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Aggregation Operators and Commuting
Susanne Saminger, Radko Mesiar, and Didier Dubois

Abstract— Commuting is an important property in any two-
step information merging procedure where the results should not
depend on the order in which the single steps are preformed. We
investigate the property of commuting for aggregation operators
in connection with their relationship to bisymmetry. In case of
bisymmetric aggregation operators we show a sufficient condition
ensuring that two operators commute, while for bisymmetric
aggregation operators with neutral element we even provide a
full characterization of commuting n-ary operators by means of
unary distributive functions. The case of associative operations,
especially uninorms, is considered in detail.

Index Terms— Aggregation Operators, Bisymmetry, Commut-
ing Operators, Consensus.

I. INTRODUCTION

In various applications where information fusion or multi-
factorial evaluation is needed, an aggregation process is carried
out as a two-stepped procedure whereby several local fusion
operations are performed in parallel and then the results are
merged into a global result. It may happen that in practice
the two steps can be exchanged because there is no reason to
perform either of the steps first. For instance, in a multi-person
multi-aspect decision problem, each alternative is evaluated
by a matrix of ratings where the rows represent evaluations
by persons and the columns represent evaluations by criteria.
One may, for each row, merge the ratings according to each
column with some aggregation operation A and form as
such the global rating of each person, and then merge the
persons opinions using another aggregation operation B. On
the other hand, one may decide first to merge the ratings in
each column using the aggregation operation B, thus forming
the global ratings according to each criterion, and then merge
these social evaluations across the criteria with aggregation
operation A. The problem is that it is not guaranteed that
the results of the two procedures will be the same, while one
would expect them to be so in any sensible approach. When
the two procedures yield the same results operations A and
B are said to commute.

This paper is devoted to a mathematical investigation of
commuting aggregation operators which are used, e.g., in
utility theory [15], but also in extension theorems for func-
tional equations [33]. Very often, the commuting property
is instrumental in the preservation of some property during
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an aggregation process, like transitivity when aggregating
preference matrices or fuzzy relations (see, e.g., [13], [34]), or
some form of additivity when aggregating set functions (see,
e.g., [15]). In fact, early examples of commuting appear in
probability theory for the merging of probability distributions.
Suppose two joint probability distributions are merged by
combining degrees of probability point-wisely. It is natural that
the marginals of the resulting joint probability function are the
aggregates of the marginals of the original joint probabilities.
To fulfill this requirement the aggregation operation must
commute with the addition operation involved in the derivation
of the marginals. It enforces a weighted arithmetic mean
as the only possible aggregation operation for probability
functions [31]. This result is closely related to the theory of
probabilistic mixtures that plays a key-role in the axiomatic
derivation of expected utility theory [22]. In [15], the same
question is solved for more general set functions, where the
addition is replaced by a co-norm and the consequences for
generalized utility theory are pointed out.

In this paper the problem of commuting operators is consid-
ered with more generality. After a section presenting necessary
definitions and background, Section III considers the case of
commuting unary operations, called distributive functions, that
play a key role in the representation of commuting operators.
Section IV provides characterization results concerning bisym-
metric operations, i.e., aggregation operations that commute
with themselves. Section V and VI focus on functions dis-
tributive over continuous t-(co)norms and particular uninorms
respectively.

II. PRELIMINARIES

A. Aggregation operators

Aggregation by itself is an important task in any disci-
pline where the fusion of information is of vital interest.
It comprehends the transformation of several items of input
data into a single output value which is characteristic for the
input data itself or some of its aspects. In case of aggregation
operators it is assumed that a finite number of inputs from the
same (numerical) scale, most often the unit interval, are being
aggregated. Moreover, interpreting the inputs as evaluation
results of objects according to some criterion, the monotonicity
and boundary conditions of its formal definition look very
natural:

Definition 1: A function A :
⋃

n∈N[0, 1]n → [0, 1] is called
an aggregation operator if it fulfills the following properties
([10])

(AO1) A(x1, . . . , xn) ≤ A(y1, . . . , yn) whenever xi ≤ yi

for all i ∈ {1, . . . , n},
(AO2) A(x) = x for all x ∈ [0, 1],
(AO3) A(0, . . . , 0) = 0 and A(1, . . . , 1) = 1.
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Each aggregation operator A can be represented by a family
(A(n))n∈N of n-ary operations, i.e., functions A(n) : [0, 1]n →
[0, 1] given by

A(n)(x1, . . . , xn) = A(x1, . . . , xn).

In that case, A(1) = id[0,1] and, for n ≥ 2, each A(n)

is non-decreasing and satisfies A(n)(0, . . . , 0) = 0 and
A(n)(1, . . . , 1) = 1. Usually, the aggregation operator A
and the corresponding family (A(n))n∈N of n-ary operations
are identified with each other. Note that, n-ary operations
A(n) : [0, 1]n → [0, 1], n ≥ 2, which fulfill properties (AO1)
and (AO3) are referred to as n-ary aggregation operators.

Depending on the requirements applied to the aggregation
process several properties for aggregation operators have been
introduced. We only mention those few which are relevant
for our further investigations. For more elaborated details on
aggregation operators we refer to, e.g., [10].

Definition 2: Consider some aggregation operator
A :

⋃
n∈N[0, 1]n → [0, 1].

(i) A is called symmetric if for all n ∈ N and for all xi ∈
[0, 1], i ∈ {1, . . . , n},

A(x1, . . . , xn) = A(xα(1), . . . , xα(n))

for all permutations α = (α(1), . . . , α(n)) of
{1, . . . , n}.

(ii) A is called bisymmetric if for all n,m ∈ N and all
xi,j ∈ [0, 1] with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},

A(m)

(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)
=

A(n)

(
A(m)(x1,1, . . . , xm,1), . . . ,A(m)(x1,n, . . . , xm,n)

)
.

(iii) A is called associative if for all n,m ∈ N and all xi ∈
[0, 1] and all yj ∈ [0, 1] with i ∈ {1, . . . ,m} and j ∈
{1, . . . , n},

A(x1, . . . , xn, y1, . . . , ym)
= A(A(x1, . . . , xn),A(y1, . . . , ym)).

(iv) An element e ∈ [0, 1] is called neutral element of A if
for all n ∈ N and for all xi ∈ [0, 1], i ∈ {1, . . . , n} it
holds that if xi = e for some i ∈ {1, . . . , n} then

A(x1, . . . , xn) = A(x1, . . . , xi−1, xi+1, . . . , xn).

(v) An element d ∈ [0, 1] is called an idempotent element of
A if A(d, . . . , d) = d for all n ∈ N. We will abbreviate
the set of idempotent elements by

I(A) = {d ∈ [0, 1] | A(d, . . . , d) = d}.

In case that I(A) = [0, 1], the aggregation operator is
called idempotent.

Associative aggregation operators A, are completely char-
acterized by their binary operators A(2) since all n-ary, n > 2,
aggregation operators A(n) can be constructed by the recursive
application of the binary operator A(2).

Depending on the additional properties, several subclasses
of aggregation operators can and have been distinguished, like,
e.g., symmetric and associative operators with some neutral

element e: For e = 1, they are referred to as triangular norms
(t-norm for short), for e = 0, they are called t-conorms, for
e ∈ ]0, 1[ we will refer to them as uninorms (see also [6], [17],
[24]).

Note that associative and symmetric aggregation operators
are also bisymmetric. On the other hand, bisymmetric aggre-
gation operators with some neutral element are associative.
Therefore, as just mentioned, the class of all associative and
symmetric, and therefore bisymmetric, aggregation operators
with neutral element e consists of all t-norms, t-conorms and
uninorms.

Aggregation operators on other domains: Note that not
all aggregation processes are carried out on input data from
the unit interval, therefore, aggregation operators on other
intervals as well as methods for transforming input data are
needed to model the required aggregation process. Aggrega-
tion operators can be defined as acting on any closed interval
I = [a, b] ⊆ [−∞,∞]. We will then speak of an aggregation
operator acting on I . While (AO1) and (AO2) basically
remain the same, only (AO3), expressing the preservation of
the boundaries, has to be modified accordingly

(AO3’)A(a, . . . , a) = a and A(b, . . . , b) = b.
Such aggregation operators can also be achieved from standard
aggregation operators by means of isomorphic transforma-
tions. By such transformations many of the before mentioned
properties are being preserved.

For an isomorphic transformation ϕ : [a, b] → [0, 1], i.e., a
monotone bijection, the isomorphic transformation Aϕ of an
aggregation operator A is given by

Aϕ(x1, . . . , xn) = ϕ−1(A(ϕ(x1), . . . , ϕ(xn)))

and is an aggregation operator on [a, b]. If for two aggregation
operators A, B on (possibly) different intervals, there exists
a monotone bijection ϕ such that A = Bϕ or Aϕ = B we
refer to A and B as isomorphic aggregation operators.

