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ABSTRACT:  In this journal, a “hybrid method” was proposed for the joint propagation of
probability distributions (expressing variability) and possibility distributions (i.e., fuzzy numbers,
expressing imprecision or partial ignorance) in the computation of risk. In order to compare the
results of the hybrid computation (a random fuzzy set) to a tolerance threshold (a tolerable level
of risk), a post-processing method was proposed. Recent work has highlighted a shortcoming of
this post-processing step which yields overly-conservative results. A post-processing method
based on Shafer’s theory of evidence provides a rigorous answer to the problem of comparing a
random fuzzy set with a threshold. The principles behind the new post-processing scheme are
presented and illustrated with a synthetic example.
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INTRODUCTION

Variability and imprecision are two distinct facets of uncertainty in risk assessment.
Variability, also referred to as “objective uncertainty”, arises from heterogeneity or the random
character of natural processes. Imprecision, also referred to as “subjective uncertainty”, arises
from the partial character of our knowledge of the natural world. As shown in particular by
Ferson and Ginzburg (1996), distinct methods are needed to adequately represent and propagate
variability and imprecision. One of the most common pitfalls in risk analysis is the confusion
between these two types of uncertainty. When faced with partial information regarding a certain
model parameter, for example the knowledge that the parameter value is located somewhere
between a minimum value (min) and a maximum value (max), it is common to assume a uniform
distribution of probability distribution between min and max. But this approach introduces
information that is in fact not available and therefore biases the outcome of the analysis (see
Ferson, 1996). While information regarding random variability is best conveyed using probability
distributions, information regarding imprecision can be conveyed using families of probability
distributions. This encompasses representation techniques ranging from simple intervals
containing ill-known values, to more sophisticated tools. Namely, families of probabilities can be
encoded by pairs of upper and lower cumulative probability functions (Ferson et al., 2004), by
possibility distributions (also called fuzzy sets ; Dubois and Prade, 1988, Zadeh, 1978) or by
belief functions of Dempster-Shafer (Shafer, 1976).

As risk assessments commonly face both types of uncertainty, it would seem beneficial to be
able to distinguish between them when estimating risk, so that the way we represent uncertainty
might be consistent with the information at hand. In Guyonnet et al. (2003) a method, dubbed
“hybrid” method, was proposed for a joint handling of probability and possibility distributions in
the computation of risk. Considering a “model”, i.e. a function of several parameters, some of
which are justifiably represented by probability distributions (expressing random variability),
while others are better represented by possibility distributions (expressing imprecision), the
hybrid method combines random sampling of the probability distributions (Monte Carlo method)
with fuzzy interval analysis (Dubois and Prade, 1988). The result is a random fuzzy set (Gil,
2001). In order to compare this result to a tolerance threshold, Guyonnet et al. (2003) proposed a
summarization of the obtained random fuzzy set in the form of a unique fuzzy interval, from
which two cumulative (optimistic and pessimistic) probability distributions can be derived. But
recent work (Baudrit et al., 2004) has laid bare a shortcoming of this post-processing method.
This note describes a new method based on the theory of evidence that provides a rigorous
answer to the problem of comparing a random fuzzy set with a threshold.

THEORY

For the sake of clarity, the “hybrid method” is briefly summarized below. Firstly, it is recalled
that a possibility distribution (or fuzzy number) restricting the possible values of a real-valued
parameter X takes the form of a fuzzy set membership function (denoted µ) such that µ(x*) = 1
for some value x* of X (Dubois and Prade, 1988). This function, the values of which lie between
zero and one, describes, for each value x, the degrees of possibility that X = x. The simplest
possibility distribution is the well-known min-max interval. The membership function µ(x) for
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this distribution is equal to 1 for all values x within the interval, and zero elsewhere. But a
possibility distribution enriches the simple min-max interval by allowing the expression of
preferences within the interval. If available information is richer than that conveyed by a min-max
interval (certain values are believed to be more likely than others) then a more elaborate
possibility distribution can be used to convey such information. The interval containing all values
of X that have a degree of possibility greater than or equal to a certain threshold α is called an α-
cut and noted: Aα = {x, µ(x) ≥ α}.

