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Abstract 

Analytic Hierarchy Process (AHP) is 
one of the most popular method in the 
field of decision-making today. While 
there exist many kinds of extensions of 
AHP using fuzzy measures or fuzzy 
sets, one of the most natural uses of 
fuzzy sets is to employ a reciprocal 
matrix with fuzzy-valued entries. 
Indeed, using classical AHP, there is 
often not enough consistency among 
the data due to strong conditions 
bearing on the reciprocal data matrices. 
Fuzzy reciprocal matrices give us 
flexible specifications of pairwise 
preference. This paper presents an 
approach to using a fuzzy reciprocal 
matrix in AHP, as a way of specifying 
fuzzy restrictions on the possible values 
of the ratio judgments. Then, it can be 
computed to what extent there exists a 
consistent standard AHP matrix which 
is compatible with these restrictions. 
An optimal consistency index and 
optimal weights are derived using a 
fuzzy constraint satisfaction approach. 
Moreover we show an example of our 
approach in the later part of the paper. 
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1     Introduction 
The AHP methodology was proposed by T.L. 

Saaty in 1977 [9] [10], and it has been widely 
used in the field of decision making. It elicits 
weights of criteria and alternatives through ratio 
judgments of relative importance. And finally 
the preference for each alternative can be 
derived. The classical method requires the 
decision-maker (DM) to express his or her 
preferences in the form of a precise ratio matrix 
encoding a valued preference relation. However, 
it can often be difficult for the DM to express 
exact estimates of the ratios of importance. 

Therefore many kinds of methods employing 
intervals or fuzzy numbers as elements of a 
pairwise reciprocal data matrix have been 
proposed to cope with this problem.  This allows 
for a more flexible specification of pairwise 
preference intensities accounting for the 
incomplete knowledge of the DM. 

In practice, when interval-valued matrices are 
employed, the DM often gives ranges narrower 
than his or her actual perception would authorize, 
because he or she might be afraid of expressing 
information which is too imprecise. On the other 
hand, a fuzzy interval expresses rich information 
because the DM can provide i) the core of the 
fuzzy interval as a rough estimate of his 
perceived preference and ii) the support set of 
the fuzzy interval as the range that the DM 
believes to surely contain the unknown ratio of 
relative importance. 

Usually, since components of the pairwise 
matrix are locally obtained from the DM by 



pairwise comparisons of activities or alternatives, 
its global consistency is not guaranteed. In 
classical AHP, consistency is usually measured 
by a consistency index (C.I.) based on the 
computation of an eigenvalue. 

Very often, the transitivity of preferences 
between the elements to be compared is strongly 
related to the consistency of the matrix. Using 
intervals or fuzzy numbers as elements of the 
reciprocal matrices, strict transitivity is too hard 
to preserve in terms of equalities between 
intervals or fuzzy numbers. Therefore we only 
try to maintain consistency of precise matrices 
that fit the imprecise specifications provided by 
the DM. A new kind of consistency index for 
fuzzy-valued matrices is computed that 
corresponds to the degree of satisfaction of the 
fuzzy specifications by the best fitting consistent 
reciprocal preference matrices. Importance or 
priority weights are then derived based on these 
precise preference matrices. 

 

2     Earlier work 

The earliest work in AHP using fuzzy sets as 
data was published by van Laarhoven and 
Pedrycz [7]. They compared fuzzy ratios 
described by triangular membership functions. 
Lootsma’s logarithmic least square was used to 
derive local fuzzy priorities. Later using a 
geometric mean, Buckley [3], [4] determined 
fuzzy priorities of comparison ratios whose 
membership functions were assumed trapezoidal. 
Modifying van Laarhoven and Pedrycz’s 
method, Boender et al. [1] presented a more 
robust approach to the normalization of the local 
priorities. 

The issue of consistency in AHP using fuzzy 
sets as elements of the matrix was first tackled 
by Salo [11]. Departing from the fuzzy 
arithmetic approach, he derived fuzzy weights 
using an auxiliary programming formulation, 
which described relative fuzzy ratios as 
constraints on the membership values of local 
priorities. Later Leung and Cao [8] proposed a 
notion of tolerance deviation of fuzzy relative 
importance that is strongly related to Saaty’s 
consistency index C.I.  

There also exist many other extensions of 
AHP using fuzzy measures and integrals [12]. 
These methods do not have to assume 
independence of activities and can avoid the 

rank reversal problems which the traditional 
AHP method may suffer from. 