By means of increasing bijections, we can introduce t-norms
T and t-conorms S on arbitrary interval [a, b] preserving the
boundary elements as the corresponding neutral elements. We
will denote such t-norms, resp. t-conorms as t-(co)norms on
the corresponding interval I .

B. Commuting and dominance
Definition 3: Consider two aggregation operators A and B.

We say that A dominates B (A � B) if for all n,m ∈ N and
for all xi,j ∈ [0, 1] with i ∈ {1, . . . ,m} and j ∈ {1, . . . , n},
the following property holds:

B(m)

(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)
≤ (1)

A(n)

(
B(m)(x1,1, . . . , xm,1), . . . ,B(m)(x1,n, . . . , xm,n)

)
.

Definition 4: Consider an n-ary aggregation operator A(n)

and an m-ary aggregation operator B(m). Then we say that
A(n) commutes with B(m) if for all xi,j ∈ [0, 1] with i ∈
{1, . . . ,m} and j ∈ {1, . . . , n}, the following property holds:

B(m)

(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)
= (2)

A(n)

(
B(m)(x1,1, . . . , xm,1), . . . ,B(m)(x1,n, . . . , xm,n)

)
.
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Two aggregation operators A and B commute with each other
if A(n) commutes with B(m) for all n,m ∈ N. We will also
refer to A and B as commuting aggregation operators.

Observe that the property of commuting as expressed by
Eq. (2) is a special case of the so called generalized bisymme-
try equation as introduced and discussed in [4], [5] and plays
a key role in consistent aggregation.

It is an immediate consequence of the definition of commut-
ing that two aggregation operators commute if and only if they
dominate each other. Further that any aggregation operator
commuting with itself is bisymmetric and vice versa. Note that
in case of two associative aggregation operators commuting
between the binary operators is a necessary and sufficient
condition for their commuting in general.

Because of the preservation properties of dominance during
isomorphic transformations (see also [34]) we immediately can
state the following result:

Corollary 5: Let A and B be two aggregation operators.
Then the following are equivalent:

(i) A commutes with B.
(ii) Aϕ commutes with Bϕ for some isomorphic transfor-

mation ϕ.
(iii) Aϕ commutes with Bϕ for all isomorphic transforma-

tions ϕ.
Example 6: The projections to the first coordinate resp. to

the last coordinate, i.e.,

PF (x1, . . . , xn) = x1

PL(x1, . . . , xn) = xn

commute with arbitrary aggregation operator A.

III. DISTRIBUTIVE FUNCTIONS

A. Basic property

There is a close relationship between commuting aggre-
gation operators and unary functions being distributive over
one of the two aggregation operators involved. On the one
hand, such functions can be constructed from commuting
aggregation operators, on the other hand — as we will show
in the next section — they can be used for constructing
commuting operators. Note that such distributive functions are
in fact commuting with the involved aggregation operator.

Proposition 7: For any n-ary aggregation operator A(n)

and any m-ary aggregation operator B(m), n,m ∈ N, it
holds that if A(n) commutes with B(m), then the function
fd,i,A(n) : [0, 1] → [0, 1] defined by

fd,i,A(n)(x) = B(m)(

i-th position

d, . . . , d,
↓
x, d, . . . , d) (3)

with i ∈ {1, . . . ,m} and d some idempotent element of A(n)

is distributive over A(n), i.e., it fulfills for all i ∈ {1, . . . ,m}
and all xj ∈ [0, 1] with j ∈ {1, . . . , n}

fd,i,A(n)(A(n)(x1, . . . , xn))

= A(n)(fd,i,A(n)(x1), . . . , fd,i,A(n)(xn)).

Moreover, fd,i,A(n) is non-decreasing.

Proof: Consider some n-ary aggregation operator A(n),
one of its idempotent elements d, e.g., 0 or 1, and some m-
ary aggregation operator B(m) such that A(n) commutes with
B(m). Then it holds for fd,i,A(n) : [0, 1] → [0, 1] defined by
Eq. (3) with arbitrary i ∈ {1, . . . , n} that

fd,i,A(n)(A(n)(x1, . . . , xn))

=B(m)(d, . . . , d,A(n)(x1, . . . , xn), d . . . , d)
=B(m)(A(n)(d, . . . , d), . . . ,A(n)(d, . . . , d),

A(n)(x1, . . . , xn),
A(n)(d, . . . , d) . . . ,A(n)(d, . . . , d))

=A(n)(B(m)(d, . . . , d, x1, d, . . . , d), . . . ,
B(m)(d, . . . , d, xn, d, . . . , d))

=A(n)(fd,i,A(n)(x1), . . . , fd,i,A(n)(xn)).

The non-decreasingness of fd,i,A(n) follows immediately from
the monotonicity of B.

Analogously, we can define non-decreasing functions
fd′,i,B(m) which are distributive over B(m) with d′ some
idempotent element of B(m).

B. Distributive functions and lattice polynomials

We will denote by FA(n) the set of all non-decreasing
functions f : [0, 1] → [0, 1] that are distributive over the n-ary
aggregation operator A(n), i.e.,

FA(n) = {f : [0, 1] → [0, 1] | f is non-decreasing,

f(A(n)(x1, . . . , xn)) = A(n)(f(x1), . . . , f(xn))}

Observe that A(1) is the identity function and thus FA(1)

contains all non-decreasing functions f : [0, 1] → [0, 1]. For
the readers’ convenience we will abbreviate this set simply by
F , i.e.,

F = {f : [0, 1] → [0, 1] | f is non-decreasing} = FA(1) .

Evidently, FA = ∩n∈NFA(n) is the set of all functions f ∈ F
that are distributive over the aggregation operator A. Note that
FA(n) as well as FA contain at least the following functions

0 : [0, 1] → [0, 1], x 7→ 0,
1 : [0, 1] → [0, 1], x 7→ 1,
id : [0, 1] → [0, 1], x 7→ x

and are therefore not empty for arbitrary aggregation operator
A. The following proposition shows that FA is maximal in
case of lattice polynomials only, i.e., A can be expressed by
∧, ∨ and its arguments only [8], compare also, e.g., [29], [30].

Proposition 8: Consider an aggregation operator A. Then
the following holds:

∀n ∈ N : A(n) is a lattice polynomial ⇔ FA = F.
Proof: If all A(n) with n ∈ N are lattice polynomials, it

follows immediately from the non-decreasingness of all f ∈ F
and the definition of FA(n) that F ⊆ FA ⊆ F.

Before showing the sufficiency, note that any n-variable
lattice polynomial L : [0, 1]n → [0, 1] can be put in the
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following disjunctive normal form [8]

L(x1, . . . , xn) =
∨

I⊆N,

m(I)=1

∧
i∈I

xi. (4)

where N = {1, . . . , n} and m : 2N → {0, 1} is a non-
decreasing set function fulfilling m(∅) = 0 and m(N) = 1.
Therefore, in order to show that some n-ary aggregation
operator A(n) is a lattice polynomial, we have to show that a
set function m : 2N → {0, 1} fulfilling the above conditions
exists and that A(n) can be written in the form of Eq. (4).
For better readability, we will use in the sequel of this proof
A instead of A(n), as well as the additional notations 1I =
(x1, . . . , xn) where xi = 1 if i ∈ I and xi = 0 otherwise, and
AI = A(1I). Now assume that FA = F.

• First, we show that A(x1, . . . , xn) ∈ {x1, . . . , xn} for all
xi ∈ [0, 1], i ∈ {1, . . . , n}. In case that there exist some
xi ∈ [0, 1], i ∈ {1, . . . , n}, such that A(x1, . . . , xn) =
c /∈ {x1, . . . , xn}, depending on the value of c, one of
the following functions fj ∈ F, j ∈ {1, 2, 3},

f1(a) =

{
x∗ if a ∈ [0, x∗] ,
a otherwise,

f2(a) =

{
x∗ if a ∈ ]x∗, x∗[ ,
a otherwise,

f3(a) =

{
x∗ if a ∈ [x∗, 1] ,
a otherwise,

contradicts fj(A(x1, . . . , xn)) = A(fj(x1), . . . , fj(xn))
with x∗ = min(x1, . . . , xn) and x∗ = max(x1, . . . , xn).
Therefore, in particular A is idempotent, i.e.,
A(x, . . . , x) = x and AI ∈ {0, 1} for all I ⊆ N .

• Since for all x ∈ [0, 1] the functions ϕx, ψx : [0, 1] →
[0, 1], ϕx(a) = x · a resp. ψx(a) = a(1 − x) + x fulfill
ϕx, ψx ∈ F we can conclude the following for all I ⊆ N

A(ϕx(1I)) = ϕx(AI) = AI ∧ x,
A(ψx(1I)) = ψx(AI) = AI ∨ x,

since ϕx(0) = 0, ϕx(1) = x, ψx(0) = x, ψx(1) = 1, and
AI ∈ {0, 1}.