Possibility theory provides two indicators of the likelihood of an event A, for example that the
value of variable X should lie within a certain interval A; the possibility measure (Π) and the
necessity measure (N). The possibility measure of the event is defined as:

Π(A) = Sup x∈A µ(x) (1)

where Sup denotes the largest value. Events are thus evaluated on the basis of their most plausible
occurrences. In probabilistic terms, a degree of possibility can be viewed as an upper probability
bound (Dubois and Prade, 1992). The dual function of a possibility measure Π is the necessity
measure (N), defined as:

N(A) = 1 – Π(Ac) (2)

where Ac denotes the complement of A. Therefore a degree of necessity can be viewed as a lower
probability bound.

The hybrid method proposed in Guyonnet et al. (2003) combines the random sampling of
probability distribution functions (PDFs) with fuzzy interval analysis on the α-cuts. Fuzzy
interval analysis as performed herein can be thought of simply as interval calculus performed at
different levels of possibility. For the purpose of describing the hybrid method we consider a
“mathematical model”, noted M (for example an equation for calculating a dose of exposure),
that is a function of a certain number of parameters:

Dose = M(P1, …, Pn, F1, ..., Fm), (3)

where M = model; P1, …, P n = n independent model parameters represented by probability
distribution functions (PDFs) ; F1, …, Fm = m model parameters represented by fuzzy numbers.
The hybrid procedure is summarized below (see Fig. 3 of Guyonnet et al., 2003):

1. Generate n random numbers (χ1, …, χn) from a uniform distribution and sample the n PDF’s
to obtain a realization of the n random variables: p1, … pn

2. Select a value α of the membership function (a level of possibility).
3. Interval calculation: calculate the Inf (smallest) and Sup (largest) values of M(p1, …, pn, F1, ...,

Fm), considering all values located within the α-cuts of each fuzzy number.
4. Assign these Inf and Sup values to the lower and upper limits of the α-cut of M(p1, …, pn, F1,

..., Fm).
5. Return to step 2 and repeat steps 3 and 4 for another α-cut. The fuzzy result of M(p1, …, pn,

F1, ..., Fm) (the fuzzy dose) is obtained from the Inf and Sup values of M(p1, …, pn, F1, ..., Fm)
for each α-cut.

6. Return to step 1 to generate a new realization of the random variables.

A family of ω fuzzy interval-valued doses (a random fuzzy set) is thus obtained (ω being the
number of realizations of the random variables).
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In order to compare the random fuzzy set to a tolerance threshold (for example a maximum
tolerable dose) it is necessary to first perform a post-processing of this result. In Guyonnet et al.
(2003) it was proposed to select the final Inf and Sup values of M(P1, …, Pn, F1, ..., Fm), for each
level of possibility α, by building relative frequency distributions of the Inf and Sup values and
extracting the final Inf and Sup values for a certain level of probability. The final Inf and Sup
values could be selected such that there would be a 95% probability of respectively having values
higher than Inf and lower than Sup. But as was shown by Baudrit et al. (2004), this method
combines the Inf and Sup values of intervals that are in fact independent of one another and leads
to an overestimation of the uncertainty range (see application section).

Baudrit et al. (2004) showed how the theory of evidence, also called theory of Dempster-
Shafer (or theory of belief functions ; Shafer, 1976) could provide a simple and rigorous answer
to the problem of summarizing the results of the hybrid computation for comparison with a
tolerance threshold. The theory of evidence allows variability and imprecision to be treated
within a single framework. While probability theory assigns probability weights (in the discrete
case) or probability density weights (in the continuous case) to each possible value of an ill-
known parameter, the theory of evidence may assign such weights to subsets (for example
intervals) of values. A mass function m is thus defined which assigns a weight m(A) to each
subset A of values of the concerned parameter. Such a subset with positive mass is called a focal
set (Shafer, 1976). The weight m(A) is a probability mass that in the ideal case (rich information)
would be shared among specific values within A, but which in the case of poorer information
remains unassigned due to imprecision. If all focal sets contain single values, the mass function
reduces to a standard probability assignment and expresses pure variability. Assigning all the
mass to a single subset A corresponds to the case where all that is known is that the parameter
value lies within A, which expresses pure imprecision (classical min-max interval). Finally, if all
focal sets form a chain of n  nested sets A i, the mass function then defines a possibility
distribution.

