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Abstract

A general approach to practical inference with gradual implicative rules and fuzzy inputs is presented.

Gradual rules represent constraints restricting outputs of a fuzzy system for each input. They are tailored for

interpolative reasoning. Our approach to inference relieson the use of inferential independence. It is based on

fuzzy output computation under an interval-valued input. Adouble decomposition of fuzzy inputs is done in

terms ofα-cuts and in terms of a partitioning of these cuts according to areas where only a few rules apply. The

case of one and two dimensional inputs is considered. An application to a cheese-making process illustrates the

approach.

I. INTRODUCTION

Fuzzy logic, as an interface between symbolic and numeric computations, is well-known for its ability

to represent the graded nature of some non-Boolean linguistic concepts.

Historically, fuzzy inference systems were devised to perform a reasoning task based upon expert

knowledge yielding a continuous numerical ouput, as neededin fuzzy control. Afterwards, many learning

methods were added to enhance numerical performance.

Conjunctive rules used in the Mamdani-style fuzzy inference systems [1], represent joint sets of

possible input and output values. They cannot be easily interpreted as generalizations of usual Boolean

“if-then” statements in propositional logic, since the latter are modelled by material implication [2]. The

weak logical behavior of conjunctive rules was pointed out by several authors like Baldwin and Guild [3]

and Di Nola et al. [4]. Nevertheless, mainly due to alleged computational difficulties, fuzzy extensions

of material implications have been neglected so far, if not simply rejected as proper tools for modeling

fuzzy systems. For instance, Mendel [5] dismissed implicative fuzzy rules as being counterintuitive for

engineers, and dubbed “engineering implications” the minimum or product operations, that are in fact

generalized logical conjunctions.

However, inferring with parallel implicative rules and a precise input is not more computationally

difficult than with fuzzy conjunctive rules (it can be done rule by rule). Moreover, it yields normalized

fuzzy outputs often more precise than with conjunctive rules. Recently, we outlined several advantages of

implicative rules with respect to conjunctive rules [6]. For instance, with conjunctive rules, the more rules

in a rule base, the more imprecise its output becomes. This fact is usually hidden by defuzzification.

The converse occurs with implicative rules. Their output isall the more precise as more rules are

triggered. Furthermore, using conjunctive rules, the fuzzy output width can bias the defuzzified result.

In constrast, gradual implicative rules [7] model constraints restricting output values for each input, and

have interesting interpolation properties [7], [8]. They are fully compatible with the classical logic view.
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Among these kinds of rules, the most interesting ones for practical purposes use Goguen implication

because of its continuous inference result [2], and Resher-Gaines implication if a non fuzzy (interval)

output is needed [7]. Implicative rules are more natural to represent expert knowledge [9] as they model

constraints relating input and output values.

In practical applications, fuzzy inputs are useful to account for sensor imprecision and approximate

measurements. Furthermore in the case of cascaded fuzzy systems, it makes little sense to defuzzify the

output to one system before feeding the next one, since it comes down to neglecting the meta-information

concerning the imprecision of results (hence the validity of the eventually defuzzified overall output

cannot be assessed).

Note that the recent blossoming of Type 2 fuzzy systems [10],was partly motivated by the need for

accounting for higher order uncertainty in fuzzy systems outputs. Since the output of a fuzzy system is

usually precise (either due to fuzzification or due to the useof the Takagi-Sugeno approach), this concern

may look legitimate. But, arguably, the higher-order uncertainty is already present in the fuzzy output of

a Type 1 fuzzy logic system, if rule conclusions are not precise, provided one refrains from defuzzifying

it1. However, the fuzzy output of Mamdani systems is hard to interpret as often not normalized and

with unreasonably wide support. On the contrary, the fuzzy output of consistent implicative fuzzy logic

systems is a regular fuzzy interval (provided suitable fuzzy partitions of the input and output space are

chosen). It can be summarized by a precise value if needed, and the higher order uncertainty of this

value can be measured by some non-specificity index of the fuzzy output.

Moreover the imprecision produced by a set of implicative rules is rather limited when the rules are

informative enough, which enables cascading.

Nevertheless, the practical use of parallel implicative rules with a fuzzy input is difficult, as the

inference can no longer be done rule by rule. The aim of this article is to show that under some

conditions on input partitions, inference becomes easier due to a double decomposition of the fuzzy

input: byα-cut and by partitioning. In the sequel, section II recalls features of conjunctive and implicative

rules and compares them according to some expected properties. In section III, we present sufficient

conditions to obtain inferential independence, so as to facilitate the calculation of the inference process.

Then, in section IV, exact analytical expressions are givenfor one dimensional systems. In section

V we propose a fuzzy input decomposition method based on inferential independence that allows to

simplify the inference mechanism, and apply it to the one dimensional case. Section VI adresses the

1The term “defuzzification” to designate the extraction of a precise value from a fuzzy set is a language abuse, as strictlyspeaking,

stripping a fuzzy set from its fuzziness should yield a crispset, not an element thereof.
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two dimensional case. Finally, a practical application to the predictive diagnosis of a cheese-making

process is outlined in section VII to illustrate the technique.

II. FUZZY RULES: CONJUNCTION VS IMPLICATION

Before examining the semantics of fuzzy rules, let us first recall what is the meaning of a rule in

classical logic, i.e. a crisp rule. A crisp rule “IfX is A thenZ is O” relates two universes of discourse

U andW that form the domains of variablesX andZ respectively, locally restricting the domains ofX

andZ to subsetsA of U andO of W . Such a rule can be interpreted in two ways according to whether

one focuses on its examples or its counterexamples [11]. Theexamples of the rule precisely form the

set of pairs(u, w) ∈ A×O. Modeled as such, a rule cannot be understood as a constraintsinceA×O

does not encompass all admissible pairs(u, w) relatingU andW . Indeed, the rule does not preventX

from lying outsideA. So the rule cannot be understood as the necessity to let(X, Z) ∈ A×O; it only

points outA × O as one set of explicitly allowed pairs for(X, Z).

On the contrary, the counterexamples of the rules are the setof pairs (u, w) such thatu ∈ A, w 6∈

O. The Cartesian productA × Oc, whereOc is the complement ofO, is the set of pairs of values

explicitly forbidden by the rule. It means that the set of implicitly allowed pairs of values form the set

(A×Oc)c = Ac ∪O = (Ac ×W ) ∪ (A ×O) corresponding to a material implication. This is the usual

representation of rules in classical logic. Clearly, to thesetA×O of examples, it adds the set(Ac×W )

of pairs of values uncommitted by the rule. Since a rule refers to both examples and counterexamples,

the complete representation of the rule is the pair(A × O, Ac ∪ O) made of explicitly and implicitly

permitted values(u, w).

In the case of fuzzy rulesA and O are fuzzy sets, and the two fuzzy setsA × O and Ac ∪ O are

modelled using fuzzy connectives of conjunction and implication, respectively:

µA(u) ∧ µO(w); (1)

µA(u) → µO(w). (2)

First we will present commonly used rules: conjunctive rules. Then implicative rules will be described.

An interpretation in terms of logic will be given and a comparison will be made according to several

properties.

A. Conjunctive Fuzzy Rules

In contrast to logic representations, the most popular representation of fuzzy rules is the Cartesian

product of the fuzzy condition and the fuzzy conclusion, following the approach of Mamdani. These
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rules may have a simple interpretation in terms of guaranteed possibility distributions [2]. For a given

variableX, a guaranteed possibility distributionδX is associated to statements of the form “X ∈ A is

possible”:

∀u ∈ U, δX(u) ≥ µA(u).

The statement “X ∈ A is possible” only means that values inA are possible to some degree.δX(u) = 1

indicates thatX = u is an actual situation, an observed value.δX(u) = 0 indicates no evidence in favor

of X = u has been collected yet. It does not forbid situations where the statement is false.δX is a

lower possibility distribution. Note that this interpretation is at odds with classical logic where asserting

a propositionp explicitly forbids situations wherep is false.

Conjunctive rules “ifX is A thenZ is O”, can be understood as: “the moreX is A, the more possible

it is thatZ lies in O” [2]. In this approach, the operator “then” is modeled by a conjunction and the rule

output is a guaranteed possibility distribution:δZ|X = µA ∧ µO. The traditional Mamdani conjunction

operator is themin.