• Due to the monotonicity of A we can further conclude
that for arbitrary xi ∈ [0, 1], i ∈ {1, . . . n},

A(x1, . . . , xn) ≥
∧
i∈I

xi ·AI = AI ∧ (
∧
i∈I

xi),

by replacing each xi either by 0, if i /∈ I , or by
∧

i∈I xi,
if i ∈ I , for arbitrary choice of I ⊆ N . Therefore, also

A(x1, . . . , xn) ≥
∨

I⊆N

AI ∧ (
∧
i∈I

xi) ≥ AN ∧ (
∧
i∈N

xi)

= 1 ∧ (
∧
i∈N

xi) = x∗.

We abbreviate by y∗ =
∨

I⊆N AI ∧ (
∧

i∈I xi) such that
the previous inequality can be written as

A(x1, . . . , xn) ≥ y∗ ≥ x∗.

As such it is immediately clear that the set J = {j ∈ N |
xj ≤ y∗} is not empty. Moreover, the following holds for
its complement N \ J

y∗ =
∨

I⊆N

AI ∧ (
∧
i∈I

xi) ≥ AN\J ∧ (
∧

i∈N\J

xi)

so that necessarily AN\J = 0.
If we replace each xi in A(x1, . . . , xn) either by y∗ in
case that i ∈ J or by 1 in case that i /∈ J , we can also
conclude, due to the monotonicity of A and the properties
shown before, that

A(x1, . . . , xn) ≤ A(ψy∗(1N\J)) = AN\J ∨ y∗ = y∗,

showing that

A(x1, . . . , xn) =
∨

I⊆N

AI ∧ (
∧
i∈I

xi).

Finally, we define a set function m : 2N → {0, 1} by
m(I) = AI , then it is immediate to show that it is non-
decreasing and fulfills m(∅) = 0, m(N) = 1, and that A
is indeed a lattice polynomial.

Let us now focus on additional properties of FA in case of
particular properties of the aggregation operator A involved.

C. Distributive functions for bisymmetric and associative ag-
gregation operators

Proposition 9: Let A be a bisymmetric aggregation opera-
tor and fix some n ∈ N. If we choose some fi ∈ FA(n) ,i ∈
{1, . . . , n}, not necessarily different, then also g : [0, 1] →
[0, 1] defined by

g(x) = A(n)(f1(x), . . . , fn(x)) (5)

belongs to FA(n) , i.e., FA(n) is closed under A(n).
Proof: Consider some bisymmetric aggregation operator

A and fix some arbitrary fi ∈ FA(n) , i ∈ {1, . . . , n} for some
n ∈ N. Define a function g : [0, 1] → [0, 1] by Eq. (5) then
the following holds for arbitrary x1, . . . , xn ∈ [0, 1] due to the
bisymmetry of A and the distributivity of all fi over A(n)

g(A(n)(x1, . . . , xn))
= A(n)

(
f1(A(n)(x1, . . . , xn)), . . . , fn(A(n)(x1, . . . , xn))

)
= A(n)

(
A(n)(f1(x1), . . . , f1(xn))), . . . ,

A(n)(fn(x1), . . . , fn(xn))
)

= A(n)

(
A(n)(f1(x1), . . . , fn(x1))), . . . ,

A(n)(f1(xn), . . . , fn(xn))
)

= A(n)(g(x1), . . . , g(xn)).

Corollary 10: If A is a bisymmetric aggregation operator
and additionally fulfills for all n,m ∈ N and all xi,j ∈ [0, 1],
i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}

A(n·m)(x1,1, . . . , x1,n, . . . , xm,1, . . . , xm,n)
= A(m)

(
A(n)(x1,1, . . . , x1,n), . . . ,A(n)(xm,1, . . . , xm,n)

)
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then g : [0, 1] → [0, 1] defined by

g(x) = A(m)(f1(x), . . . , fm(x))

also belongs to FA(n) for arbitrary m ∈ N and arbitrary fi ∈
FA(n) , i ∈ {1, . . . ,m}, i.e., FA(n) is closed under any A(m),
m ∈ N.

Moreover, in case of an associative aggregation operator A
the relationship can be generalized, expressing that it is suffi-
cient (and necessary) to characterize all functions distributive
over the binary aggregation operator A(2) only in order to
characterize the set FA of all unary mappings distributive over
A with arbitrary arity.

Proposition 11: Let A be an associative aggregation oper-
ator, then the following holds:

∀f ∈ F : f ∈ FA ⇔ f ∈ FA(2) .
Proof: Consider an associative aggregation operator A.

If some non-decreasing function f : [0, 1] → [0, 1] fulfills
f ∈ FA, it is distributive over all n-ary aggregation operators
A(n), n ∈ N, in particular over the binary aggregation operator
A(2). On the other hand if f ∈ FA(2) the property follows
directly from the associativity of A, i.e., the fact that for
all n ∈ N with n ≥ 2 it holds that A(n)(x1, . . . , xn) =
A(2)(x1,A(n−1)(x2, . . . , xn)).

Note that the associativity of an aggregation operator is a
sufficient condition for FA = FA(2) . But, as the following
example will demonstrate, it is not necessary.

Example 12: Consider the arithmetic mean
M :

⋃
n∈N[0, 1]n → [0, 1], M(x1, . . . , xn) = 1

n

∑n
i=1 xi.

Then (compare also [2], [3])

FM(2) = FM = {f : [0, 1] → [0, 1] |
f(x) = a+ bx, a, b ∈ [0, 1], a+ b ∈ [0, 1]}

although clearly the arithmetic mean is not associative.
Example 13: Examples of associative and symmetric and

therefore bisymmetric aggregation operators are a-medians
meda,

meda(x, y) = med(x, y, a)

with a ∈ [0, 1] [18]. The set Fmeda of distributive functions
is characterized in the following way: Some non-decreasing
function f : [0, 1] → [0, 1] is distributive over meda, i.e., f ∈
Fmeda

if and only if either f(a) = a or f(a) = f(1) < a or
f(a) = f(0) > a.

Besides associativity and bisymmetry, the possibility of
building isomorphic aggregation operators leads to further
insight to relationships between sets of distributive functions.

D. Distributive functions and isomorphisms

Proposition 14: Consider an aggregation operator A and
some bijection ϕ : [a, b] → [0, 1]. Then for all f ∈ FA it
holds that fϕ := ϕ−1 ◦ f ◦ ϕ ∈ FAϕ where

FAϕ = {f : [a, b] → [a, b] | f is non-decreasing and
distributive over Aϕ}.

Proof: Consider the isomorphic aggregation operators
A and Aϕ with ϕ : [a, b] → [0, 1] some bijection. Further

assume f ∈ FA, then the following are equivalent since for
all xi ∈ [a, b], i ∈ {1, . . . , n}, n ∈ N, there exists a unique
yi ∈ [a, b] with ϕ(yi) = xi

f ◦A(x1, . . . , xn) = A(f(x1), . . . , f(xn)),

ϕ−1 ◦ f ◦A(ϕ(y1), . . . , ϕ(yn))

= ϕ−1 ◦A(f ◦ ϕ(y1), . . . , f ◦ ϕ(yn)),

ϕ−1 ◦ f ◦ ϕ ◦ ϕ−1 ◦A(ϕ(y1), . . . ,ϕ(yn))

= ϕ−1 ◦A(ϕ ◦ ϕ−1 ◦ f ◦ ϕ(y1), . . . ,

ϕ ◦ ϕ−1 ◦ f ◦ ϕ(yn));

fϕ ◦ ϕ−1 ◦A(ϕ(y1), . . . , ϕ(yn))

= ϕ−1 ◦A(ϕ ◦ fϕ(y1), . . . , ϕ ◦ fϕ(yn)),
fϕ ◦Aϕ(y1, . . . , yn) = Aϕ(fϕ(y1), . . . , ϕ(yn)),

showing that fϕ ∈ FAϕ
.

Example 15: Following Aczél [1], [3], the class of all
continuous, strictly monotone, bisymmetric, and idempotent
aggregation operators on the unit interval are just weighted
quasi-arithmetic means

Wϕ(x1, . . . , xn) = ϕ−1

(
n∑

i=1

wiϕ(xi)

)
with ϕ : [0, 1] → [0, 1] some monotone non-decreasing bijec-
tion and weights wi with wi > 0 for all i ∈ {1, . . . , n} and∑n

i=1 wi = 1. It is immediate that weighted quasi-arithmetic
means are isomorphic transformations of weighted arithmetic
means W with corresponding weights. Due to Proposition 14
the set of distributive functions FWϕ is therefore given by

FWϕ = {f ∈ F | f(x) = ϕ−1(a+ bϕ(x)) and
a, b, a+ b ∈ [0, 1]}

since

FW = {f ∈ F | f(x) = a+ bx and a, b ∈ [0, 1]
such that a+ b ∈ [0, 1]}

in case that wi > 0 for all i ∈ {1, . . . , n} and
∑n

i=1 wi = 1.
Example 16: For invariant aggregation operators A, i.e.,

aggregation operators fulfilling Aϕ = A for all bijections
ϕ : [0, 1] → [0, 1], it immediately holds that all non-decreasing
bijections are included in FA (see also, e.g., [29], [30] for
characterizations of aggregation operators invariant under non-
decreasing bijections). This is, e.g., the case for the drastic
product TD and the weakest aggregation operator Aw being
defined by

TD(x, y) =

{
min(x, y) if max(x, y) = 1,
0 otherwise,

Aw(x1, . . . , xn) =

{
1 if x1 = . . . = xn = 1,
0 otherwise.