 

3 An approach using a fuzzy-valued 
reciprocal matrix 

Since using fuzzy numbers as elements of a 
pairwise matrix is more expressive than using 
crisp values or intervals, we hope that the fuzzy 
approach allows a more accurate description of 
the decision making process. Rather than forcing 
the DM to provide precise representations of 
imprecise perceptions, we suggest using an 
imprecise representation instead. In the 
traditional method the obtained matrix does not 
exactly fit the AHP theory and thus must be 
modified so as to respect mathematical 
requirements. Here we let the DM be imprecise, 
and check if this imprecise data encompasses 
precise preference matrices obeying the AHP 
requirements. 

3.1 Fuzzy reciprocal data matrix  

In this paper, we employ a fuzzy pairwise 
comparison reciprocal n×n matrix }~{~

ijrR =  
pertaining to n elements (criteria, alternatives). 
In the AHP model, entry rij of a preference 
matrix reflects the ratio of importance weights 
of element i over element j. In the fuzzy-valued 
matrix, diagonal elements are singletons (= 1) 
and the other entries ijr~ )( ji ≠  have 

membership function ijμ  whose support is 
positive:  

 , 1~ =iir supp(μij ) ⊆ (0,  + ∞) ,  i,j=1,…,n 

Moreover if element i is preferred to element j 
then supp(μij) lies in [1, +∞), while supp(μij) 
lies in (0, 1] if the contrary holds. The DM is 
supposed to supply the core (modal value)  of ijr

ijr~ and its support set [lij, uij] for i<j. The support 
set is the range that the DM believes surely 
contains the unknown ratio of relative 
importance. The DM may only supply entries 
above the diagonal like in the classical AHP. 

We assume reciprocity jiij rr ~/1~ =  as follows 
[7]  

(1)                   )/1()( rr jiij μμ = . 



Therefore 

(2)           ( ) ijij rr /1~/1core = , 

(3)           ( ) ]/1,/1[~/1supp ijijij lur = . 

We may assume all entries whose core is 
larger than or equal to 1 form triangular fuzzy 
sets i.e., if  1, we assume ijr ≥ ijr~ is a triangular 
fuzzy number, denoted as  

(4)                     = , ijr~ Δ),,( ijijij url

but then the symmetric entry  is not triangular. 
Alternatively one may suppose that if < 1,  

is . Therefore the following 
transitivity condition inherited from the AHP 
theory will not hold 

jir~

ijr jir~

Δ)/1,/1,/1( ijijij lru

(5)                      ikjkij rrr ~~~ =⊗  

in particular because multiplication of fuzzy 
intervals does not preserve triangular 
membership functions. However, even with 
intervals, this equality is too demanding (since it 
corresponds to requesting two usual equalities 
instead of one) and impossible to satisfy. For 
instance take i = k in the above equality. On the 
left hand side is an interval, on the right-hand 
side is a scalar value (=1). So it makes no sense 
to consider a fuzzy AHP theory where fuzzy 
intervals would simply replace scalar entries in 
the preference ratio matrix. 
3.2 Consistency 
In our approach, a fuzzy-valued ratio matrix is 
considered to be a fuzzy set of consistent non-
fuzzy ratio matrices. Each fuzzy entry is viewed 
as a flexible constraint. A ratio matrix is 
consistent in the sense of AHP (or AHP-
consistent) if and only if there exists a set of 
weights w1, w2,…, wn, summing to 1, such that 
for all i, j,   = .  ijr ji ww /

Using a fuzzy reciprocal matrix, some kind of 
consistency index of the data matrix is necessary. 
This index will not measure the AHP- 
consistency of a non-fully consistent matrix, but 
instead will measure the degree to which an 
AHP-consistent matrix R exists, that satisfies the 
fuzzy constraints expressed in the fuzzy 
reciprocal matrix R~ . More precisely this degree 
of satisfaction can be attached to a n-tuple of 
weights w = (w1, w2,…, wn) since this n-tuple 

defines an AHP-consistent ratio matrix. This 
degree is defined as  

 (6)             )/(min)(
, jiijji

wwμα =w . 

It is the “degree of consistency” of the weight 
pattern w with the fuzzy ratio matrix R~  in the 
sense of fuzzy constraint satisfaction problems 
(FCSPs) [5]. The coefficient α(w) is in some 
sense an empirical validity coefficient 
measuring to what extent a weight pattern is 
close to, or compatible with, the DM revealed 
preference. 

The best fitting weight patterns can thus be 
found by solving the following FCSP:  

maximize 
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡

j

i
ijji w

wμα
,

min  

10 ≤≤ iw , , i=1,…,n, 1=∑
n

i
iw

where wi is the weight of alternative i, and n is 
the total number of alternatives. Maximizing α 
corresponds to getting as close as possible to the 
ideal preference patterns of the DM (in the sense 
of the Chebychev norm). Let  
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α* is a degree of consistency different from 
Saaty's index, but which can be used as a natural 
substitute to the AHP-consistency index for 
evaluating the DM’s degree of rationality when 
expressing his or her preferences. 

