be also
expressible in this formalism, may be problematic. Requiring this condition may forbid some
fusion modes. For instance, it is clear that cumulative fusion does not preserve the all-or-nothing
nature of the pieces of information in the above elementary case, contrary to the situations for
conjunctive or disjunctive fusions. In order to define all fusion modes in all formalisms, we shall see
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that the result of the fusion brings us from a particular setting to a more general one (for example
from possibilities or probabilities to belief functions).

7.1 Non-Bayesian probabilistic fusion

It is supposed that source i provides a probability measure P; on S. One looks for a function
f, which is non-decreasing, monotonic, from [0,1]" to [0,1] such that the set function P =
f(Pr,...,P,) is still a probability measure. Existing results show that, under mild conditions,
especially, f(0,...,0) = 0 and f(1,...,1) = 1, the only possible fusion function is the weighted
average [84], i.e.

VAC S, f(Pi(A),..., Pa(A) = a;- Pi(A),
=1

where > 7" | o; = 1, with a; > 0,Vi. This amounts to requiring that aggregation commutes with
marginalization.

This is a cumulative fusion mode. It considers the sources as independent aleatory generators of
precise values, the weight «; reflects the number of observations produced by source i. In the
framework of expert opinion fusion, it is supposed that each expert produces a probability measure
expressing what he/she knows about the value of a parameter z, the weight «; reflecting the
reliability of expert i, understood as the probability that expert ¢ is “the right one”. These weights
are estimated by testing the expert on questions, the answer to which is supposedly known (Cooke

[18]).

This is the only fusion mode allowed by this approach. One may also fuse probability densities by
means of other operations such as the geometric mean, provided that the result is renormalized,
which broadens the spectrum of possible fusion operations (French [63]). But the commutation
with marginalization operation is then lost.

7.2 Bayesian probabilistic fusion

Another approach to the fusion problem presupposes that sources provide precise evaluations
Z1,...,x, for the value of x, but that these evaluations are inexact. The probability P(z1,...,zy |
x = s;) that sources jointly provide the n-tuple of values z1,...,z, when the real value of z is
equal to s; is supposed to be known. This information models the joint behavior of the sources.
Moreover, prior probabilities p; that x = s;,Vj are also supposed to be available. Under these
hypotheses, one can compute, by means of Bayes theorem, the probability P(z = s; | 1,...,2)
that the real value of  is equal to s; when each source ¢ provides a value z;:

_ P(x1,...,zn | 85) - pj
Yoy Px1, .. xn | k) - Pk
In spite of its appeal, this approach is very demanding in pieces of information. The probability

P(x1,...,z, | = sj) reflects the dependency between sources. It is seldom available, since it
requires a great number of values to be specified. In practice, it is easier to obtain the marginal

Plx=sj|21,...,2p) (39)
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probabilities P(x; | = s;) that each source i provides the value z; when the real value of z is
equal to s;. By default, sources are assumed to be conditionally independent of the true value of
x, which gives:
_ Pz ]sj)----- Pan | 55) - pj
Yooy Pz, .. zn | sk) - pe
Besides, we need a prior probability about the value sources are supposed to provide information on.
Such prior information is often missing, since if it were available, one might not even need the pieces
of information provided by sources. In practice, one is obliged to provide a subjective estimate of
the prior probability (taken as uniform by default), which may influence the result. Nevertheless,
let us remark that this fusion mode is conjunctive (since the product of the likelihood functions is
performed). One might think of defining a disjunctive fusion mode by computing P(z = s; | 1 or
. or x), the probability that the real value for = is equal to s given at least one of the values
provided by the sources.

(40)

Plx=sj|x1,...,2)

7.3 Fusion in possibility theory

In this framework, each source ¢ is supposed to provide a possibility distribution 7; defined on S. For
fusing such pieces of information, the whole panoply of fuzzy set aggregation operations is available
(Dubois and Prade [43], Chap. 2; Fodor and Yager [62], Calvo and Mesiar [9]). In particular, the
three basic information fusion modes can be expressed and a resulting possibility distribution 7 on
S by obtained under the form 7(s) = f(m1(s),...,mn(s)),Vs € S for an appropriate operation f.