The theory of evidence provides two indicators to qualify the validity of a proposition B
stating that the value of the parameter lies within a prescribed set B. These indicators, that
generalize functions N and P to the non-nested case, are the degree of belief of B ; denoted
Bel(B), and the degree of plausibility of B, denoted Pl(B), respectively defined by (Shafer, 1976):
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Bel(B) is thus the sum of the weights of all subsets Ai (i = 1 to n where n is the number of
subsets) such that Ai is completely included within prescribed set B, while Pl(B) is the sum of the
weights of all subsets Ai such that the intersection of Ai and B is non empty. Bel(B) gathers the
imprecise evidence that asserts B. Pl(B) gathers the imprecise evidence that does not contradict B
; the interval [Bel(B), Pl(B)] contains all potential probability values induced by the mass
function m.

The theory of evidence naturally applies to the random fuzzy set resulting from the hybrid
computation because each computed ai-cut (interval of values) of each fuzzy dose Mj in the
resulting sample can be viewed as a focal set of a single belief function representing this random
fuzzy set. The mass of each such ai-cut Aij is a certain frequency related to the random swampling
of the PDFs. Namely, to each focal set Aij is associated a probability weight m(Ai) = 1/(ω⋅ε),
where ω is the number of realizations of the random variables while ε+1 is the number of α-cuts
used to discretise the fuzzy doses. The construction of the degrees of belief (Bel) and of
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plausibility (Pl) of the proposition “the model result is lower than a certain threshold” is
illustrated schematically in Fig. 1. Fig. 1a shows a few representatives of the random fuzzy set
resulting from the hybrid computation of a dose of exposure. Fig.1b shows some focal sets
corresponding to individual intervals extracted from the random fuzzy set. Considering an
arbitrary dose threshold (Do ; Fig.1b), the degrees of plausibility and belief for the proposition
“the calculated dose is lower than the threshold Do” (Fig. 1c) are calculated by summing the
probability weights according to Eq. 4, for event B=[-∞, Do]. If the threshold Do is lower than the
lowest limit of all focal sets extracted from the random fuzzy set, then Pl = Bel = 0 (we are “sure”
that the proposition is false). As soon as Do exceeds this lowest limit, a probability weight of
1/(ω∗ε) is added to Pl (while Bel remains zero). Each time a new lower interval limit is exceeded
by the threshold, that same probability weight is added to Pl. For Bel to become positive, the
threshold must exceed at least one of the upper interval limits. Once the threshold exceeds the
highest upper limit of all intervals, then Pl = Bel = 1 (we are “sure” that the proposition is true).
The difference between Pl and Bel reflects the imprecision that has been propagated in the
analysis. If the problem involves only variability, but no imprecision, then Pl = Bel.

From an operational viewpoint, let us assume that we have applied the hybrid method to
calculate a dose of exposure and randomly sampled for example 400 realizations of the random
variables and identified, for each realization, the Inf (minimum) and Sup (maximum) values of
the dose for each value of possibility α (for example 11 values from 0 to 1 with step 0.1). We
thus obtain the random fuzzy of the set D i. The plausibility distribution will be obtained by
sorting the 10 x 400 = 4 000 Inf values (for α = 0.1 to 1 with step 0.1) in increasing order, and
incrementally adding a weight of 1/(400⋅10) = 0.00025 to each value. The belief distribution will
be obtained likewise with the Sup values.

With respect to comparison with a threshold, if we consider the proposition A: “calculated
dose is lower than threshold Do”, the probability P(A) that A is true is bounded by:
Bel(A)<P(A)<Pl(A). Bel(A) is therefore a conservative indicator of the probability that A is true
(degree of belief that the threshold is not exceeded). Conversely, the probability of the inverse
proposition A : “calculated dose exceeds threshold Do” is bounded by: )A(Bel < )A(P < )A(Pl

where: )A(Pl =1-Bel(A) and )A(Bel =1-Pl(A). In this case, )A(Pl  is the conservative indicator
(degree of plausibility of exceeding the threshold).