Solving this flexible constraint satisfaction 
problem in terms of α enables the fuzzy ratio 
matrix to be turned into an interval-valued 
matrix defining crisp constraints for the main 
problem of calculating local weights, as shown 
in the next subsection.  

As usual, the FCSP problem can be re-stated 
as follows 

maximizeα   

s.t.     αμ ≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

j

i
ij w

w
, 

1=∑
n

i
iw ,  i,j =1,…,n, 



and we can express the first constraint as 
follows 

(8)           ])(,)([/ 11 αμαμ −−∈ ijijji ww , 

where )(1 αμ −
ij  and )(1 αμ −

ij are the lower and 

upper bound of the α-cut of )/( jiij wwμ , 
respectively. This becomes 

(9)          )()( 11 αμαμ −− ≤≤ ijjiijj www . 

Here, if all ijμ are triangular fuzzy numbers 
, the problem becomes a non-

linear programming problem as follows, 
Δ),,( ijijij url

[NLP] 

maximize α  

{ } { })()( ijijijjiijijijj uruwwlrlw −+≤≤−+ αα

1=∑
n

i
iw ,  i,j=1,...,n. 

The problem is one of finding a solution to a 
set of linear inequalities if we fix the value of 
α. Hence the following method: 

 

[Solution] Dichotomy Method 

I. Solve NLP for α = 0 (support sets) 
using the simplex method,  

if there is a solution, then let αL be 0 and go to  
III 

if there is no solution then stop and let α*=0 
(the ratio matrix must be changed). 

II. Solve NLP for α = 1 (core),  

if there is a solution, then stop and let α*=1, 

if there is no solution then let αU be 1 and 
go to III 

III. Solve LP for α = ( αL  + αU ) / 2,  

if there is a solution, then let αL be α and 
go to IV, 

if there is no solution then let αU be α and 
go to IV. 

IV. If αU -αL ≥ ε, then go to III, 

if αU -αL < ε , then let α be α* and stop. 

 

3.3 Unicity of the optimal weight pattern 
  Results obtained by Dubois and Fortemps [6] 
on best solutions to maxmin optimization 
problems with convex domains can be applied 
here. Indeed, it is obvious that the set of weight 
patterns obeying (9), for all i, j is convex. Call 
this domain Dα . If w1 and w2 are in Dα , so is 

their convex combination . 
Note that the ratios w

1 2(1 )λ= + −w w w
i/wj lie between w1

i/w1
j  and 

w2
i/w2

j. Hence, if for all i, j,  w1
i/w1

j differs from 
w2

i/w2
j, it is clear that  

(10)      
1 2

1 2min ,i i
ij ij ij

j j

w w
w w

μ μ μ i

j

w
w
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So in particular, suppose there are two 
optimal weight patterns w1 and w2 in the optimal 
α*-cuts, whose ratio matrices differ for all non-
diagonal components. It implies that for 

, 1 2( )= +w w w / 2

(11)            *i
ij

j

w
w

μ α
⎛ ⎞

>⎜ ⎟⎜ ⎟
⎝ ⎠

,  i,j =1,…,n, 

which is contradictory. In this case, there is only 
one weight pattern w coherent with the interval-
valued matrix whose entries are intervals (˜ r ij )α* . 

In the case when there are at least two optimal 
weight patterns w1 and w2 in the optimalα*-cuts, 
their ratio matrices coincide for at least one non-
diagonal component (w1

i/w1
j = w2

i/w2
j). In [6], it 

is shown that in this case, 

(12)            
1 2

*
1 2
i i

ij ij
j j

w w
w w

μ μ α
⎛ ⎞ ⎛ ⎞

= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

   So the procedure is then iterated: For such 
entries of the matrix, the fuzzy numbers in place 
(i, j) must be replaced by the *α -cut of . It 
can be done using the best weight pattern w* 
obtained from the dichotomy method, checking 
for (i, j) such that  

ijr~

(13)                  
*

*
*
i

ij
j

w
w

μ α
⎛ ⎞

=⎜ ⎟⎜ ⎟
⎝ ⎠

. 

The problem [NLP] is solved again with the 
new fuzzy matrix. It yields an optimal 
consistency degree β*>α* (by construction). If 
the same lack of unicity phenomenon reappears, 
some fuzzy matrix entries are again turned into 



intervals, and so on, until all entries are interval. 
The obtained solution is called “discrimin”-
optimal solution in [6] and is provably unique 
from theorem 5 in the paper.  