For conjunctive fusion, one can use triangular norms (Klement et al. [78]) which are semi-group
operations of the unit interval (hence associative), monotonically increasing, and with neutral
element 1. The main operations of this kind are the minimum operation, the product, and the
linear conjunction max(0,a + b — 1). The advantage of choosing

m(s) = min(mi(s),...,m(s)),Vs € S

is the idempotency of this operation. If all sources provide the same distribution 7, it is this
distribution that is taken as result. This property enables us to cope with the case where the
sources are redundant (for example when experts have the same background knowledge), without
requiring any assumption about the independence of the sources. But, if one is sure that the
information sources are independent, it may be desirable to have a reinforcement effect (what all
the sources consider to have a low plausibility will receive a very low global plausibility). This
effect is captured by the product: m(s) = m1(s) - ma(s)... - mn(s), Vs € S.

The reinforcement effect obtained with the linear conjunction max(0,a 4+ b — 1) is much stronger,
since values that are considered as being very little plausible, but not impossible, by all sources are
eliminated after the fusion. In fact, this operation applies when it is known that a certain number
k of sources lie (Mundici [94]). Then an information item of the form = € A proposed by a source
is modelled as m;(s) =1if s € Aand 1 — k%q otherwise, which is all the higher as k is large. The
linear conjunction enables to eliminate for sure values at least k 4+ 1 sources declare impossible.

All these operations clearly generalize the conjunctive fusion of two all-or-nothing pieces of informa-
tion and presuppose that the possibility distributions provided by the sources are not contradictory.

47



Nevertheless, the resulting possibility distribution will be often sub-normalized (7 (s) < 1,Vs € 5).
The quantity Cons = maxscg 7(s) measures the degree of consistency between the sources. The
fusion result may be renormalized if it is sure that the sources are reliable (since the true value of
x is among the values that are not eliminated by any source, even if its possibility is very low).
When sources are independent one gets

B 7T1(8) ..... 7rn(3) .
() = M m(e) () (4D

Renormalisation preserves associativity if the combination operation is the product. But, when
renormalisation is applied to minimum operation, associativity is lost (Dubois and Prade [44]). Let
us notice the striking similarity between Bayesian fusion (40) and possibilistic fusion(41), especially
when letting m;(s) = P(x; | * = s), which has been justified above. The difference between
the two fusion operations lies in the presence of the prior probability in (40), and in the type of
renormalisation (probabilistic or possibilistic). The two resulting distributions are even proportional
if a uniform prior probability is chosen in (40). This coincidence between Bayesian and possibilistic
approaches indicates their mutual coherence, and confirms the conjunctive nature of Bayesian
fusion. However, the similarity of numerical results should not hide a serious difference at the
interpretation level. In the probabilistic framework, it is supposed that the posterior probability of
each possible value of x can be computed in a precise way. In the possibilistic framework, and in
agreement with the non Bayesian probabilistic tradition, fusion only provides a likelihood degree
for the possible values of x. This information is poorer than a probability degree, which is too rich
information in the case of partial ignorance.

When the value of the consistency index is too low, renormalization makes the conjunctive fusion
numerically unstable [44]. Inconsistency is all the more likely as the number of sources is high. In
this case disjunctive fusion becomes more appropriate and relevant. For that latter fusion mode,
triangular co-norms (Klement et al. [78]) can be used. They are semi-groups of the unit interval,
monotonically increasing, and with neutral element 0. Co-norms u are obtained by De Morgan
duality from triangular norms ¢ under the form u(a,b) = 1—t(1 —a,1—b). The main operations of
this kind for disjunctive fusion are the maximum operation, the probabilistic sum a 4+ b — ab, and
the bounded sum min(1, a +b). This type of fusion operation does not require any renormalisation
step. But, since it supposes only that one source is reliable, the obtained result may be very
imprecise, in particular if the number of sources is high, due to the higher risk of scattered pieces
of information. It is then possible to use milder fusion modes. For instance, a quantified fusion
may be used: It is assumed that there are k reliable sources among n, then first a conjunctive
fusion is performed inside each group of k sources, and these partial results are then combined
disjunctively. One may optimize the value of k£ by trying to maximize the informativeness of the
result (in order to choose k not too small), while minimizing inconsistencies (choosing & not too
large) (see Dubois and Prade [50]). One may also look for maximal sub-groups of sources that are
together consistent, then perform conjunctive fusion inside these groups, and finally combine these
partial results disjunctively (Dubois and Prade [52]). This can be done for cuts of each possibility
distribution, which no longer leads to a possibility distribution for the result, but a belief function
[28].