∀u ∈ U, ∀w ∈ W, δZ|X(u, w) can be interpreted as follows: whenX is A to some degree, “Z is O”

is possible at least to levelmin(µA(u), µO(w)).

If we consider a crisp inputu0 and if µA(u0) = α with α ∈ [0, 1], values inO are guaranteed at

degreeα. So the outputO′ is given by the truncation ofO at levelα as shown on figure 1.

0

1

W
0

1

U

α

µO

Mamdani conclusion

µO′

α

µA

Rule condition

Fig. 1. Inference with Mamdani rules

In a knowledge baseK = {Ai × Oi, i = 1, ..., n} of n parallel fuzzy rules (having the same

input spaceU and the same output spaceW ), rule aggregation is disjunctive. As a rule suggests outputs

with a guaranteed possibility degree, when two or more rulesare fired, all the corresponding outputs

are guaranteed, each one at least to levelδi
Z|X , ∀i. The final possibility distribution will then be:
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δK ≥ max
i=1,...,n

δi
Z|X (3)

The maximum represents a lower bound of possibility degrees. Clearly, δZ|X(u, w) = 0 means that

if X = u, no rule can guarantee thatw is a possible value forZ. Ignorance is then represented by a

null distribution:δZ|X(u, w) = 0, ∀w.

B. Implicative Fuzzy Rules

The interpretation of implicative rules is based on a straightforward application of Zadeh’s theory

of approximate reasoning [12]. According to Zadeh, each piece of knowledge can be considered as a

fuzzy restriction on a set of possible worlds. It extends theconventions of classical logic.

The statement “X is Ai ” can be depicted as:

∀u ∈ U, πX(u) ≤ µAi
(u) (4)

whereπX(u) is a (potential) possibility distribution. “X is Ai ” now means: “X must be inAi ”,

it represents a constraint, i.e., negative information in the sense that it points out forbidden values.

In view of the above discussions, the two possibility distributionsδZ|X andπZ|X have very different

semantics: degrees of possibility expressed byπZ|X are potential :πZ|X(u, w) = 1 means that nothing

forbids (u, w) from further consideration, whileπZ|X(u, w) = 0 means that(u, w) is forbidden by the

rule.

The difference of nature between conjunctive and implicative rules has impact when combining

several rules together: while several conjunctive rules are combined disjunctively (as they point to more

examples than a single rule), implicative rules are combined conjunctively, because several constraints

lead to a more restricted feasible set of allowed situationsthan a single constraint:

πZ|X(u, w) = min
i=1,...,n

πi
Z|X = min

i=1,...,n
(µAi

(u) → µOi
(w)) (5)

Rule aggregation is conjunctive because the possibility inthe sense of (4) is not guaranteed: a value

estimated as possible by a rule can be forbidden by other rules.

There are different kinds of implicative rules: certainty rules and gradual rules [2]. In this article,

we only focus on gradual rules. The behavior of gradual implicative rules, “the moreX is A, then the

moreZ is O”, depends on the selected implication. We consider in this paper the following residuated

implications :
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• Resher-Gaines:a → b =







1 if a ≤ b

0 otherwise

• Gödel:a → b =







1 if a ≤ b

b otherwise

• Goguen:a → b =







min(1, b/a) if a 6= 0

1 otherwise

Figure 2 clearly shows that under a precise inputu0 the resulting output affects the shape of the

conclusion part while maintaining the output values withinthe support of the rule conclusion. In all

cases the core of the output gets larger as the input membership value decreases, thus relaxing the

constraint expressed in the rule conclusion at level 1. In the case of Goguen implication, the output

membership function remains continuous, ifµA(u0) > 0, while Gödel implication almost always results

in a discontinuous output. In the case of Resher-Gaines implication, the output coincides with the core

of the output obtained by all other residuated implications, a crisp interval in practice, that gets wider as

the input membership value decreases [7], [13]. In particular, if µA(u0) = 1 and the core of the output

is a singleton, the output is precise.

0
U

1

α

µA

Rule condition

0

1

W

α

Godël conclusion

µO

µO′

0

1

W

α

Goguen conclusion

µO′

µO

0

1

W

α

µO

µO′

Resher-Gaines conclusion

Fig. 2. Inference with one gradual rule and a precise input

Modus Ponens in classical logic is:A ∧ (A → O) |= O where |= represents the logical inference.

In fuzzy logic, modus ponens can be non-trivially extended to Generalised Modus Ponens (GMP) [14]

A′ ∧ (A → O) |= O′. In the presence of an approximate factA′ and the implicationA → O, we are

able to calculateO′ defined by:

µO′(v) = sup
u∈U

(

µA′(u)>(µA(u) → µO(w))
)

(6)

The outputO′ constrains the value of the output variable. When an operator → (implication) is

obtained from> (conjunction) by residuation, the GMPA′ ∧ ( A → O ) |= O′ is recovered for
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fuzzy rules [15]. Note that for pure (Resher-Gaines) gradual rules, modus ponens is strengthened: from

A′ ⊂ A andA → O, a conclusion more precise thanO can be obtained.

C. Rule Behavior Comparison

In line with their different meanings, conjunctive and implicative rules do not behave similarly. In

the presence of fuzzy inputs or cascading systems of fuzzy rules, conjunctive rules have some unnatural

behavior.

1) Interpolation between rules:The interpolation mechanism used for Mamdani rules is described

in depth in [16]. Let us consider input/output partitions such ascore(Ai) = {ai} and supp(Ai) =

[ai−1, ai+1], with ai−1 < ai < ai+1

a) Conjunctive possibility rules:Figure 3 shows the output possibility distribution inferred by

three Mamdani rules,Ai ∧ Oi (i = 1, 2, 3), when inputu0 moves froma1 to a2 (see subfigure a): only

truncation levels ofO1 andO2 are affected (see subfigure b). A defuzzification step is always needed.

Subfigures (c) and (d) respectively show results using mean of maxima and centroid defuzzifications.

Only the centroid defuzzification leads to a continuous function, which is generally monotonic. However,

contrary to what could be expected, this function is not linear. In fact it has been shown that in some

configurations, a set of fuzzy rules qualitatively expressing a monotonic behavior may fail to produce

a monotonic control law ([17] and [18]).

b) Gradual implicative rules:Figure 4 illustrates the case of three gradual rulesAi → Oi(i =

1, 2, 3). Due to the fuzzy partition structure, the maximum is unique(b) and defuzzification is not

necessary in that case. Subfigure (c) shows the linear evolution of this unique maximum. This subfigure

holds for all residuated implications, as they yield the same core.

2) Influence of the specificity of the rules:Let us consider two rules triggered at the same level.

a) Conjunctive possibility rules:When two trapezoidal output fuzzy sets have equal widths, the

inferred value (mean of maxima or centroid) is equal toz such thatµO1(z) = µO2(z). This result is

the one expected. Nevertheless, if one output set is wider than the other, the defuzzified value moves

towards the wider one, which is counter-intuitive, as shownin the left part of figure 5.

b) Gradual implicative rules:This behavior is impossible with gradual implicative rulesbecause

rules are aggregated in a conjunctive way. In fact the resultof triggering two gradual rules is more

precise than the result of triggering a single rule. This is totally the opposite situation for conjunctive

rules, even with precise inputs. So there is a natural expectation of limited imprecision of results when

triggering fuzzy implicative rules with fuzzy inputs, including the case when such fuzzy inputs result

from a previous inference step.
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A1 A2 A3
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Fig. 3. Interpolation with Mamdani rules
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3) Rule accumulation:Adding a conjunctive rule enlarges the output possibility distribution. Then a

rule system is never inconsistent even if the rule base includes conflicting rules from a knowledge

representation point of view. When many rules are added to the rule base, the output possibility

distribution approaches the membership function of the whole referential. That behavior, often hidden by

defuzzification, is not intuitive because we might think that adding new rules (hence new information)

to the knowledge base would lead to a more accurate system. Ifconjunctive fuzzy systems have to be

cascaded, it is clear that using the fuzzy output of the first system as a fuzzy input for the second one

may lead to unreasonably imprecise responses.