APPLICATION

In order to clearly illustrate the drawback of the post-processing method proposed in Guyonnet et
al. (2003) and the adequacy of the one proposed here, after Baudrit et al. (2004), we consider a
generic “model” M that is a simple function of three parameters A, B and C:

B

AC
M = (5)

Both A and B are represented by normal probability distributions (of averages respectively 15
and 50 and standard deviations respectively 2 and 5 ; Figs. 2a and 2b). If parameter C were a
constant (for example C = 2), then M would be represented by a unique probability distribution.
We will assume that C is tainted by a small degree of imprecision (Fig. 2c), encoded by a fuzzy
number of core = 2 (value considered most likely) and support [1.9-2.1] (interval outside which
values are considered not plausible). Given the limited extent of imprecision, one would expect
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the joint propagation of variability and imprecision for this problem, using the hybrid method, to
yield a result very close to the case where C is not affected by any imprecision at all (C = 2).

Fig. 1d shows ten representatives of the random fuzzy set of AC/B resulting from the
application of the hybrid method (500 realizations of the random parameters were in fact
performed). We are now interested in the probability that AC/B is lower than some value x ;
P(AC/B < x). The indicators Π95 and N95 (Fig. 1e) are, respectively, the degrees of possibility and
necessity obtained from the post-processing method proposed in Guyonnet et al. (2003). They are
the upper and lower probability bounds encoding the samples of fuzzy numbers of AC/B such
that there is a 5% chance of having lower or higher values. The curve indicated “MC” in Fig. 1e
is the result of the Monte Carlo calculation for C = 2. Despite the small imprecision on parameter
C, there is seen to be a surprisingly large difference between the three curves.

Fig. 1f shows the degrees of plausibility and belief for the same proposition. As could be
expected, there is very little difference between the different distributions. If the support of C
were further reduced, to end up as a point value (C = 2), the distance between Pl and Bel would
shrink until the curves eventually coincide (expressing pure variability with no imprecision). The
example shows that the new proposed post-processing method yields results that are consistent
with what we would expect for this problem. The post-processing method proposed in Guyonnet
et al. (2003) yields a much broader range of uncertainty, but this range is unrealistic because the
method combines upper and lower limits of intervals that are in fact independent of one another.
It is worth noting that in 2005, a software program (dubbed HyRisk), implementing the hybrid
method and the post-processing method described herein, will be available on the BRGM’s web
site.

CONCLUSIONS

This paper highlights a shortcoming of the post-processing method proposed in Guyonnet et
al. (2003) for comparing the results of the hybrid computation to a tolerance threshold. This post-
processing method yields overly-conservative estimates of the probability of respecting a
tolerance threshold. A method that provides a rigorous post-processing of the hybrid computation
is proposed based on the theory of evidence (Shafer, 1976). It should be noted, however, that a
reassessment of the “possibility of exceeding a tolerable dose” in Fig. 11 of Guyonnet et al.
(2003) shows values to be virtually unchanged by application of the new post-processing because
the problem treated was mainly dominated by imprecision rather than by variability.

Further work is currently aiming at accounting for variability and imprecision directly within
the common framework of the theory of evidence using a “homogeneous approach” (see Baudrit
et al., 2003 for a preliminary account), without having to treat these two forms of uncertainty
separately as in the hybrid approach. An advantage of such a homogeneous approach is that it
enables all the possible dependencies between parameters to be accounted for (see also Ferson
and Ginzburg, 1996). An underlying hypothesis of the hybrid method discussed here is that there
is independence between the probabilistic variables and also independence between the group of
probabilistic variables and the group of possibilistic variables. Note however that non-linear
monotone dependency between the random variables could be accounted for in the hybrid
approach using rank correlation methods (Connover and Iman, 1982).

While several options can be considered for a joint handling of variability and imprecision
(partial ignorance) in risk assessments, it is the opinion of the authors that a clear distinction
between these two types of uncertainty is necessary. In the face of partial ignorance, making the
assumption of perfect random variability is one of the most common temptations in risk
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assessment. It presupposes a degree of confidence in the outcome of the analysis that is not
consistent with the information that is truly available. It would seem important, with respect to
communication with decision-makers or other stakeholders, that risk assessors be capable of
distinguishing between what they know to be due to an underlying random process and what they
simply do not know for lack of better information.
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Fig. 1. Schematic illustration of the post-processing of the hybrid computation.
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