Lastly, one may also apply a cumulative fusion mode to possibilistic pieces of information, under the
form of a weighted arithmetic mean, > | o; - m;, when the sources are numerous and independent.
Nevertheless, the convex combination of possibility measures is not a possibility measure, but
again a belief function, since the consonance of focal sets is not preserved by convex sum. Only the
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disjunctive fusion of possibility measures based on the maximum operation provides a possibility
measure [45].

7.4 Fusion of belief functions

It is now supposed that the two sources provide two mass functions m; and mq defined on frame
S. Shafer [104] has proposed a conjunctive combination rule that may be related to the Bayesian
fusion method and generalizes set intersection. It amounts to performing the intersection of each
focal set Ay of my with each focal subset As of mgy and to allocate mass mq (A1) - m2(As) to the
subset A; N Ay (which may be empty). In order to obtain a normal mass function, the result is
renormalized by dividing by the sum of masses allocated to non-empty subsets. Thus, it leads to
an associative combination rule:

. ZAI,AQ:A:AIQAQ mi(Ar) - ma(A2)

VA C S, m(A) =
- ) DA Asi AnAs 20 T (A1) - mao(A)

(42)

It is easy to check that this fusion rule is also commutative, but non-idempotent. This rule supposes
that the information sources (not the underlying variables) are independent. The normalisation
factor is an evaluation of the consistency between the sources. One may also notice that the
plausibility function Pl induced by m, restricted to the singletons in S satisfies the following
property: Vs, Pl({s}) is proportional to the product Pli(({s})) - Pla(({s})) (equality holds if the
sources are consistent, i.e., VA1, Ay : A; N Ay # ().

Appliying this combination rule to two possibility measures II; and Ily, it can be seen that the
resulting mass function is not necessarily consonant (if the focal sets A; of m; and Ay of mg are
nested, it may be not the case for the subsets of the form A; N As). Nevertheless, the possibilistic
fusion rule (41) is an approximation of Dempster rule in this case, since it provides a possibility
distribution that is proportional to PI({s}). This fusion rule may be also applied to probability
distributions p; and pe. It amounts to performing products p1(s) - p2(s),Vs € S and renormalizing
the distribution thus obtained. If one combines a mass function m; with a probability function
p, what is obtained is a probability distribution proportional to p(s) - Pli(s). Combining three
mass functions mj, mg and mg by Dempster rule, where the last one is a probability (ms = p), it
amounts to apply the Bayesian fusion rule to sources 1 and 2, viewing Pl;({s}) and Ply({s}) as
likelihood functions and mgs as a prior probability.

Dempster rule is also numerically unstable when the sources are not very consistent, i.e., when the
renormalisation factor in (42) is small [44]. In this case, one may use the disjunctive counterpart
to Dempster rule, which amounts to replacing intersection by union in formula (42), i.e., [41] :

m(A) = > mi (A1) - ma(As).

A1,A2:A=A1UA5

Renormalisation is then of no use, since this disjunctive fusion is a union of random sets, but
the result is more imprecise. The resulting belief function Bel is the product of Bel; and Bels:
Bel(A) = Bel;(A) - Bely(A),VA C S. Applied to probability distributions p; and pe, the result of
the disjunctive fusion is no longer a probability measure but a belief function whose focal sets are
singletons or 2-elements subsets (the closure property is violated).
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Rather than adopting a disjunctive combination uniformly, alternative options have been proposed
for handling the mass of conflict CONF =3, 4, 4,n4,-0 ™1 (A1) - m2(A2) when it is too large:

e Smets[112] suggested to abstain from renormalizing, thus laying bare the conflict. Then the
unnormalized Dempster rule comes down to multiplying commonality functions Q;(A) =

>ace Mi(E).

e Yager [125] proposed to assign it to the whole frame .S, turning inconsistency into ignorance.

e Dubois and Prade [44] allocate the mass mj (A1) -ma(Az) to the set A; N Ay if it is not empty,
and to the disjunction A; U As otherwise.

e Other authors share the mass mq (A1) - ma(A2) between A; and Ay when they are disjoint
[108], and more generally between A; N Ay, Ag \ A1, and A; \ Ay regardless of whether A;
and Ay are disjoint or not [127].

Under such schemes, associativity is generally lost. An extensive comparative discussion of fusion
rules in the theory of evidence is provided by Smets [115].