Implicative rules formulate constraints on possible input/output mappings. The more rules there are

in a rule base, the more precise the output fuzzy set becomes,at the risk of reaching inconsistency.

Inconsistency arises when for a given inputu ∈ U, πZ/X(u, w) < 1, ∀w. This feature is interesting

because it allows to check logical consistency of the rule base [19].

4) Inference Mechanism:With conjunctive rules, the outputO′ is equal to:

O′ = A′o(

n
⋃

i=1

Ai ∧ Oi) =

n
⋃

i=1

(A′o(Ai ∧ Oi)) (7)

because of the commutativity of thesup−min composition (denotedo) and the
⋃

operator, the

maximum for Mamdani systems. This method, named FITA2, corresponds to the right-hand side of

equation 7. The inference mechanism is easy to implement because the inference can be performed rule

by rule.

With implicative rules, the outputO′ is given by:

O′ = A′o

n
⋂

i=1

(Ai → Oi) (8)

where
⋂

is the minimum operator. WhenA′ is a precise input, operatorso and
⋂

commute, the

output can then be written:

2FITA means ”First Infer Then Aggregate”
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O′ =

n
⋂

i=1

((A′oAi) → Oi))

This formalisation corresponds to the FITA method for computing inference results.

However, when the inputA′ is imprecise or fuzzy, the commutativity betweensup−min composition

and the
⋂

operator is no longer possible [14]. Only the expression (8)which is a FATI3 inference is

correct. For an approximate fact, the following inclusion is true :

A′o

(

n
⋂

i=1

Ai → Oi

)

⊆
n
⋂

i=1

(

(A′ o Ai ) → Oi

)

The FITA method only gives an upper approximation of the result.

Currently there are almost no practical methods for computing inference with implicative fuzzy rules.

One method had been developed in [20] for Gödel implicationwhen the fuzzy sets in condition parts

are one-dimensional and have overlapping cores. Another technique proposed by Ughetto and al. [21] is

devoted to Resher-Gaines implications with one-dimensional inputs; it presupposes an explicit calculation

of the (crisp) relation defined by a set of gradual rules, in the form of two piecewise linear functions.

D. Other fuzzy interpolation techniques

In this subsection we briefly discuss the difference betweengradual rule-based inference and other

fuzzy interpolation methods. Many fuzzy systems rely on theproposal previously made by Takagi and

Sugeno [22] to simplify Mamdani-like systems, turning the fuzzy conclusions of rules into precise ones.

Then, using the centroid defuzzification, the fuzzy system computes a standard interpolation between

precise conclusions, weighted by the degrees of activationof rules, due to a precise input. There is a

precise connection between Takagi-Sugeno systems and gradual rules. In the one dimensional case, if

strong partitions are used for inputs and output, Takagi-Sugeno inference coincides with gradual rule

inference, both of which generalize linear interpolation [23]. In particular, a precise input yields a precise

output. In the multidimensional case, this equivalence no longer holds because the output of a gradual

rule system under a crisp multidimensional input is generally an interval [13]. Nevertheless it is possible

to devise a gradual rule system so that the output interval contains the precise output of some prescribed

T-S system. In fact, even if gradual rule systems have interpolation capabilities built in the logic, their

scope is to reflect the imprecision pervading the input and the rules in their output results, while T-S

3FATI means ”First Aggregate Then Infer”
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systems aim at modeling a generalized form of precise interpolation by means of rules having fuzzy

conditions.

Other interpolation methods exist for fuzzy systems havingrules whose condition parts fail to cover

the input domain, starting with works by Koczy and Hirota [24]. Usually, such methods start with a

given classical numerical interpolation scheme, and extend it to fuzzy data expressed by scarce fuzzy

rules. Reasoning alpha-cut-wise often leads to difficulty because the obtained output intervals for each

membership levels may fail to be nested. Jenei and colleagues [25], [26] provide an extensive analysis

of fuzzy interpolation techniques with a set of requirements fuzzy interpolation should satisfy. The

latter family of techniques is driven by the necessity to produce an output result despite the scarcity of

information, while the gradual rule approach is tailored not to produce an output result when a logical

inconsistency is detected [19], a conflict resulting from handling too much information.

III. I NFERENTIAL INDEPENDENCE

To design a practical algorithm for implicative inference,we use the interesting property of inferential

independence [27], leading to well-conditioned systems. Section III-A recalls the main results available

in the literature, that will be used in section III-B.

A. Definitions and results

A rule system{Aj → Oj, j = 1, . . . , n} is well-conditioned if it produces the output factOi when

fed with the input factAi, for any i = 1, . . . , n:

∀i, Aio
⋂

j

(Aj → Oj) = Oi

More often than not, this condition is not satisfied, and the output is more precise:

Aio
⋂

j

(Aj → Oj) = O′
i ⊂ Oi

According to Morsi[28], if we substitute each rule conclusion with the inferred outputO′
i, the system

Aj → O′
j is well-conditioned:

Aio
⋂

j

(

Aj → O′
j

)

= O′
i

April 11, 2008 DRAFT
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Morsi’s proof uses residuated implication properties [29]verified by Gödel and Goguen operators

and the relation:
⋂

j(Aj → Oj) =
⋂

j(Aj → O′
j) proved in [28]. In a well-conditioned system, rules

are said to beinferentially independent.

This way of doing requires an inference step. Alternatively, the inferential independence property can

be guaranteed by a proper design of fuzzy input partitions.

B. Sufficient conditions for a well-conditioned system

In the sequel, we look for a form of fuzzy input partition ensuring a well-conditioned system. Two

cases are to be considered: residuated implications (Gödel and Goguen) and Resher-Gaines implication.

The following result does not work for Resher-Gaines but it is true for all residuated implications

obtained from a continuous t-norm.

Theorem: A system of fuzzy implicative fuzzy rules{Ai → Oi, i = 1, . . . , n}, modeled by residuated

implications is well-conditioned as soon as

∀ i = 1, . . . , n ∃ x ∈ core(Ai), µAj
(x) = 0, ∀ j 6= i.

Proof: Let > be a continuous triangular norm on[0, 1], and→ be the corresponding residuated

implication a → b = sup{c, a>c ≤ b}. The max−min composition is generalized into amax−>

composition. From equation (6), and because of the conjunctive aggregation of implicative rules, we

require:∀z ∈ W,

sup
x∈U

µAi
(x)>min

j∈N

(

µAj
(x) → µOj

(z)
)

= µOi
(z)

We can shiftµAi
(x) and t-norm> inside of min. We are looking for sufficient conditions for the

equality:∀z,

sup
x∈U

min
j∈N

(

µAi
(x)>(µAj

(x) → µOj
(z))

)

= µOi
(z)

to hold. This sufficient condition is equivalent to:

∀z, ∃x ∈ U,

min
j∈N

(

µAi
(x)>(µAj

(x) → µOj
(z))

)

= µOi
(z)

Then, the following conditions are sufficient to ensure thisequality:
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∀z, ∃x ∈ U,

∀j 6= i, µAi
(x)>(µAj

(x) → µOj
(z)) ≥ µOi

(z) (9)

and

µAi
(x)>(µAi

(x) → µOi
(z)) = µOi

(z) (10)

Choosingx ∈ core(Ai), equation (10) obviously holds since1 → µOi
(z) = µOi

(z) for residuated

(hence Gödel and Goguen) implications.

Now, we must deal with equation (9). If we considerx in the core ofAi, thenµAi
(x) = 1. A sufficient

condition is then:

∀z, ∃x ∈ core(Ai), ∀j 6= i, µAj
(x) → µOj

(z) ≥ µOi
(z) (11)

There are two cases:

• µAj
(x) > µOj

(z): then equation (11) is not usually true. If this strict inequality holds∀x ∈ core(Ai),

the system is not well-conditioned.

• µAj
(x) ≤ µOj

(z): then equation (11) is always true.

Fuzzy systems will ever respect the latter inequality condition µAj
(x) ≤ µOj

(z), if the following

property holds: at least one value in a fuzzy set core does notbelong to the support of other input fuzzy

sets. i.e. as we can see on figure 6,∃ x ∈ core(Ai), µAj
(x) = 0, ∀ j 6= i. Q.E.D.