However, their set of distributive functions does not only
contain all non-decreasing bijections, but is even much richer,
namely

FTD
= FAw

= {f ∈ F | f(x) = 1 ⇔ x = 1 and f(0) = 0} ∪ {0,1}.
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Similarly, lattice polynomials are invariant aggregation opera-
tors and we know already their sets of distributive functions
equal the set of all non-decreasing functions.

However, for arbitrary aggregation operators A at least the
following relationship between a bijective distributive function
and its inverse can be stated.

Lemma 17: Consider an aggregation operator A. If f ∈ FA

is bijective then also f−1 ∈ FA.

IV. OPERATORS COMMUTING WITH BISYMMETRIC
AGGREGATION OPERATORS

After discussing unary operators being distributive over
some aggregation operator and as such commuting, let us now
turn to more general commuting operators.

Proposition 18: Let A be a bisymmetric aggregation op-
erator. Then any n-ary operator B, n ∈ N, on [0, 1] defined
by

B(x1, . . . , xn) = A(f1(x1), . . . , fn(xn)) (6)

with fi ∈ FA for i ∈ {1, . . . , n} commutes with A.
Proof: Consider some bisymmetric aggregation operator

A, choose some m,n ∈ N and arbitrary fi ∈ FA, i ∈
{1, . . . , n}. Then the following holds for arbitrary xi,j ∈ [0, 1]
with i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}

B
(
A(x1,1, . . . , x1,m), . . . ,A(xn,1, . . . , xn,m)

)
= A

(
f1 ◦A(x1,1, . . . , x1,m), . . . , fn ◦A(xn,1, . . . , xn,m)

)
= A

(
A(f1(x1,1), . . . , f1(x1,m)), . . .

A(fn(xn,1), . . . , fn(xn,m))
)

= A
(
A(f1(x1,1), . . . , fn(xn,1)), . . . ,

A(f1(x1,m), . . . , fn(xn,m))
)

= A
(
B(x1,1, . . . , xn,1), . . . , B(x1,m, . . . , xn,m)

)
.

Note that the involved operator B need not be an ag-
gregation operator, e.g., choose fi(x) = 1(x) = 1 for all
i ∈ {1, . . . , n}, then

B(x1, . . . , xn) = 1

for arbitrary xi ∈ [0, 1], i ∈ {1, . . . , n}, and therefore the
boundary conditions (A02) and (AO3) are not fulfilled.

Remark 19: Note that the previous proposition provides a
sufficient, but not a necessary condition for an operation B to
commute with A. As mentioned above, any aggregation op-
erator A commutes with the projection to the first coordinate
PF which is a bisymmetric aggregation operator. However,
using PF (f1(x1), . . . , fn(xn)) = f1(x1), only aggregation
operators depending just on the first coordinate can be obtained
although we have that FPF

= F, since PF is a lattice
polynomial.

A. Commuting aggregation operators

Let us briefly focus on the restrictions which additionally
have to be applied to the selected functions fi ∈ FA such that
the constructed operator B also fulfills the requirements of an
aggregation operator. If n = 1, the corresponding f1 ∈ FA

must be the identity function in order to guarantee B(x) = x.

For n > 1, the functions fi ∈ FA, i ∈ {1, . . . , n} must be
chosen accordingly to A such that

B(0, . . . , 0) = A(f1(0), . . . , fn(0)) = 0,
B(1, . . . , 1) = A(f1(1), . . . , fn(1)) = 1

are both fulfilled at the same time. This is for sure guaranteed
if for all fi it holds that fi(0) = 0 and fi(1) = 1, but it need
not be the case as the following example shows.

Example 20: The class of all aggregation operators com-
muting with the minimum

D(n)
min = {min(f1(x1), . . . , fn(xn)) |

fi ∈ F with fi(1) = 1 for all i ∈ {1, . . . , n},
fi(0) = 0 for at least one i ∈ {1, . . . , n}},

is also the class of all aggregation operators dominating the
minimum (see also [34]).

B. The role of neutral elements

Let us now consider for which bisymmetric aggregation
operators A, operators B defined by Eq. (6) are the only
commuting operators, i.e., if Eq. (6) does provide a sufficient
as well as a necessary condition. For better readability, we
will briefly restrict ourselves to binary operators only. Since
the projections commute with any aggregation operator A,
they particularly commute also with such operators A for
which Eq. (6) indeed is necessary and sufficient. In this case,
there necessarily exist fi, gi ∈ FA, i = 1, 2, such that for all
x, y ∈ [0, 1]

x = PF (x, y) = A(f1(x), f2(y)) = A(f1(x), f2(0))
= A(f1(x), f2(1)),

y = PF (x, y) = A(g1(x), g2(y)) = A(g1(0), g2(y))
= A(g1(1), g2(y)).

If there exists some x0, y0 ∈ [0, 1] such that f1(x0) ∈
[g1(0), g1(1)] and g2(y0) ∈ [f2(0), f2(1)] it follows from the
monotonicity of A that

x0 = A(f1(x0), f2(0)) ≤ A(f1(x0), g2(y0))
≤ A(g1(0), g2(y0)) = y0

y0 = A(g1(0), g2(y0)) ≤ A(f1(x0), g2(y0))
≤ A(f1(x0), f2(1)) = x0.

Therefore, independently of x0, y0, we have that

A(f1(x0), g2(y0)) = x0 = y0,

i.e., such an element is unique. A typical candidate fulfilling
the last property is a neutral element e. In such a case, it
suffices to choose f1 = g2 = id and f2(x) = g1(x) = e for
all x ∈ [0, 1].
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Indeed, we obtain a necessary and sufficient condition if the
involved aggregation operator A is bisymmetric and possesses
a neutral element e.

Proposition 21: Let A be a bisymmetric aggregation op-
erator with neutral element e. An n-ary operator B, n ∈ N,
commutes with A if and only if for there exist fi ∈ FA, i ∈
{1, . . . , n} such that

B(x1, . . . , xn) = A(f1(x1), . . . , fn(xn)). (7)
Proof: Consider some bisymmetric aggregation operator

A with neutral element e. If B is defined by Eq. (7) for some
fi ∈ FA then it commutes with A due to Proposition 18. In
order to show the necessity assume that B commutes with A,
i.e., especially for all x1, . . . , xn ∈ [0, 1] it holds that

B(x1, . . . , xn) = B(A(x1, e, . . . , e), . . . ,A(e, . . . , e, xn))
= A(B(x1, e, . . . , e), . . . , B(e, . . . , e, xn))
= A(fe,1,A(x1), . . . , fe,n,A(xn))

with fe,i,A defined by Eq. (3), thus fulfilling fe,i,A ∈ FA and
proving that B can be expressed as in Eq. (7).

Recall once again that any bisymmetric aggregation operator
with neutral element is also associative and symmetric and
therefore is either a t-norm, a t-conorm or a uninorm. But note
that it is impossible that commuting operators having neutral
elements are different operators.

Proposition 22: Consider two aggregation operators A and
B with neutral elements ea resp. eb. If A commutes with B
then ea = eb. Moreover, also A = B.

Proof: Assume that A and B are commuting aggregation
operators with neutral elements ea resp. eb. Therefore,

ea = A(ea, ea) = A(B(ea, eb),B(eb, ea))
= B(A(ea, eb),A(eb, ea)) = B(eb, eb) = eb

and

A(x1, . . . , xn) = A(B(x1, e, . . . , e), . . . ,B(e, . . . , e, xn))
= B(A(x1, e, . . . , e), . . . ,A(e, . . . , e, xn))
= B(x1, . . . , xn)

for all x1, . . . , xn ∈ [0, 1] and arbitrary n ∈ N.
As a consequence commuting does not appear among t-

norms, t-conorms, or uninorms respectively. The only opera-
tors commuting with such bisymmetric operators with neutral
element are, besides the operator itself, aggregation operators
with no neutral element.

Example 23: As mentioned before the projection to the first
coordinate PF commutes with any aggregation operator and
therefore also, e.g., with the product t-norm TP. Observe that
PF is bisymmetric but has no neutral element, while TP is
a bisymmetric aggregation operator with neutral element 1.
According to Proposition 21, corresponding functions fi ∈
FTP

, i ∈ {1, . . . , n}, n ∈ N, can be chosen such that

PF (x1, . . . , xn) = TP(f1(x1), . . . , fn(xn)),

namely f1 = id and all other fj = 1 for j ∈ {2, . . . , n}.
However, for any g1, . . . , gn ∈ FPF

= F the operator
PF (g1(x1), . . . , gn(xn)) = g1(x1) can never represent the
product TP.