Belief functions are also compatible with a combination mode based on weighted average. Indeed,
the weighted arithmetic mean of mass functions is a mass function. The belief function Bel =
Z?:l «;- Bel; has a mass function Z?:l a;-my;. This is a generalisation of non-Bayesian probabilistic
fusion, which also applies to the fusion of possibility measures, however without preserving the
nestedness of focal sets. So, the weighted arithmetic mean of products of belief functions is a belief
function. The arithmetic mean is instrumental for the discounting of a belief function provided
by a source with low reliability as pointed out by Shafer [104]. Let « be the probability that
the source providing the belief function Bel; is reliable. It means that, with a probability 1 — «,
nothing is known, which corresponds to a second source providing the non-informative mass function
ma(S) = 1. The weighted arithmetic mean of these mass functions is m = a - m; + (1 — a) - ma.
The mass allocated to the informative subset A C S decreases since m(A) = o - m;(A), while the
mass allocated to the whole frame, i.e. the tautology (m(S) = a-m1(S)+ (1 — «)) increases.

It is not very easy to find natural idempotent conjunctive fusion rules for belief functions using
mass functions. Dubois and Yager [58] propose a methodology for building such fusion rules by
duplicating focal sets and sharing masses so as to make the two mass functions commensurate.
However there is no unique combination scheme resulting from this process, even if this approach
enables the minimum rule to be retrieved if the two belief functions are consonant[27]. Dubois et al.
[55] show that the minimum rule of possibility theory can be interpreted as a minimal commitment
fusion of consonant belief functions, in the sense of the commonality-based information ordering.
Recently Denoeux [26] proposes to use the decomposition of a non-dogmatic belief function (m(S) >
0) as a Dempster combination of simple support functions,
m =@ AcsAw(A)

where A%(4) denotes the simple support belief function with mass function m 4 such that m4(A) =
1 —w(A) and m(S) = w(A). In fact, not all belief functions can be expressed this way, unless we
admit that some terms in the above equation are fictitious simple support belief functions for which
w(A) > 1. Then the decomposition exists and is unique for non-dogmatic belief functions[112]. The
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idea of the idempotent rule is then to combine weight functions w event-wise using the minimum.
However, when applied to consonant belief functions, it does not retrieve the minimum rule of
possibility theory. The question of finding a canonical idempotent fusion rule in the theory of
evidence consistently with the one in possibility theory is still an open problem.

7.5 Merging imprecise probability families

The fusion of imprecise probabilities is not really in agreement with the fusion of belief functions.
Given two familles P; and Po of probabilities provided by two reliable sources, it is natural to
consider that the result of a fusion is the intersection P = Py NP3, when non-empty. In contrast
with Dempster rule, this fusion mode is idempotent. But, while it sounds hard to justify Dempster
fusion rule in terms of imprecise probabilities, in the same way it is not easy to express the mass
function induced by P1 NP2 in terms of the mass functions induced by Py and Ps. One may apply
the idempotent fusion of imprecise probabilities to belief functions, by performing the intersection
of sets P; = {P : P(A) > Bel;(A),YA C S} for i = 1,2. But the lower bounds of the induced
probabilities are not belief functions in general. Chateauneuf [11] explores these issues in some
detail. However many questions remain open.

8 Conclusion

This chapter offers an overview of uncertainty representation frameworks where the problems of col-
lecting observations tainted with variability and of representing incomplete information are carefully
distinguished. The first one naturally leads to a probabilistic approach, while the second situation is
more naturally described in terms of sets of mutually exclusive elements, and belongs to the realm of
logic (if the variables describing a problem are Boolean), or of interval analysis (for numerical vari-
ables). The existing new uncertainty theories are hybrids of these basic approaches, some variants
being purely ordinal. It including the case of linguistic information dealing with numerical variables
(fuzzy set theory). This synergy between uncertainty representation frameworks is fruitful since it
provides very expressive formal tools for the faithful representation of pieces of information along
with their imperfections. It contrasts with the Bayesian theory of subjective probabilities, which
looks at a loss to ensure a clear distinction between uncertainty due variability and uncertainty due
to ignorance. The unified view offered here also enables formal notions coming from set theory or
probability theory to be generalised to other settings. For example, one can introduce conditioning,
independently from the notion of probability, even in symbolic representations of the logical type,
or use logical connectives for combining probabilities, fuzzy sets, random sets, etc. Lastly, injecting
interval analysis into the notion of mathematical expectation gets close to non-additive Choquet
integrals studied in other chapters, for belief functions, or possibility measures.
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