This proof holds for a n-dimensional-input system as well (interpretingx as a vector of coordinates).

1

Ux0

Ai−1 Ai Ai+1

Fig. 6. A fuzzy partition allowing inferential independence

For strong input fuzzy partitions (see figure 8) the following stronger property holds:∀ j 6= i,

∀ x ∈ core(Ai), µAj
(x) = 0. Hence the system is always well-conditioned in this case. An interesting
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property useful for inference is that for strong fuzzy partitions, with x ∈ core(Ai), the system output

is Oi for Gödel and Goguen implications.

For the Resher-Gaines implication, equation (10) holds if,∀z, we choosex such thatµAi
(x) = µOi

(z).

Then equation (9) will hold if and only ifµAj
(x) ≤ µOj

(z). Assume strong input and output partitions.

Then, in the one-dimensional case, only adjacent rulesAi → Oi, Ai−1 → Oi−1 and Ai+1 → Oi+1 are

triggered. Then forj 6= {i, i + 1} equation (9) trivially holds. Forj = i + 1, this equation reads :

µAi
(x) > ((µAi+1

(x) → (µOi+1
(z))) ≥ µOi

(z)

Because of the strong partition assumption, the equation isequivalent to:

µAi
(x) > ((1 − µAi

(x) → (1 − µOi
(z))) ≥ µOi

(z)

which holds ifµAi
(x) = µOi

(z) for Resher-Gaines implication. This behavior is also true for j = i−1.

In the one dimensional case, exact analytical expressions can be calculated for the inference result.

We give them for all different implication types.

IV. A NALYTICAL EXPRESSIONS FOR INFERENCE WITH A SINGLE FUZZY INPUT

In the one dimensional case it is possible to provide analytical expressions of the inference result. Let

us consider a fuzzy inputA as a unimodal fuzzy interval whose support lies in the interval between the

cores of two subsequent rule conditions (which is the most complex case). Therefore, theµ function is

invertible.
The output is given by:

µO(z) = sup
x∈U

µA(x)>min
“

µAi
(x) → µOi

(z), µAi+1
(x) → µOi+1

(z)
”

As we deal with strong partitions this is also, lettingµ = µAi
, andν = µOi

for short:

µO(z) = sup
x∈U

µA(x)>min
“

µ(x) → ν(z), (1 − µ(x)) → (1 − ν(z))
”

(12)

Let us study the different implications. Figure 7 illustrates some notations. Let’s denotee = min
(

µ(x) →

ν(z), (1 − µ(x)) → (1 − ν(z))
)

.
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0

1

xa ai+1

µ
Ai A Ai+1

1 − µ
1

0

Oi

ν
O Oi+1

1 − ν

ooi oi+1arai al
z

Fig. 7. Notation (Resher-Gaines implication)

1) Resher-Gaines implication:Let us consider the case of Resher-Gaines implication. It isclear that

e > 0 if and only if µ(x) = ν(z), and thene = 1. Hencex is equal toµ−1(ν(z)), the inference result

ORG is such as:

µORG
(z) = µA(µ−1(ν(z))) (13)

In other words, if the input partition is the same as the output partition, the computed output is the

same as the fuzzy input.

2) Gödel implication: Now in the case of Gödel implication,> = min, and the inference process

reads, distinguishing 3 cases:

• µ(x) = ν(z) thene = 1

• µ(x) > ν(z) thene = ν(z)

• µ(x) < ν(z) thene = 1 − ν(z)

From equation 12, we can deduce:

µOGod
(z) = max

(

µA(µ−1(ν(z))), sup
µ(x)<ν(z)

min
(

µA(x),

1 − ν(z)
)

, sup
µ(x)>ν(z)

min
(

µA(x), ν(z)
)

)

= max

(

µA(µ−1(ν(z))), min
(

1 − ν(z),

sup
µ(x)<ν(z)

µA(x)
)

, min
(

ν(z), sup
µ(x)>ν(z)

µA(x)
)

)
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Note that, for a givenz, {x|µ(x) > ν(z)} is of the form[ai, µ
−1(ν(z))[, and so, the possibility degree

supµ(x)>ν(z) µA(x)) is 1 if µ−1(ν(z)) > a (the core ofA), andµA(µ−1(ν(z))) otherwise. In other words,

it is the membership degree ofµ−1(ν(z)) to the fuzzy interval[ai, A].

Similarly, supµ(x)<ν(z) µA(x) is 1 if µ−1(ν(z)) < a, andµA(µ−1(ν(z))) otherwise. In other words, it

is the degree of membership ofµ−1(ν(z)) to the fuzzy interval[A, ai+1] [30]. Hence

µOGod
(z) = max

 

µA(µ−1(ν(z))),min
“

1 − ν(z),

µ[A,ai+1](µ
−1(ν(z)))

”

, min
“

ν(z), µ[ai,A](µ
−1(ν(z)))

”

!

So, the inference resultOGod has the same coreo = ν−1(µ(a)) asORG and is such that:

µOGod
(z) =







max(µORG
(z), 1 − ν(z)) if z < o, o = core(O)

max(µORG
(z), ν(z)) if z > o, o = core(O)

3) Goguen implication:For Goguen implication,e = min
(

min(1, ν(z)
µ(x)

), min(1, 1−ν(z)
1−µ(x)

)
)

and> = ∗.

We know thatµA(x) = 0, ∀x /∈]al, ar[; we will then only consider the interval]al, ar[. For a givenz0,

we denotex0 = µ−1(ν(z0)). Then we have 3 cases:

• µ(x) = ν(z) ⇔ x = x0 thene = 1

• µ(x) > ν(z) ⇔ x ∈]al, x0[

thene = min
(

ν(z)
µ(x)

, 1
)

= ν(z)
µ(x)

• µ(x) < ν(z) ⇔ x ∈]x0, ar[

thene = min
(

1, 1−ν(z)
1−µ(x)

)

= 1−ν(z)
1−µ(x)

The result for Goguen is now given by:

µOGog
(z) = max

(

µA(x0), sup
x∈]al,x0[

µA(x) ∗
ν(z)

µ(x)
,

sup
x∈]x0,ar[

µA(x) ∗
1 − ν(z)

1 − µ(x)

)

Then, there are two cases:

• z < o :

First, let studysupx∈]al,x0[ µA(x) ∗ ν(z)
µ(x)

. On ]al, x0[, µA(x) is increasing andµ(x) is decreasing. For

x = x0, µ(x) = ν(z) so supx∈]al,x0[ µA(x) ∗ ν(z)
µ(x)

= µA(x0).

Then, we study the interval]x0, ar[. This study is more complex and gives the resultsupx∈]x0,ar [ µA(x)∗
1−ν(z)
1−µ(x)

= 1−ν(z)
1−µ(a)

. We do not give details here, but a geometrical demonstration proves that∀z <

o, 1−ν(z)
1−µ(a)

is always greater thanµA(x0).

So the final result is equal to:

µOGog
(z) = max

(

µA(x0), µA(x0),
1 − ν(z)

1 − µ(a)

)

=
1 − ν(z)

1 − µ(a)
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• z > o :

The study ofsupx∈]al,x0[ µA(x)∗ ν(z)
µ(x)

gives usν(z)
µ(a)

. In the interval]x0, ar[, sup]x0,ar [ µA(x)∗ 1−ν(z)
1−µ(x)

=

µA(x0). As previously one can show thatν(z)
µ(x)

> µA(x0).

As a consequence, the result of the inference forz > o is:

µOGog
(z) = max

(

µA(x0),
ν(z)

µ(a)
, µA(x0)

)

=
ν(z)

µ(a)

So, the resultOgog of the inference has the same coreo = ν−1(µ(a)) asORG and is such that:

µOGog
(z) =







1−ν(z)
1−µ(a)

if z < o

ν(z)
µ(a)

if z > o

Let us stress that all analytical expressions given here areonly valid for a fuzzy input lying in the

overlapping area between two fuzzy sets of the input partition. The case of a fuzzy input lying within

a fuzzy set core is obvious.