C. Consequences

Since Proposition 21 provides a full characterization of
commuting operators in case that one of them is bisymmetric
with some neutral element and further showed that these
operators can be attained through functions distributive over
the bisymmetric aggregation operator with neutral element
involved, we will now focus on the set of such functions.

Note that a full characterization of all bisymmetric ag-
gregation operators with neutral element, in particular if the
neutral element is from the open interval, is still missing. Since
the characterization of the set of unary functions distributing
with such operators is heavily influenced by the structure of
the underlying operator, we will later on focus on special
subclasses of bisymmetric aggregation operators with neutral
element only, namely on

• continuous t-norms,
• continuous t-conorms, and
• particular classes of uninorms.

Therefore, consider ∗ to be some continuous t-norm T , some
continuous t-conorm S, or some uninorm U . Note that f ∈ F∗
is equivalent to the fact that f fulfills a Cauchy like equation,
i.e., for all x, y ∈ [0, 1]

f(x ∗ y) = f(x) ∗ f(y). (8)

Observe that besides 0(x) = 0,1(x) = 1 and id(x) = x
also the constant function fe(x) = e is included in F∗.

Lemma 24: If d ∈ I(∗), then fd : [0, 1] → [0, 1], fd(x) = d
for all x ∈ [0, 1] fulfills fd ∈ F∗.

V. CHARACTERIZATION OF FA FOR
CONTINUOUS T-(CO)NORMS

For the case of continuous t-conorms Eq. (8) has been
solved by Benvenuti et al. in [7] and as such by duality also for
continuous t-norms. Continuous t-(co)norms are particularly
important subclasses of t-(co)norms. We briefly recall a few
basic facts and properties, but refer the interested reader for
more details to the monographs [6], [24] and the articles [25],
[26], [27].

The class of continuous t-(co)norms consists exactly of all
so called continuous Archimedean t-(co)norms and of ordinal
sums of such continuous Archimedean t-(co)norms. Let us
first turn to continuous Archimedean t-(co)norms T resp. S.
They are in turn characterized as being generated by some
continuous additive generator t resp. s, i.e., they can be written
as

T (x, y) = t(−1)(t(x) + t(y)), S(x, y) = s(−1)(s(x) + s(y)).

In case of (continuous) t-norms, the additive generator
t : [0, 1] → R is a strictly decreasing (continuous) func-
tion which fulfills t(1) = 0 and for which t(−1)(x) =
t−1(min(t(0), x)). In case of (continuous) t-conorms, the
additive generator s : [0, 1] → R is a strictly increasing
(continuous) function which fulfills s(0) = 0 and for which
s(−1)(x) = s−1(min(s(1), x)). Note that in both cases addi-
tive generators are unique up to a positive multiplicative con-
stant. For continuous Archimedean t-(co)norms two subclasses
can be further distinguished, namely nilpotent t-(co)norms for
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which t(0) <∞ resp. s(1) <∞, and strict t-(co)norms with
t(0) = ∞ resp. s(1) = ∞.

Let us now turn to ordinal sum t-(co)norms, a concept
applicable to all kinds of t-(co)norms. The main properties
are based on results in the framework of semigroups, how-
ever, the basic idea of ordinal sums can be described the
following way: Define a t-(co)norm T resp. S by t-(co)norms
on pairwise non-overlapping subsquares along the diagonal
of the unit square and choose for all other cases min in
case of t-norms and max in case of t-conorms. Formally,
consider a family (]ak, bk[)k∈K of pairwise disjoint open
subintervals of the unitinterval and a corresponding family
of t-(co)norms (Tk)k∈K resp. (Sk)k∈K , then the ordinal
sums T = (〈ak, bk, Tk〉)k∈k : [0, 1]2 → [0, 1] resp. S =
(〈ak, bk, Sk〉)k∈k : [0, 1]2 → [0, 1] are given by

T (x, y) =


ak + (bk − ak)Tk( x−ak

bk−ak
, y−ak

bk−ak
),

if (x, y) ∈ [ak, bk]2 ,
min(x, y), otherwise,

S(x, y) =


ak + (bk − ak)Sk( x−ak

bk−ak
, y−ak

bk−ak
),

if (x, y) ∈ [ak, bk]2 ,
max(x, y), otherwise,

and are indeed a t-norm resp. a t-conorm. The ordinal sum t-
norm T as well as the ordinal sum t-conorm S are continuous
if and only if all Tk resp. Sk are continuous. Based on these
facts let us now briefly recall the main results of [7] which will
be further relevant for the investigation of particular classes of
uninorms.

A. Continuous t-conorms

Theorem 25 ([7]): Consider a continuous t-conorm S.
Then [0, 1] \ I(S) =

⋃
k∈K ]ak, bk[ for some index set K and

there exists a family of continuous strictly increasing mappings
sk : [ak, bk] → [0,∞] with s(ak) = 0 such that

S(x, y) =


s−1

k (min(sk(x) + sk(y), sk(bk))),
if (x, y) ∈ [ak, bk]2 ,

max(x, y), otherwise.

Let f ∈ FS and denote by fk its restriction to the interval
]ak, bk[.

(i) If sk(bk) = ∞, then one of the following holds:
(ssi) fk(x) = ik with ik ∈ I(S) and f(ak) ≤ ik ≤

f(bk),
(ssg) fk(x) = s−1

h (min(λksk(x), sh(βh))) for some
λk ∈ ]0,∞[ and some h ∈ K such that f(ak) ≤
ah and f(bk) ≥ bh.

(ii) If sk(bk) <∞, then one of the following holds:
(sni) fk(x) = f(bk) ∈ I(S),
(sng) fk(x) = s−1

h (min(λksk(x), sh(βh))) for some
h ∈ K such that f(ak) ≤ ah, f(bk) = bh, sh(bh)
is finite and sh(bh)

sk(bk) ≤ λk <∞.
Note that in case of (ssi) and (sni), f is constant on the whole
corresponding interval ]ak, bk[ resp. ]ak, bk] attaining its value
at an idempotent element of S. In case of (ssg) and (sng) there

exists at least one x0 ∈ ]ak, bk[ such that f(x0) /∈ I(S) so
that necessarily there exists some h ∈ K fulfilling f(x0) ∈
]ah, bh[.

The previous theorem already indicates how all distributive
functions f ∈ FS for some continuous t-conorm S can be
obtained:

Theorem 26 ([7]): Consider some continuous t-conorm S
and use the notations as introduced in Theorem 25. Any
f ∈ FS is obtained from a generic function f+ : I(S) → I(S)
which is monotone non-decreasing and from its restrictions
fk for every interval ]αk, βk[ whereas each restriction fk

is chosen either by expression (ssi) resp. (ssg) in case that
s(bk) = ∞ or by expression (sni) resp. (sng) in case that
s(bk) <∞.

Example 27: Consider the basic t-conorm SP(x, y) = x+
y − xy. It is continuous with I(S) = {0, 1} and s : [0, 1] →
[0,∞], s(x) = − ln(1− x). Its set of distributive functions is
given by

FSP
= {0,0[0,1[,0{0},1} ∪ {f : [0, 1] → [0, 1] |

f(x) = 1− (1− x)λ, λ ∈ ]0,∞[}

where 0A : [0, 1] → [0, 1] is defined by

0A(x) =

{
0, if x ∈ A,
1, otherwise.

Example 28: Consider the basic t-conorm SL(x, y) =
min(x+y, 1). It is continuous with I(S) = {0, 1}, s : [0, 1] →
[0,∞], s(x) = x, and

FSL
= {0,0{0},1} ∪ {f : [0, 1] → [0, 1] |

f(x) = min(λx, 1), λ ∈ [1,∞[}.

B. Continuous t-norms

Since t-norms are dual to t-conorms we can get analogous
results for functions f being distributive over some continuous
t-norm T .

Corollary 29: Consider a continuous t-norm T . Then [0, 1]\
I(T ) =

⋃
k∈K ]ak, bk[ for some index set K and there

exists a family of continuous strictly decreasing mappings
tk : [ak, bk] → [0,∞] with t(bk) = 0 such that

T (x, y) =


t−1
k (min(tk(x) + tk(y), tk(ak))),

if (x, y) ∈ [ak, bk]2 ,
min(x, y), otherwise.

Let f ∈ FT and denote by fk its restriction to the interval
]ak, bk[.

(i) If tk(ak) = ∞, then one of the following holds:
(tsi) fk(x) = ik with ik ∈ I(T ) and f(ak) ≤ ik ≤

f(bk),
(tsg) fk(x) = t−1

h (min(λktk(x), th(ah))) for some
λk ∈ ]0,∞[ and some h ∈ K such that f(ak) ≤
ah and f(bk) ≥ bh.