 

4 An Example   

In Table 1, a 4-dimensional fuzzy reciprocal 
matrix is presented; lower triangular 
components are omitted to write because they 
are reciprocal of their symmetric components 
and diagonals are singletons as in normal AHP. 

Table 1: Fuzzy reciprocal matrix 

1 (1, 3, 5)△ (2, 5, 7)△ (6, 8, 9)△

  1 (1, 2, 4)△ (2, 4, 5)△

    1 (0.5, 2, 3)△

      1 

Table 2: Interval-valued matrix 

 
For the data matrix found in Table1, the degree 
of satisfaction can be calculated as α* = 0.711, 
and the fuzzy matrix can be turned into an 
interval-valued matrix presented in Table2. At 
last, unique weights w = (w1, w2, w3, w4) from 
the fuzzy data matrix are calculated as shown in 
Table 3. Also weights from the crisp data matrix 
(using the cores of Table 1) to compare with is 
written in this table. 

Table 3: Weights from fuzzy and crisp matrix. 

 fuzzy data crisp data

w1 0.581 0.590 

w2 0.240 0.228 

w3 0.110 0.119 

w4 0.070 0.063 

 

 The optimal maxmin solution found in this 
example is unique. This is not surprising, 
because the situation of non-unicity is not 
common. In case this solution is not unique, the 
discrimin solution is unique [6] as pointed out 
above. 

5. Evaluating decisions  
The global (aggregated) evaluation of a 

decision f is given by means of the unique 
(discrimin) optimal weight pattern w* in Dα :  

(14)           * ( )f i i
i

V w u= f∑ , 

where  is the utility of decision f under 
criterion i. 

)( fui

In order to account for the imprecision of the 
DM’s inputs, we should also use weight patterns 
consistent with all α-cuts of the fuzzy ratio 
matrix, for α ∈ (0, α*], and obtain intervals as 
global evaluations of decision f:  

(15)                      [ , ]f fV Vα α  , 

by solving the following optimization problems,  

(16)           ∑=
i

iif fuwV )(min , 

(17)           ∑=
i

iif fuwV )(max , 

   s.t.     iw
jw

∈ ( ij˜ r )
α

  ,  . 1=∑
n

i
iw

In theory, this problem should be solved for 
all α ∈ (0, α*]. Noticing that all intervals 
[ , ]f fV Vα α  are nested, we can compute a fuzzy 

evaluation of decision f, which is a fuzzy 
interval with height α*. The subnormalization 
(which is the usual situation here) indicates 
some inconsistency between the best weight 
pattern in agreement with the fuzzy preference 
ratio matrix and the best local ratio evaluations 
provided by the DM (the cores of the fuzzy 
intervals ).  ijr~

  In practice, we can approximate the fuzzy 
global evaluations of decisions as a triangular 
fuzzy number 

(18)                  Δ= ),,(~
fff VVVV , 

with height α* expressing the validity of the 
results, Vf being calculated from the optimal 
weight patterns, and ],[ ff VV  being the widest 

interval calculated from the supports of the 
fuzzy entries . This representation is an ijr~

1 [2.42,3.58] [4.13,5.58] [7.42,8.29]

  1 [1.71,2.58] [3.42,4.29]

    1 [1.57,2.29]

      1 



approximation but it can be a useful compact 
way to show results. To refine it, it is enough to 
compute the interval-valued approximation for 
more cuts between 0 and α*. 

6. Conclusion. 
In classical AHP it is often difficult for the 

DM to provide an exact pairwise data matrix 
because it is hard to estimate ratios of 
importance in a precise way. Therefore we use 
fuzzy reciprocal matrices, and propose a new 
kind of consistency index. This index is 
considered as an empirical validity coefficient 
evaluating to what extent a weight pattern is 
close to the DM revealed preference. 

In the next step, we will be able to show 
examples of AHP entirely. Moreover we plan to 
implement these results on actual data. We will 
also try to refine the search for appropriate 
weights that employs the DM’s subjective 
distance.  

Here we maintained the idea of using 
numerical pairwise preference degrees as 
importance weight ratios, only acknowledging 
the idea that a DM cannot provide precise data. 
As a consequence, even if our method is more 
faithful to the poor precision of the data, the 
obtained ranking of decisions will suffer from 
all limitations of the AHP method (described in 
[2] for instance).  

Another research direction would be to 
reconstruct a counterpart of Saaty’s method on 
an ordinal scale such as a finite chain of 
preference levels, in order to get more robust 
results. This would imply giving up the 
weighted sum as a basis for decision evaluation.  
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