V. 1D INFERENCE ALGORITHM

We now use strong input fuzzy partitions and the inferentialindependence property to design a

practical inference process by input decompositions. These decompositions are instrumental due to the

following property of a fuzzy relation R:

(A ∪ A′)oR = (AoR) ∪ (A′oR) (14)

whereo is a sup-t-norm composition and∪ is the maximum operation.

We first consider one-dimensional inputs for explanation purposes. We detail the output calculation

for an α-level rectangular input, which our inference algorithm will be based upon. The decomposition

algorithm proposed here in 1D scales up to 2D inputs while theprevious analytical expressions do not.

A. Partitioning the input space

To partition the input space, we consider supports and coresseperately. LetEk be intervals forming a

partition, obtained as a alternating sequence of cores and peripheral parts of rules conditions (see figure

8). This decomposition isolates the fuzzy set cores. The inference is straightforward from a fuzzy input

lying in a core area, as, due to the strong fuzzy partition structure, only one rule is fired. In this case,

the output possibility distribution is either the whole setcorresponding to the fired rule conclusion for

Godel or Goguen operators, or its core for Rescher-Gaines operator.
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0

1

E2 E3 E4 E5

U
E1

Fig. 8. Partitioning decomposition with strong fuzzy partition

B. Fuzzy input decomposition

An α-cut of A is an interval defined by:

∀α > 0, Aα = {x ∈ R|µA(x) ≥ α}.

According to Zadeh’s representation result:A =
⋃

α∈]0,1] αAα. In the presence of a fuzzy input

A′, we first decomposeA′ in terms ofα-cuts . Then, we decompose these cuts in terms of the above

partition of the input space. In consequence, we have the identity:

A′ =
⋃

α

(

α(
⋃

k=1,...,p Ek ∩ Aα)
)

wherep is the number of intervalsEk.

In practice we use only a finite number of cuts with thresholdsα1 = 1 > α2 > · · · > αn > 0. A

fuzzy setA′ is then included within two inner and outer approximations (see figure 9).

⋃

j=1,...,n

αjAαj
⊆ A′ ⊆

⋃

j=1,...,n

αjAαj+1
(15)

1

0

α2

α3

α1
A’

U

Aα1

Aα2

Aα3

α1
A’

α2

α3

1

U0

Aα2

Aα3

Aα4

Inner Outer

Fig. 9. α-cut decomposition

External approximations seem to be more appropriate because they include the fuzzy input. The
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1

0

Ai

Ux

Ai+1

Rule condition

ai ai+1

α2

α1

1

0

Oi Oi+1

Resher-Gaines conclusion

oi oi+1 Wz

α2

α1

1

0

Godël conclusion

Oi Oi+1

oi oi+1 Wz

α2

α1

1

0

Goguen conclusion

Oi Oi+1

oi oi+1 Wz

Fig. 10. Inference with two gradual implicative rules and a precise input

approximated output contains the true output. It could be interesting to keep both inner and external

approximations in order to reason with two approximations like for Rough Sets [31].

The double decomposition presented above will be used in theinference algorithms that follow.

C. Inference with anα-level rectangular input

Due to the partitioning of the input space, the rectangular input (Ek ∩ Aα) overlaps on at most two

fuzzy sets. If this input lies within the fuzzy set core ofAi, the result is obvious: we obtainOi for

Gödel and Goguen implications andOi’s core for Resher-Gaines implication. Figure 10 recalls inference

results with a crisp input and two gradual rules whose conditions form a strong partition.

Let the interval of interest(Ek ∩ Aα) be denoted[il, ir]. An α-level rectangular input membership

function is defined byµ[il,ir] such that:µ[il,ir](x) =







α if il ≤ x ≤ ir

0 otherwise
Since the rectangular input[il, ir] lies in the support of two consecutive fuzzy sets (see figure 11),

the output is given by:

µO′(z) = sup
il≤x≤ir

min
i=1,...,n

(

α>µAi
(x) → µOi

(z)
)

In this specific case, it is equal to:

µO′(z)= sup
il≤x≤ir

min
(

α>µAi
(x) → µOi

(z),

α>µAi+1
(x) → µOi+1

(z)
)

(16)

for somei.

Sinceα and> are independent ofx and i, the system is equivalent to:
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Ai1

U
0

Ai+1

αi

αj

Rule condition

ai ai+1

�
�
�
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1

0

αi

αj

Oi Oi+1

Resher-Gaines conclusion

oi oi+11 W

1

0

αi

αj

Oi Oi+1

Gödel conclusion
oi oi+1 W

1

0

αi

αj

Oi Oi+1

Goguen conclusion
oi oi+1 W

Fig. 11. Inference with two gradual implicative rules and a fuzzy input decomposed on three levelsαj < αi < 1

µO′(z)=α> sup
il≤x≤ir

min
(

µAi
(x) → µOi

(z),

µAi+1
(x) → µOi+1

(z)
)

Next, the output behavior depends on the chosen residuated implication. We consider Resher-Gaines,

Gödel and Goguen implications.

Level α has only a truncation effect on the output’s height. No output element can have a higher

membership than levelα because the minimum is the upper bound of t-norms. Accordingto the chosen

implication, a different t-norm will be used. For Resher-Gaines and Gödel ones, the t-norm is the

minimum. Then, the output is truncated at levelα, but its shape is preserved. For Goguen implication,

t-norm is the product. The output is also truncated at levelα but the support slopes are modified (See

figure 11).

Output computation for one rectangular input is straightforward depending on the chosen implication.

The approximate one-dimensional inference process is completed by performing the union of outputs

inferred from eachα-level rectangular input taking both decompositions into account.

D. Results of the double decomposition

The result of the inference based on a fuzzy inputA′ is O′ of the form:

O′ =
⋃

k=1,...,p

(

⋃

α O
′α
k

)

whereO
′α
k = (Ek∩Aα)oR is obtained in two steps. First the output possibility distribution is calculated

for a level 1 rectangular input. Then the t-norm is applied tothis output possibility distribution. The
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minimum t-norm truncates the output possibility distribution while the product t-norm also affects its

slope, as illustrated in Figure 11.

E. Complexity

The inference process summary is given below. Letn be the number ofα-cuts, andk the number of

Ek intervals within the input partition.

• Decompose the fuzzy input byn α-cuts in order to consider it as a series ofα-level

rectangular inputs.

• Decompose each rectangular input according to theEk intervals within the input partition

in order to separate cores from intermediate zones.

Then, for eachα-level rectangular input, it is necessary to:

– Infer from each bound of theα-level rectangular input.

– Compute the convex hull of thek partial inferred sets

• Compute the union of then convex hulls.

An analysis of the algorithm complexity follows.

• α-cut input decomposition linearly depends onn.

• Decomposition of rectangular inputs linearly depends onn and on the number of their intersections

with the subsets resulting from the partition decomposition, i.e. k.

• Inference from both bounds of the rectangular input requires 2 calculations for eachα-cut.

• Convex hull can be determined by considering2k inferred bounds.

• Last step is the union ofn convex hulls.

As all operations linearly depend onn, this algorithm has complexityO(n).

F. α-cut related approximation

The only approximation made in the one dimensional inference algorithm described above comes

from the α-cut input decomposition. All the other steps include exactdecompositions, they are only

introduced in order to increase the algorithm efficiency. Let us give some elements to quantify theα-cut

related approximation. For that purpose, we consider “identical” input and output partitions, such as

the ones shown on Figure 12, with the same range[min, max] and two fuzzy sets each. In that case,

the analytical expression given in Equation 13 reduces toµORG
(z) = µA(z), ∀z ∈ [min, max]. The

inferred output must be identical to the fuzzy input (see Figure 12).
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min max
0

1

 

 

Fuzzy input

min max
0

1

 

 

Exact output

α−cuts

Fig. 12. α-cut related approximation

Table I gives the number ofα-cuts required for reaching various accuracy levels, depending on the

fuzzy input characteristics. The fuzzy input is chosen as a symmetrical trapezoidal fuzzy set.

Irrespective of the number ofα-cuts, the computed output has the same core as the exact output. The

accuracy level is evaluated as the ratiocomputed output area
exact output area

. It only depends on the fuzzy input slope,

which varies from 45 to 90 degrees. The results show that, whatever the slope, at most tenα-cuts are

necessary for ensuring an accuracy level better than ten percent.