(ii) If tk(ak) <∞, then one of the following holds:
(tni) fk(x) = f(ak) ∈ I(S),
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(tng) fk(x) = t−1
h (min(λktk(x), th(ah))) for some h ∈

K such that f(ak) = ah, f(bk) ≥ bh, th(ah) is
finite and th(ah)

tk(ak) ≤ λk <∞.
Analogous to the case of continuous t-conorms all functions

f being distributive over some continuous t-norm T can be
found.

Corollary 30: Consider some continuous t-norm t and use
the notations as introduced in Corollary 29. Any f ∈ FT is
obtained from a generic function f+ : I(T ) → I(T ) which
is monotone non-decreasing and from its restrictions fk for
every interval ]αk, βk[ whereas each restriction fk is chosen
either by expression (tsi) resp. (tsg) in case that t(ak) = ∞
or by expression (tni) resp. (tng) in case that t(ak) <∞.

Example 31: Consider the two basic t-norms TP(x, y) =
xy and TL(x, y) = max(x+ y − 1, 0). For both we have that
I(TP) = I(TL) = {0, 1} and their additive generators are
given by tTP

(x) = − ln(x) and tTL
= 1 − x, respectively.

Further, we get that

FTP
= {0,0[0,1[,0{0},1} ∪ {f : [0, 1] → [0, 1] |

f(x) = xλ with λ ∈ ]0,∞[},
FTL

= {0,0[0,1[,1} ∪ {f : [0, 1] → [0, 1] |
f(x) = max(λx+ 1− λ, 0)

with λ ∈ [1,∞[}.

VI. CHARACTERIZATION OF FA FOR
(PARTICULAR CLASSES OF) UNINORMS

Let us now turn to the last class of bisymmetric aggregation
operators with some neutral element, namely uninorms whose
neutral elements e fulfill e ∈ ]0, 1[ (see also [11], [17]). Note
that uninorms U can be interpreted as combination of some
t-norm and some t-conorm, i.e.,

U(n)(x1, . . . , xn) = U(2)(T (min(x1, e), . . . ,min(xn, e)),
S(max(x1, e), . . . ,max(xn, e)))

with T some t-norm acting on [0, e] and S some t-conorm
acting on [e, 1]. To express explicitly that some uninorm U is
related to some t-norm T and some t-conorm S, we will use
the notation UT,S .

Such created uninorms cover a quite large class of aggre-
gation operators since on the remainder of their domains they
can be chosen such that the monotonicity and associativity
condition are not violated but otherwise arbitrarily. However,
due to its properties any uninorm U fulfills

min(x, y) ≤ U(x, y) ≤ max(x, y)

whenever min(x, y) ≤ e and e ≤ max(x, y) for all x, y ∈
[0, 1], giving rise to the particular classes UT,S,min, UT,S,max

of uninorms. Note further, there exists no uninorm which is
continuous on the whole domain [17]. Generated uninorms,
which we will discuss later in more detail, therefore form
another important subclass of uninorms, since they are con-
tinuous on the whole domain up to the case where {x, y} =
{0, 1}.

As the next section will show, functions f distributing
with some uninorm U heavily depend on the structure of

the uninorm. Therefore, since a full characterization of all
uninorms is still missing, we restrict the discussion of FU to
two particular subclasses of uninorms — namely to uninorms
which are either acting as the minimum or as the maximum
on their remainders and to generated uninorms.

A. Distributive functions on uninorms

First of all let us investigate necessary and sufficient condi-
tions for some non-decreasing function f : [0, 1] → [0, 1] being
distributive over some uninorm U , i.e., for all x, y ∈ [0, 1]

U(f(x), f(y)) = f(U(x, y)).

If we choose x = e we see that U(f(e), f(y)) = f(y) for
all y ∈ [0, 1], expressing that f(e) acts as a neutral element
of U on the range of f . Moreover, U(f(e), f(e)) = f(e) so
that necessarily f(e) ∈ I(U).

From this, we see already, that the set of idempotent
elements as well as the range of f ∈ FU will play a crucial
role in characterizing FU .

Lemma 32: Consider some f ∈ FU . Then the following
holds:

(i) If e ∈ Ranf , then f(e) = e.
(ii) If d ∈ I(U), then also f(d) ∈ I(U).

Proof: Consider some f ∈ FU . If e ∈ Ranf then there
exists some x0 ∈ [0, 1], such that f(x0) = e and

f(e) = U(e, f(e)) = U(f(x0), f(e))
= f(U(x0, e)) = f(x0) = e.

Moreover, if d ∈ I(U) then also

f(d) = f(U(d, d)) = U(f(d), f(d)),

i.e., f(d) ∈ I(U).
Let us now briefly focus on particular cases where e /∈ Ranf :

Proposition 33: Consider some uninorm UT,S with neutral
element e and some f ∈ F with either Ranf ⊆ [0, e[ or
Ranf ⊆ ]e, 1]. Then the following holds:

Ranf ⊆ [0, e[ : f ∈ FUT,S
if and only if

(i) f(e) ∈ I(U) ∩ [0, e[,
(ii) ∀x ∈ [e, 1] : f(x) = f(e),

(iii) f |[0,e] is distributive over T ,
(iv) ∀x ∈ [0, 1] : f(U(x, 1)) = f(x).

Ranf ⊆ ]e, 1] : f ∈ FUT,S
if and only if

(i) f(e) ∈ I(U) ∩ ]e, 1],
(ii) ∀x ∈ [0, e] : f(x) = f(e),

(iii) f |[e,1] is distributive over S,
(iv) ∀x ∈ [0, 1] : f(U(x, 0)) = f(x).

Proof: Consider some uninorm U = UT,S with neutral
element e, some f ∈ F with Ranf ⊆ [0, e[. Assume that
f ∈ FU .

Since e is an idempotent element of U and Ranf ⊆ [0, e[,
it immediately follows that f(e) ∈ I(U) ∩ [0, e[, i.e., f(e) is
an idempotent element of t-norm T involved.

Further, since f(e) acts as a neutral element on Ranf we
know that for all x ∈ [e, 1] it holds that

f(x) = U(f(x), f(e)) = T (f(x), f(e))
≤ min(f(x), f(e)) ≤ f(e).
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Moreover, due to the non-decreasingness of f , f(e) ≤ f(x)
for all x ∈ [e, 1] such that indeed f(x) = f(e) for all x ∈
[e, 1].

The fact that f |[0,e] is distributive over T follows imme-
diately from f ∈ FUT,S

. Finally, choose arbitrary x ∈ [0, 1],
then due to property (ii)

f(U(x, 1)) = U(f(x), f(1)) = U(f(x), f(e))
= f(U(x, e)) = f(x).

To prove the sufficiency, assume that Ranf ⊆ [0, e[ and
that conditions (i)–(iv) are fulfilled. If both x, y ≤ e then also
U(x, y) ≤ e, such that f distributes over U due to condition
(iii). In case that both x, y ≥ e, also U(x, y) ≥ e such that

f(U(x, y)) = f(e) = U(f(e), f(e)) = U(f(x), f(y))

due to condition (ii) and the fact that f(e) is an idempotent
element of U . Finally, let us consider w.l.o.g. some x ≤ e ≤ y.
Due to condition (iv) and the non-decreasingness of f and U
we can conclude that

f(U(x, 1)) = f(x) = f(U(x, e)) ⇒ f(x) = f(U(x, y)).

Moreover, since f |[0,e] commutes with T resp. U and condition
(ii), we also know that

f(x) = f(U(x, e)) = U(f(x), f(e)) = U(f(x), f(y)),

such that f ∈ FU . Analogously, the remaining case and the
characterization of f ∈ FU in case of Ranf ⊆ ]e, 1] can be
shown.
Let us illustrate the previous results by some examples.

Example 34: Consider the following uninorm U : [0, 1]2 →
[0, 1] with neutral element e = 1

2

U(x, y) =

{
2xy , if (x, y) ∈

[
0, 1

2

]2
,

max(x, y) , otherwise.

Note that U = UT,S with T : [0, e]2 → [0, e], T (x, y) =
2xy is an isomorphic transformation of the product and
S : [e, 1]2 → [e, 1], S(x, y) = max(x, y) (see also Figure 1).
Its set of idempotent elements I(U) is given by {0} ∪

[
1
2 , 1
]

since the continuous t-norm T has its boundaries as its only
trivial idempotent elements.

• Therefore, there is only one function f ∈ FU with
Ranf ⊆ [0, e[, namely the constant function 0, since
I(U) ∩ [0, e[ = {0} and f has to be non-decreasing.