Min. Accuracy (%)

Slope 20 15 10 5 2

45 ˚ 6 7 10 22 81

50 ˚ 5 6 8 15 47

60 ˚ 3 4 5 9 22

70 ˚ 2 3 3 5 12

80 ˚ 2 3 6

90 ˚ 1

TABLE I

NUMBER OFα-CUTS REQUIRED FOR A GIVEN ACCURACY

VI. 2D INFERENCE ALGORITHM

We now examine inference with fuzzy inputs in the two-dimensional case. We use the same decom-

position method as in the one-dimensional case. In the sequel, we denote a rule as:Ak ∧Bl → Ok,l. The

aim of this section is to determine the output in the presenceof two fuzzy inputs. In order to reduce

the complexity, a double decomposition is used again:
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• α-cut decomposition: decompose each fuzzy input into a unionof rectangular inputs of levelα,

0 < α ≤ 1. This decomposition allows to consider each fuzzy input on each dimension as a set of

α-level rectangular inputs.α is identical in both dimensions.

• Partitioning decomposition: For each rectangularα-cut, a decomposition is made according to the

different parts of the partition in order to handle the inference process locally. Thanks to inferential

independence, the inference from the core part is obvious.

As a consequence, the inferred output is now the result of a double union:

O′ =
⋃

k=1,...,p

(

⋃

α O
′α
k,l

)

O
′α
k,l is the inferred output resulting from inputsEk ∩ Aα andEl ∩ Bα.

The key issue to be considered is how to infer with anα-level rectangular input in each dimension.

If the function to be represented by the fuzzy rule-based system is monotonic and continuous, it is

sufficient to infer from each bound of the rectangular input on each dimension, in order to get the fuzzy

output interval bounds. If the output is not monotonic, we need to detect the extrema of the function

and deal with monotonic parts separately.

To sum up the inference process in two dimensions, it is necessary to:

• decompose the fuzzy input byα-cuts in order to consider the fuzzy input as a set ofα-level

rectangular inputs.

• decompose each rectangularα-cuts according to the input partition in order to separate core and

overlapping zones. This allows a local inference.

• for eachα-level rectangular input,

– infer from each of the 4 vertices of the 2α-level rectangular inputs.

– test if there are other useful points lying inside the rectangular input, and infer from all such

values.

– the final output is the convex hull of all the outputs so inferred.

• The union of all outputs previously computed is the final result.

A. Implementation

We have three key points to study:

• output partition: To preserve coherence and to insure interpretability of the system, we need to

choose proper output partitions.

• Continuity: we must insure continuity across the different areas obtained by decomposition.
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If X is A1 andY is B1 thenZ is O1,1

If X is A1 andY is B2 thenZ is O1,2

If X is A2 andY is B1 thenZ is O2,1

If X is A2 andY is B2 thenZ is O2,2

TABLE II

THE SET OF SIMULTANEOUSLY FIRED RULES FOR TWO INPUTS

• Extremal points: if the output is not monotonic between the two bounds of the rectangular input,

we need to detect the extremal points and to consider them forthe inference process.

In the sequel, we first study output partitions and the mechanism of inference for a precise input.

Then, we deal with continuity and kink points.

B. Output partitions coherence and interpretability

In this section, we focus on Resher-Gaines implication because its computation provides the core of

outputs inferred using residuated fuzzy implications. Each input variable is associated to a strong fuzzy

partition (see figure 13). The purpose of this section is to find output fuzzy sets capable of ensuring the

logical coherence of the rule base system [19]. Furthermore, we need to have an interpretable output

partition.

Thanks to the strong fuzzy partition a given two-dimensional precise input can trigger at most four

rules, shown on table II.

A1 A2

1 2 3 00

1 1
B1 B2

1 2 3U V

Fig. 13. Input partitions

Coherence:a rule system is coherent if for all input values, there is at most one output value totally

compatible (the infered output must be normalized)

To obtain a coherent system, a necessary condition is to haveO1,1 ∩O1,2 ∩O2,1 ∩O2,2 6= ∅. Sufficient

conditions are more demanding and can be found in [19]. Basedon results presented in [13], we build
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an output coverage whereO1,1 andO2,2 form a strong partition. In order to have an interpretable system,

we chooseSupport(O1,2) = Support(O2,1) = Support(O1,1) ∩ Support(O2,2). (see figure 14)

Note that this partition satisfies both system coherence andinterpretability properties. According to

whether the system we want to represent is symmetric or not,O1,2 andO2,1 may be identical or not.

1

0 W

O1,1 O1,2 O2,1 O2,2

Fig. 14. Output partition for coherence and interpretability

C. 2D inference for a precise input

With strong input partitions, there are 3 different situations according to the location of the precise

input (see figure 15).

• Case 1: both inputs lie within the fuzzy set cores of each dimension. In this situation we can

directly infer the output thanks to inferential independence (see section III). Output is equal to

core(Ok,l) for Resher-Gaines implication.

A1 A2

1B1

B2

2

1 2

3 2

121

U

V

Fig. 15. Areas defined by input partitions
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Fig. 16. Notation
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Fig. 17. Case 3: Four interesting areas

• Case 2: thex input lies within the fuzzy set core in a dimension and in the overlapping zone of

the other dimension. For example, choosex in the core ofA1 andy between the cores ofB1 and

B2. In consequence, 2 rules are triggered:A1 ∧ B1 → O1,1 andA1 ∧ B2 → O1,2.

• Case 3: Bothx andy inputs lie between the cores of adjacent fuzzy sets inU and inV (see figure

17). Four rules are triggered. This is the most complicated case.

Let us first study case 3 since case 2 is a particular case of 3. In the sequel, we denote by[o−(α), o+(α)]

the α-cut of the fuzzy intervalO (see figure 16).

1) Case 3: Given a 2D precise input, we can compute the Resher-Gaines output [13], which is an

interval defined by its lower boundzmin and its upper boundzmax. Let us denoteαi = µAi
(x) and

βi = µBi
(x). Zones are defined on figure 17 according to the value ofm = min(α1, α2, β1, β2),

whereα1 = 1 − α2, β1 = 1− β2 corresponding to changes in the inference results. Table III gives

them value for each zone. Let us detail what happens for the inference in zone 3.1, which corresponds
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Zone 3.1 3.2 3.3 3.4

min(α1, α2, β1, β2) β1 α1 β2 α2

TABLE III

ZONE PROPERTIES

to β2 > β1 andα1 andα2 both greater thanβ1.

In zone 3.1, the lower bound can come from four rules:

• A1 ∧ B1 → O1,1 gives us boundo−1,1(β1) sinceβ1 is less thanα1.

• A1 ∧ B2 → O1,2 gives us boundo−1,2(α1) sinceα1 is less thanβ2.

• A2 ∧ B1 → O2,1 gives us boundo−2,1(β1) sinceβ1 is less thanα2.

• A2 ∧ B2 → O2,2 gives us boundo−2,2(α2) sinceα2 is less thanβ2.

Since rule aggregation is conjunctive, the overall lower bound is the maximum of these bounds.

zmin = max(o−1,1(β1), o
−
1,2(α1), o

−
2,1(β1), o

−
2,2(α2))

o−1,1(β1) is always less than other bounds because its maximum is the lower bound of the core of

O1,1. Furthermore,o−2,1(β1) is always lower thano−2,2(α2) becauseβ1 < α2. As a consequence, the lower

bound is:

zmin = max(o−1,2(α1), o
−
2,2(α2))

Similarly, we are able to compute the upper bound:

zmax = min(o+
1,1(β1), o

+
1,2(α1), o

+
2,1(β1), o

+
2,2(α2))

which becomes:

zmax = min(o+
1,1(β1), o

+
1,2(α1))

Table IV shows results for all sub-zones of zone 3.
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Zone Lower boundzmin Upper Boundzmax

3.1 max(o−1,2(α1), o
−

2,2(α2)) min(o+
1,1(β1), o

+
1,2(α1))

3.2 max(o−2,1(β1), o
−

2,2(β2)) min(o+
1,1(α1), o

+
2,1(β1))

3.3 max(o−2,1(α2), o
−

2,2(β2)) min(o+
1,1(α1), o

+
2,1(α2))

3.4 max(o−1,2(β2), o
−

2,2(α2)) min(o+
1,1(β1), o

+
1,2(β2))

TABLE IV

OUTPUT INTERVALS FOR CASE3

A1
A2

B1

1 1

1 1

U

V

3.1

3.23.42.4

3.3

2.1

2.2

2.3

B2

Fig. 18. Several input areas

2) Case 2:Zone 2 can be seen as a special case of zone 3. There are four zones (2.1, 2.2, 2.3 and

2.4) adjacent to zones 3.1,3.2, 3.3 and 3.4 (see figure 18).