• On the other hand, there exist several functions f ∈ FU

with Ranf ⊆ ]e, 1]: We can choose f(e) ∈ ]e, 1] ⊆
I(U) ∩ ]e, 1] arbitrarily and fix as such f(x) for all
x ∈ [0, e]. Because S = max is a lattice polynomial,
f has just to be non-decreasing on [e, 1] to distribute
over S such that condition (iii) of Proposition 33 is
fulfilled. And finally, condition (iv) trivially holds since
f(U(x, 0)) = f(0) = f(x) in case of x ∈ [0, e] and
f(U(x, 0)) = f(max(x, 0)) = f(x) for all x ∈ ]e, 1].
Therefore, e.g., all functions fλ : [0, 1] → [0, 1] with λ ∈
]0.5, 1] given by

fλ(x) =

{
λ if x ∈ [0, 0.5] ,
2(1− λ)x+ 2λ− 1 otherwise

distribute over U (see also Figure 1).
Example 35: Consider the following uninorm U : [0, 1]2 →

[0, 1] with neutral element e = 1
2

U(x, y) =


max(x, y) if (x, y) ∈

[
1
2 , 1
]2
,

4xy if (x, y) ∈
[
0, 1

4

]2
,

1
4 (4x− 1)(4y − 1) + 1

4 if (x, y) ∈
[
1
4 ,

1
2

]2
,

min(x, y) otherwise.

Again U = UT,S with T on ordinal sum t-norm on
[
0, 1

2

]
with twice the product as its summands and S = max a basic
t-conorm on

[
1
2 , 1
]

(see also Figure 2). The set of idempotent
elements I(U) is given by {0, 1

4} ∪
[
1
2 , 1
]
.

Let us now focus just on those f ∈ FU with Ranf ⊆
[
0, 1

2

[
,

i.e., f(e) ∈ {0, 1
4}:

• f(e) = 0: Necessarily f = 0 due to the non-
decreasingness of f and the necessary properties given
in Proposition 33. Therefore, 0 is the only element of
FU for which Ranf ⊆ [0, e[ and f(e) = 0.

• f(e) = 1
4 : Necessarily, we fix f(x) = 1

4 for all x ∈[
1
2 , 1
]

and as such fulfill conditions (i), (ii), (iv) of
Proposition 33 immediately, i.e.,

f : [0, 1] → [0, 1], f(x) =

{
1
4 if x ∈

[
1
2 , 1
]
,

g(x) otherwise.

The function g :
[
0, 1

2

[
→
[
0, 1

2

[
and as such also f |[0,e]

distributes over the ordinal sum t-norm T if it is one of
the following functions (see also Figure 2):

g1(x) = 0, ∀x ∈
[
0, 1

2

[
,

g2,λ(x) =

{
0, if x ∈

[
0, 1

4

]
,

1
4 (4x− 1)λ, otherwise,

with λ ∈ [1,∞[ ,

g3(x) =

{
0, if x ∈

[
0, 1

4

]
,

1
4 , otherwise,

g4(x) =

{
0, if x ∈

[
0, 1

4

[
,

1
4 , otherwise,

g5,λ(x) =

{
4λ−1xλ, if x ∈

[
0, 1

4

[
,

1
4 , otherwise,

with λ ∈ [1,∞[ ,

g6(x) =

{
0, if x = 0,
1
4 , otherwise,

g7(x) = 1
4 , ∀x ∈

[
0, 1

2

[
.

So far, we have investigated non-decreasing functions f
with particular domains being distributive over some uninorm
U . However, in case that e ∈ Ranf the characterization of
those f ∈ FU heavily depends on the structure of the uninorm
U involved. Therefore, we will now turn to special subclasses
of uninorms.
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Fig. 1. Uninorm U and some f ∈ FU as discussed in Examples 34 and 40.
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Fig. 2. Uninorm U and some f ∈ FU as discussed in Examples 35 and 41.

B. Special case: Uninorms UT,S,min, UT,S,max

We now assume that the uninorm U is such that U |[0,e]2 is
some t-norm T on [0, e], U |[e,1]2 some t-conorm S on [e, 1]
and on the remainder U acts either as the minimum or as the
maximum. We will denote such uninorms by UT,S,min resp.
UT,S,max. In case that the t-norm T as well as the t-conorm
S involved are continuous, we refer to the uninorm UT,S as
weakly continuous t-norm.

We will focus on functions f based on a composition of
functions distributive over T resp. S, i.e., on functions f :

[0, 1] → [0, 1] defined by

f(x) =


fT (x) if x ∈ [0, e[ ,
fS(x) if x ∈ ]e, 1] ,
e if x = e,

(9)

with some fT ∈ FT and fS ∈ FS . We will use the
abbreviation f = fT �e fS .

Note that not all f ∈ FU are of the type f = fT �e fS as
the following example shows.



12

Example 36: Consider some weakly continuous uninorm
UT,S . Then f : [0, 1] → [0, 1] defined by

f(x) =

{
0 if x ∈ [0, e] ,
1 if x ∈ ]e, 1] .

fulfills f ∈ FUT,S,min and f ∈ FUT,S,max , but f 6= fT �e fS .
However, since uninorms can be interpreted as operators

acting on a bipolar scale with neutral element e, it is natural
to investigate distributive functions f preserving that neutrality
level, i.e., fulfilling f(e) = e.

By the construction f = fT �e fS provided by Eq. (9),
it is guaranteed that the restrictions of some f ∈ FUT,S

to
[0, e] resp. [e, 1] are distributive over the corresponding T
resp. S. Note that this construction also forces that, due to
the non-decreasingness of f , that f(x) ≤ e for all x ∈ [0, e]
and f(x) ≥ e for all x ∈ [e, 1]. Depending on whether
U = UT,S,min or U = UT,S,max, f has to fulfill additional
properties for f ∈ FU .

Proposition 37: Consider some weakly continuous uninorm
UT,S , further some fT ∈ FT and fS ∈ FS and define f :
[0, 1] → [0, 1] by f = fT �e fS .

(i) f ∈ FUT,S,min if and only if ∀x ∈ [0, e[ : f(x) < e or
∀y ∈ [e, 1] : f(y) = e.

(ii) f ∈ FUT,S,max if and only if ∀x ∈ [0, e] : f(x) = e or
∀y ∈ ]e, 1] : f(y) > e.

Proof: Consider some weakly continuous uninorm UT,S ,
further some fT ∈ FT and fS ∈ FS and define f : [0, 1] →
[0, 1] as f = fT �e fS by Eq. (9).

Assume that f ∈ FUT,S,min . Further assume that there exists
some x0 ∈ [0, e[ with f(x0) = e and some y0 ∈ [e, 1] with
f(y0) > e, then the following holds

f(y0) = U(e, f(y0)) = U(f(x0), f(y0)) = f(U(x0, y0))
= f(min(x0, y0)) = f(x0) = e

leading to a contradiction. Vice versa, since f = fT �e fS

it distributes over UT,S,min for all (x, y) ∈ [0, e]2 and for all
(x, y) ∈ [e, 1]2 due to its construction. Therefore, it suffices to
prove that f distributes over U for all (x, y) ∈ [0, e]× [e, 1]∪
[e, 1]× [0, e].

Assume that f additionally fulfills either for all x ∈ [0, e[ :
f(x) < e or for all y ∈ [e, 1] : f(y) = e and choose an
arbitrary x ∈ [0, e[ and an arbitrary y ∈ [e, 1]. Therefore,
either f(x) < e or f(y) = e, in any case f(x) ≤ f(y), such
that

f(U(x, y)) = f(min(x, y)) = f(x) = min(f(x), f(y))
= U(f(x), f(y)).

In case that x = e and y ∈ [e, 1], it immediately holds
that f(U(x, y)) = f(U(e, y)) = f(y) = U(e, f(y)) =
U(f(e), f(y)) = U(f(x), f(y)). Analogously, the distributiv-
ity of f over UT,S,min for some (x, y) ∈ [e, 1]× [0, e] can be
shown as well as the characterization of all f ∈ UT,S,max.

Based on this result, we can immediately state which
functions f = fT �e fS are distributive over both UT,S,min as
well UT,S,max.

Lemma 38: Consider some weakly continuous uninorm
UT,S , further some fT ∈ FT and fS ∈ FS and define

f : [0, 1] → [0, 1] by f = fT �e fS .
f ∈ FUT,S,min ∩ FUT,S,max if and only if either

• ∀x ∈ [0, e[ : f(x) < e and ∀x ∈ ]e, 1] : f(x) > e, or
• ∀x ∈ [0, 1] : f(x) = e.
Moreover, due to Proposition 37 and the non-decreasingness

of f we can further draw the following conclusions.
Corollary 39: Consider some weakly continuous uninorm

UT,S , further some fT ∈ FT and fS ∈ FS and define f :
[0, 1] → [0, 1] by f = fT �e fS .

(i) If f ∈ FUT,S,min and there exists some x0 ∈ [0, e[ such
that f(x0) = e, then f(x) = e for all x ∈ [x0, 1].

(ii) If f ∈ FUT,S,max and there exists some y0 ∈ ]e, 1] such
that f(y0) = e, then f(x) = e for all x ∈ [0, y0].

Example 40 (Continuation of Example 34): Let us once
again consider the uninorm U as introduced in Example 34,
i.e.,

U(x, y) =

{
2xy , if (x, y) ∈

[
0, 1

2

]2
,

max(x, y) , otherwise.