There are at most two rules fired in zone 2 because of the stronginput partition.

For example, in case 2.1 whereβ1 = 0 andβ2 = 1 only the following rules are triggered:

• A1 ∧ B2 → O1,2

• A2 ∧ B2 → O2,2

The behavior is the same as in zone 3 but less rules are triggered. zmin is the same as in zone 3.1

because outputsO1,2 andO2,2 are triggered :

zmin = max(o−1,2(α1), o
−
2,2(α2))

O1,1 is not triggered sozmax becomes:

zmax = o+
1,2(α1)
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Similar calculations can be made for other subzones. Outputs in zone 2 are summed up in table V.

Area Lower boundzmin Upper boundzmax

2.1 max(o−1,2(α1), o
−

2,2(α2)) o+
1,2(α1)

2.2 max(o−2,1(β1), o
−

2,2(β2)) o+
2,1(β1)

2.3 o−2,1(α2) min(o+
1,1(α1), o

+
2,1(α2))

2.4 o−1,2(β2) min(o+
1,1(β1), o

+
1,2(β2))

TABLE V

OUTPUT INTERVALS FOR CASE2

D. The continuity of inferred outputs

In this section, we study the output continuity with respectto input variations. Figure 18 shows all

possible transitions. Since zone 3 is the most general case,we first study possible transitions between

its subzones. Let us examine the transition from 3.1 to 3.2. It occurs whenα1 = β1 andα2 = β2. Thus

in zone 3.1, we haveβ1 < β2 (see table III) andα1 < α2. The lower boundzmin can be computed from

each of these subzones:

• zmin3.1 = max(o−1,2(α1), o
−
2,2(α2))

• zmin3.2 = max(o−2,1(β1), o
−
2,2(β2))

which giveszmin3.1 = o−2,2(α2) and zmin3.2 = o−2,2(β2). Thus, we obtainzmin3.1 = zmin3.2 because

α2 = β2.

Let us now consider the upper boundzmax:

• zmax3.1 = min(o+
1,1(β1), o

+
1,2(α1))

• zmax3.2 = min(o+
1,1(α1), o

+
2,1(β1))

Similarly zmax3.1 = o+
1,1(β1) andzmax3.2 = o+

1,1(α1). Sinceα1 = β1, we havezmax3.1 = zmax3.2.

Thus, the inferred output is continuous between area 3.1 andarea 3.2. In the same way, we can show

that transitions from areas (3.2,3.3), (3.3,3.4) and (3.4,3.1) are continuous.

Furthermore, for the single point at the intersection of several areas, continuity is also guaranteed.

Indeed, this point has levelsα1 = α2 = β1 = β2 = 1
2
. The lower bound is equal too−2,2(

1
2
) for all areas

and the upper bound is equal too+
1,1(

1
2
).

This proves that the inferred output is continuous all through area 3. Since area 2 and area 1 are just

particular cases of area 3, the output is also continuous in these zones.
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Fig. 19. Output evolution according toα1 level

E. Extremal points

However, we need a continuous and monotonic output to be surethat the result of the output is the

convex envelope of outputs inferred from rectangular inputboundaries. In the sequel, we prove that

the output boundary functions defining the set-valued output are not always monotonic and we detect

extremal points that need to be considered. An extremal point is typically obtained if the two local

functions defining an output bound (table IV) evolve in opposite directions.

For example, in figure 19, an extremal point appears at the lower bound in zone 3.1. In this area,

the lower bound is equal tomax(o−1,2(α1), o
−
2,2(α2)), whereo−1,2(α1) increases ando−2,2(α2) decreases.

Thus, there is an extremal point wheno−1,2(α1) = o−2,2(α2). As we know fuzzy setsO1,2 and O2,2, we

can easily find theα1 level that corresponds to this extremal point.

For each zone, an extremal point can appear on only one bound as we can see on table VI. When

necessary, we split the non monotonic output in order to restrict ourself to monotonic outputs.

The complexity analysis can be done in a similar way to the onedimensional case. All steps described

for one dimension still hold for each input. One additional step is needed: extremal point detection.

This operation requires two tests perα-cut. Thus the two dimensional algorithm has complexityO(n).
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Zone lower bound upper bound

3.1 o−1,2(α1) = o−2,2(α2) No

3.2 o−2,1(β1) = o−2,2(β2) No

3.3 No o+
1,1(α1) = o+

2,1(α2)

3.4 No o+
1,1(β1) = o+

1,2(β2)

TABLE VI

CONDITIONS FOR EXTREMAL POINTS ACCORDING ZONE

0

1

Input 1

0

1

Input 2

0

1

 

 

Ref. output
6 n. samples
6 α−cutsOutput

Fig. 20. Comparison of naive sampling andα-cut sampling

F. Comparison with a naive sampling procedure

To demonstrate the efficiency of the proposed algorithm, we now give some results comparing it

with inference from a naive sampling of the support. Input partitions and fuzzy inputs are shown on

Figure 20. The chosen fuzzy inputs are symmetric triangles having a reasonable width with respect to

the partition fuzzy sets. Figure 20 also displays the outputpartition and the inference results, for 1000

naive samples (reference output), 6 α-cuts and 6 naive samples. The rules are the ones given in Table

II, with O1,2 = O2,1.

Table VII summarizes the comparison between our algorithm,based onα-cut decomposition, and a

naive sampling strategy. For each row, the number given in the first column is either the number of

α-cuts or the sample size. For theα-cut based algorithm, the firstα-cut is of level 1, and the following

ones are regularly spaced in the unit interval. For the naivesampling algorithm, samples are regularly

spaced in the 0.1 levelα-cut, and combinations of all samples are considered. For each row of the

table, the second column, labeledmax gives the maximum possibility degree of the output distribution

for naive sampling. Obviously, this degree is not given for the α-cut based algorithm, as it is always

equal to 1. The last two columns show theinferred area
reference area

ratio, the reference area being computed by

taking 1000 alpha-cuts. Let us first point out that the complexity is not the same for the two algorithms.

n α-cuts result in2n + 2 strict inferences, whilen naive samples requiren2 strict inferences. An
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n max (naive s.) %area (naive s.)%area (α-cut)

2 0.1 11.8 88.5

3 1 81.1 92.3

4 0.7 66.3 94.2

5 1 90.4 95.4

6 0.82 79.2 96.2

7 1 93.8 96.7

8 1 85.2 97.2

10 0.9 88.3 97.7

15 1 97.2 98.5

20 0.953 94.2 98.9

50 0.982 97.6 99.5

60 0.985 99.6 99.8

TABLE VII

COMPARISON OF NAIVE SAMPLING ANDα-CUT SAMPLING

examination of this table then shows that, for naive sampling, the maximum possibility degree does

not have a monotonic behaviour whenn increases, causing a non monotonic behaviour of the inferred

output possibility distribution area. Furthermore, this phenomenon is amplified by the random handling

of extremal points with the naive sampling. We also note thatan accuracy of 95% is obtained with 5

α-cuts, i.e. 12 strict inference operations, while the same accuracy requires more than 20 naive samples,

i.e. 400 operations. To conclude this discussion, we can saythat theα-cut decomposition based algorithm

provides an “intelligent” sampling by the means ofα-cuts.

VII. I LLUSTRATION: DIAGNOSING A CHEESE-MAKING PROCESS

To show the interest of our method, we will consider a problemof predictive diagnosis for a hard-

cooked type cheese-making process. Two parameters are important to determine cheese firmness: MC

(Moisture Content), the cheese moisture content percentage at the end of the making process and DEE

(Dry Extract Evolution), the loss of water during the first 15days of the maturation process. The goal

is to predict the cheese firmness at the end of maturation (4 to 10 months or longer) according to these

two parameters. The two measurements (MC and DEE) come from sensors tainted with significant

imprecision. So, we need to use fuzzy inputs in our system in order to correctly represent these

measurements. The firmness is a crisp real value ranging between 0 and 10, supplied by an expert

sensory panel, and cannot be measured by a mechanical device. Input and output expert partitions are
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Fig. 21. Fuzzy sets for prediction of firmness - A fuzzy input is plot in dash lines

shown on figure 21. Let us refer to the typical output partition shown on Figure 14, we note thatO1,2

andO2,1 are identical and represented by the fuzzy setNormal. Experts know some relations between

MC, DEE and cheese firmness. This rule system is a simplified system that does not take into account

the whole complexity of the process:

• If MC is high and DEE is low then the cheese will be soft

• If MC is high and DEE is high then the cheese will be normal

• If MC is low and DEE is low then the cheese will be normal

• If MC is low and DEE is high then the cheese will be hard

Some explanations follow. When the cheese is very wet, if it does not lose enough water, the cheese

will be soft, but if it loses a lot of water, the cheese firmnesswill be normal. Similarly, if moisture

content is low and if a lot of water is lost, the cheese will be hard.

A. Inference from a fuzzy input

1) Implicative rules: Fuzzy inputs are shown in dashed lines on figure 21. MC is modelled by a

trapezoidal fuzzy set, due to two kinds of imprecision (sensor error plus calculation error) to take into

account. DEE only suffers from sensor error. We apply our algorithm as follows:

• Alpha-cut decomposition: for this example, we decide to choose 3α-cuts for the decomposition,

as shown on figure 22.
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Fig. 22. Partitioning decomposition

• Partitioning decomposition: We decompose MC and DEE inputsaccording to partitions as shown

on figure 22. We see the 3 zones activated by the correspondingvalues ofMC = 54.12 ± 0.75

andDEE = 0.6 ± 0.1.

• Inference: for a two-dimensionalα-cut rectangular input, we need to infer the four verticesa, b, c

andd. We denote right and left rectangular inputα levels byαr, βr andαl, βl. Figure 23 shows

level 1 rectangular inputs on each dimension. Pointsa and b are in zone3.3 and pointsc and d

are in zone2.3. The intervals inferred from each point are :

– Point a: [hard−(α2l), soft+(β2r)] = [5.3, 5.8]. The interval is deduced from table IV. For

example, the lower bound ismax(o−2,1(α2), o
−
2,2(β2)) = max(hard−(α2l), normal−(β2r) =

hard−(α2l) in this case. The upper bound and the bounds of other intervals are similarly

computed.

– Point b: [hard−(α2r), soft+(β2r)] = [5.8, 5.8]

– Point c: [hard−(α2r), normal+(α1r)] = [5.8, 6.1]

– Point d: [hard−(α2l), normal+(α1l)] = [5.3, 5.9]

There are no extremal points within that zone. Indeed the point wherehard−(α2) is equal to

normal+(α1) is not in the range of variation ofα1 andα2. Consequently, the level 1 output is the
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interval: [hard−(α2l), normal+(α1r)] = [5.3, 6.1] as we can see on figure 24.

In the same way, it is possible to compute inferred intervalsfor the other twoα-level rectangular

inputs.

• Final result: The final output result is the union of allα-level inferred outputs (see figure 25).

This example shows how the imprecision is propagated while being maintained within reasonable

bounds through the inference process. The double decomposition gives a discrete approximation of

the real output. The higher the number ofα-cuts, the better the approximation. Let us point out that

inferences for allα-cuts are exact. The approximation only concerns the input decomposition intoα-cuts.
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Fig. 26. Inference result with a conjunctive rule system

The inferred output interval may intersect several output fuzzy sets. If it belongs to a single fuzzy

set, the inferred output is considered as precise. If it belongs to two fuzzy sets (soft and normal for

example), it is considered as imprecise.

2) Conjunctive rules:The output obtained from Mamdani inference [32] using the same data is shown

on figure 26. Note that the output partition is a strong partition. The inferred output overlaps the three

output fuzzy sets. Consequently, it is difficult to interprete this result without defuzzification. Centroid

defuzzification gives us a firmness equal to6.0. Note that, as we saw on section II-C, defuzzification is

influenced by the fuzzy sets shape. The imprecision of the fuzzy input is not respected in the defuzzified

inference result.

B. Numerical results

We tested the rule system given above with crisp inputs for the two different kinds of rules. Since

this example is a simplified rule system, the quality of the prediction is not very good. However, it is

sufficient to demonstrate the difference between conjunctive rules and implicative rules. A representative

sample of 103 cheeses was studied.
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Inference results are analyzed at a symbolic level: The inferred output is considered asgood if it

mainly belongs to the same output fuzzy set than the crisp reference output,wrong otherwise.

1) Implicative rules:

• 33 wrong predictions

• 49 good but imprecise predictions, meaning that the inferred output contains the observed value

but overlaps two output fuzzy sets.

• 21 good and precise predictions.

These results show a lot of imprecise predictions. This behavior was expected since the rule system

is a simplified one. However, only 33 wrong predictions are made by this system. As we saw in section

II-C, by adding more rules (and more input variables), the implicative rule system could be more precise

and the output quality improved for 49 imprecise prediction.

2) Conjunctive rules:

• 56 wrong predictions

• 47 good and precise predictions

With conjunctive rules, there are many wrong predictions because of the defuzzification process.

Each inferred output is then an artificially precise value. With conjunctive rules it is impossible to

refine the inference result because adding more rules will only increase the output imprecision because

of the disjunctive agregation.

This example shows us the negative side effects of defuzzification. It also points out the ability of

implicative rules to respect the input imprecision and thusto obtain a better prediction quality.

VIII. C ONCLUSION

This paper lays the foundation for a practical inference method with a system of implicative fuzzy

rules and fuzzy inputs. For a fuzzy input, we can get an exact discretization of the result usingα-

cuts and a partitioning decomposition of inputs. Inferringwith this kind of fuzzy system is especially

appropriate when modeling expert knowledge expressing constraints (as opposed to Mamdani rules).

The interest of the method has been shown on a simplified predictive diagnosis case-study of cheese

production process, for which expert rules with two dimensional input conditions are available. In the

future, more rules will be introduced to improve the results.

Extending the approach beyond 2D inputs is also the next challenging task. The use of implicative

rules within high dimensional spaces with crisp inputs is obvious, thanks to the FITA method. When

dealing with fuzzy inputs, the question arises whether the proposed algorithm may or may not be run in
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higher dimensional spaces. Some properties, such as the inferential independence, do not depend upon

the dimensionality. Whatever the space dimension, when theinput data are located within a given core

in all input dimensions, the result is the corresponding rule conclusion:Ai∧Bj ∧· · ·∧Nk → Oi,j,...k. In

this case, the computational time is constant. However, theextremal point detection complexity increases

with the dimension. Once the extremal points found, the algorithm is generalizable ton dimensions.

Special care should be given to the output partition design.As 2n rules are likely to be simultaneously

fired, the partition may count2n overlapping fuzzy sets with a non empty intersection. This may harm

the system interpretability, even with small values ofn. Fortunately, as previously mentioned in the

comment of figure 14, some of them may be identical.

When thinking about use in a high dimensional space, one mustnot forget the nature of implicative

rules, i.e. that they represent constraints. Therefore, isit reasonable to formalize constraints in many

dimensions at once?

There is an alternate way of dealing with larger systems while keeping in mind their interpretability:

combination of various systems of lower dimension. Unlike conjunctive rule bases, implicative ones

may be combined in either a parallel or a sequential way. In the former case, both rule bases use the

same output universe and the result is their intersection: this is in full agreement with implicative rule

agregation. In the latter case, the output is used to feed thenext system. As the algorithm is able to

manage fuzzy inputs, no defuzzification step is needed. Dataimprecision is properly taken into account

at all steps.
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