It is of the type UT,S,max with T : [0, e]2 → [0, e],
T (x, y) = 2xy an isomorphic transformation of the product
and S : [e, 1]2 → [e, 1] the maximum. Now we are looking
for those f ∈ FU which are constructed by f = fT �e fS .
The sets FT and FS of non-decreasing functions distributing
with T resp. S are given by

FT = {f :
[
0, 1

2

]
→
[
0, 1

2

]
| ∀x ∈

[
0, 1

2

]
:

f(x) = 2(λ−1)xλ with λ ∈ ]0,∞[ or
f(x) = 0 or f(x) = 1

2},
FS = {f :

[
1
2 , 1
]
→
[
1
2 , 1
]
| f is non-decreasing}.

In accordance with Proposition 37, we now have to choose
either fT (x) = 1

2 for all x ∈
[
0, 1

2

[
or fS(y) > 1

2 for all
y ∈

]
1
2 , 1
]

such that f = fT �e fS fulfills f ∈ FU , so, e.g.,
fi : [0, 1] → [0, 1], i ∈ {1, 2, 3}, (see also Figure 1)

f1(x) =

{
2x2, if x ∈

[
0, 1

2

]
,

x, otherwise ,
f2(x) = min(2x2, 1),

f3(x) = max( 1
2 , f2(x).

Example 41 (Continuation of Example 35): Note that the
uninorm U defined by

U(x, y) =


max(x, y) if (x, y) ∈

[
1
2 , 1
]2
,

4xy if (x, y) ∈
[
0, 1

4

]2
,

1
4 (4x− 1)(4y − 1) + 1

4 if (x, y) ∈
[
1
4 ,

1
2

]2
,

min(x, y) otherwise.

is a uninorm of the type UT,S,min. Since T is an ordinal sum
t-norm on

[
0, 1

2

]
, its set of distributive functions FT is rather

large. Some of its elements are already listed in Example 35.
Similarly, also FS contains many, namely all non-decreasing
functions on

[
1
2 , 1
]
. In accordance with Proposition 37 we

have to choose functions fT , fS such that either fT (x) < 1
2

for all x ∈
[
0, 1

2

[
or that fS(y) = 1

2 for all x ∈
]
1
2 , 1
]
, such
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that f = fT �efS ∈ FU , e.g., fi : [0, 1] → [0, 1], i ∈ {1, 2, 3},
(see also Figure 2),

f1(x) =

{
0, if x ∈

[
0, 1

2

[
,

x, otherwise,
f2(x) = 1

2 ,

f3(x) =


0, if x ∈

[
0, 1

4

[
,

1
4 (4x− 1)2, if x ∈

[
1
4 ,

1
2

[
,

1
2 , otherwise.

C. Special case: Generated uninorms

An important subclass of uninorms are those generated by
some additive generator. They are continuous on the whole
domain up to the case where {x, y} = {0, 1}.

Definition 42: An operator U :
⋃

n∈N[0, 1]n → [0, 1]
is an Archimedean uninorm continuous in all points up to
(x1, . . . , xn), {0, 1} ∈ {x1, . . . , xn}, if and only if there exists
a monotone bijection h : [0, 1] → [−∞,∞] such that

U(x1, . . . , xn) = h−1(
n∑

i=1

h(xi)),

with convention +∞+(−∞) = −∞. The uninorm U is then
called a generated uninorm with additive generator h.

Note that the neutral element e of such a generated uninorm
is given by h−1(0) = e. The increasingness of the additive
generator is equivalent to its conjunctive form. Moreover,
generated uninorms are related to strict t-norms and strict t-
conorms, since t(x) = −h(ex) and s(x) = h(e + (1 − e)x)
are additive generators of a strict t-norm, resp. t-conorm,
associated with U.

In case of some f ∈ FU with U generated by the additive
generator h, we get

f(U(x, y)) = f ◦ h−1(h(x) + h(y))

= h−1(h ◦ f(x) + h ◦ f(y)) = U(f(x), f(y)).

Since h is a bijection this is equivalent to

h ◦ f ◦ h−1(u+ v) = h ◦ f ◦ h−1(u) + h ◦ f ◦ h−1(v)

with h(x) = u and h(y) = v both elements from [−∞,∞]
such that for h∗ = h ◦ f ◦ h−1 and arbitrary u, v ∈ [−∞,∞]
it holds that

h∗(u+ v) = h∗(u) + h∗(v).

In case that h∗ is continuous the solutions of this equation
(see also [3]) are given by

h∗(u) = c · u

with c > 0. As a consequence

f(x) = h−1(c · h(x))

leading to the following lemma.
Lemma 43: Consider some uninorm U generated by some

additive generator h. If f ∈ FU and f continuous, but not
constant, then there exists some c > 0 such that

f(x) = h−1(c · h(x))

for all x ∈ [0, 1].
Example 44: Consider some uninorm U generated by some

additive generator h and choose ci ≥ 0 for all i ∈ {1, . . . , n}
and ci > 0 for at least one i ∈ {1, . . . , n}. Then the operator
A defined by

A(x1, . . . , xn) = h−1(
n∑

i=1

cih(xi))

commutes with U .
Example 45: Consider the additive generator h : [0, 1] →

[−∞,∞], h(x) = ln x
1−x . The generated uninorm

U∗ : [0, 1]2 → [0, 1] is then given by

U∗(x, y) =
xy

xy + (1− x)(1− y)

with neutral element e = 0.5. Note that U∗ is also known
as 3-Π-operator and has already been discussed by several
authors [14], [17], [23], [35], [37]. It is worth to remark that it
plays an important role as combining functions of uncertainty
factors in expert systems like MYCIN and PROSPECTOR (see
also [9], [12], [21]).

In accordance with the previous example, aggregation op-
erators A :

⋃
n∈N[0, 1]n → [0, 1] defined by

A(x1, . . . , xn) =
∏n

i=1 x
ci
i∏n

i=1(1− xi)ci +
∏n

i=1 x
ci
i

with ci ≥ 0 for all i ∈ {1, . . . , n} and ci > 0 for at least one
i ∈ {1, . . . , n} commute with U∗.

VII. FINAL REMARKS

The issue of commuting aggregation has been considered
in the general case and in some important particular cases
especially the one of uninorms, where new non-trivial results
are obtained. Finding commuting operations can be a difficult
exercise sometimes leading to impossibility results. So, e.g.,
in the class of OWA operators [36], the set of all aggregation
operators commuting with an n-ary OWA operator different
from min, max, or the arithmetic mean respectively, is trivial,
namely, consisting just of the projections [32]. However, for
bisymmetric operations such that as weighted arithmetic mean,
results on commuting exist for some 25 years in connection
with the problem of consensus functions for probabilities [28],
more recently for t-norms and conorms in connection with
generalized utility theory [15] or transitivity preservation in
the aggregation of fuzzy relations [34]. Commuting operators
for uninorms can be relevant in multi-criteria decision-making
with bipolar scales where bipolar set-functions are used to
evaluate the importance of criteria [19], [20]. Indeed the
neutral element of uninorm separates a bipolar evaluation scale
in its positive and negative parts [16]. Our results can be
instrumental in laying bare consensus functions for multi-
person multi-criteria decision-making problems on bipolar
scales, a topic to be investigated at a further stage.
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ing in Expert Systems. Boca Raton: CRC Press, 1992.

[22] I. N. Herstein and J. Milnor, “An axiomatic approach to measurable
utility,” Econometrica, vol. 21, pp. 291–297, 1953.

[23] E. P. Klement, R. Mesiar, and E. Pap, “On the relationship of associative
compensatory operators to triangular norms and conorms,” Internat. J.
Uncertain. Fuzziness Knowledge-Based Systems, vol. 4, pp. 129–144,
1996.

[24] ——, Triangular Norms, ser. Trends in Logic. Studia Logica Library.
Dordrecht: Kluwer Academic Publishers, 2000, vol. 8.

[25] ——, “Triangular norms. Position paper I: basic analytical and algebraic
properties,” Fuzzy Sets and Systems, vol. 143, pp. 5–26, 2004.

[26] ——, “Triangular norms. Position paper II: general constructions and
parameterized families,” Fuzzy Sets and Systems, vol. 145, pp. 411–438,
2004.

[27] ——, “Triangular norms. Position paper III: continuous t-norms,” Fuzzy
Sets and Systems, vol. 145, pp. 439–454, 2004.

[28] K. Lehrer and C. Wagner, Rational Consensus in Science and Society.
Dordrecht: Reidel, 1981.

[29] J.-L. Marichal, “On order invariant synthesizing functions,” J. Math.
Psychol., vol. 46, no. 6, pp. 661–676, 2002.

[30] J.-L. Marichal and R. Mesiar, “Aggregation on finite ordinal scales by
scale independent functions,” Order, vol. 21, no. 2, pp. 155–180, 2004.

[31] K. J. McConway, “Marginalization and linear opinion pools,” J. Am.
Stat. Assoc., vol. 76, pp. 410–414, 1981.

[32] A. Mesiarova, 2005, personal communication.
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