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Abstract

A general approach to practical inference with gradual ioapilve rules and fuzzy inputs is presented.
Gradual rules represent constraints restricting outptis fuzzy system for each input. They are tailored for
interpolative reasoning. Our approach to inference redieshe use of inferential independence. It is based on
fuzzy output computation under an interval-valued inputdduble decomposition of fuzzy inputs is done in
terms ofa-cuts and in terms of a partitioning of these cuts accordingreas where only a few rules apply. The
case of one and two dimensional inputs is considered. Anicgtjan to a cheese-making process illustrates the

approach.

. INTRODUCTION

Fuzzy logic, as an interface between symbolic and numengpeations, is well-known for its ability
to represent the graded nature of some non-Boolean lingaishcepts.

Historically, fuzzy inference systems were devised to guenf a reasoning task based upon expert
knowledge yielding a continuous numerical ouput, as ne@t&dzzy control. Afterwards, many learning
methods were added to enhance numerical performance.

Conjunctive rules used in the Mamdani-style fuzzy infeeesystems [1], represent joint sets of
possible input and output values. They cannot be easilygreéted as generalizations of usual Boolean
“if-then” statements in propositional logic, since thedatare modelled by material implication [2]. The
weak logical behavior of conjunctive rules was pointed guséveral authors like Baldwin and Guild [3]
and Di Nola et al. [4]. Nevertheless, mainly due to allegethpotational difficulties, fuzzy extensions
of material implications have been neglected so far, if moip$y rejected as proper tools for modeling
fuzzy systems. For instance, Mendel [5] dismissed implieafiuzzy rules as being counterintuitive for
engineers, and dubbed “engineering implications” the mum or product operations, that are in fact
generalized logical conjunctions.

However, inferring with parallel implicative rules and aepise input is not more computationally
difficult than with fuzzy conjunctive rules (it can be donderiy rule). Moreover, it yields normalized
fuzzy outputs often more precise than with conjunctivesuRecently, we outlined several advantages of
implicative rules with respect to conjunctive rules [6]rkustance, with conjunctive rules, the more rules
in a rule base, the more imprecise its output becomes. Thisidausually hidden by defuzzification.
The converse occurs with implicative rules. Their outputaisthe more precise as more rules are
triggered. Furthermore, using conjunctive rules, the yuaatput width can bias the defuzzified result.
In constrast, gradual implicative rules [7] model constigirestricting output values for each input, and

have interesting interpolation properties [7], [8]. Theg &lly compatible with the classical logic view.
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Among these kinds of rules, the most interesting ones foctjma purposes use Goguen implication
because of its continuous inference result [2], and ReGSla@nes implication if a non fuzzy (interval)
output is needed [7]. Implicative rules are more naturakfmresent expert knowledge [9] as they model
constraints relating input and output values.

In practical applications, fuzzy inputs are useful to actdor sensor imprecision and approximate
measurements. Furthermore in the case of cascaded fuzeyrsyst makes little sense to defuzzify the
output to one system before feeding the next one, since iesaown to neglecting the meta-information
concerning the imprecision of results (hence the validitthe eventually defuzzified overall output
cannot be assessed).

Note that the recent blossoming of Type 2 fuzzy systems @} partly motivated by the need for
accounting for higher order uncertainty in fuzzy systemgpots. Since the output of a fuzzy system is
usually precise (either due to fuzzification or due to theafdbe Takagi-Sugeno approach), this concern
may look legitimate. But, arguably, the higher-order utaety is already present in the fuzzy output of
a Type 1 fuzzy logic system, if rule conclusions are not @@cprovided one refrains from defuzzifying
it!. However, the fuzzy output of Mamdani systems is hard torpmet as often not normalized and
with unreasonably wide support. On the contrary, the fuazpwat of consistent implicative fuzzy logic
systems is a regular fuzzy interval (provided suitable yuzartitions of the input and output space are
chosen). It can be summarized by a precise value if neededihenhigher order uncertainty of this
value can be measured by some non-specificity index of theyfamtput.

Moreover the imprecision produced by a set of implicativesus rather limited when the rules are
informative enough, which enables cascading.

Nevertheless, the practical use of parallel implicativeesuwith a fuzzy input is difficult, as the
inference can no longer be done rule by rule. The aim of thiglaris to show that under some
conditions on input partitions, inference becomes easier b a double decomposition of the fuzzy
input: by -cut and by partitioning. In the sequel, section Il recadiattires of conjunctive and implicative
rules and compares them according to some expected pesodrti section Ill, we present sufficient
conditions to obtain inferential independence, so as tititte the calculation of the inference process.
Then, in section IV, exact analytical expressions are gif@none dimensional systems. In section
V we propose a fuzzy input decomposition method based omenfial independence that allows to

simplify the inference mechanism, and apply it to the oneetigional case. Section VI adresses the

1The term “defuzzification” to designate the extraction ofragise value from a fuzzy set is a language abuse, as stsip#igking,

stripping a fuzzy set from its fuzziness should yield a cssp not an element thereof.
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two dimensional case. Finally, a practical application e predictive diagnosis of a cheese-making

process is outlined in section VIl to illustrate the techudq

[I. FUzZzzY RULES: CONJUNCTION VS IMPLICATION

Before examining the semantics of fuzzy rules, let us firsallewhat is the meaning of a rule in
classical logic, i.e. a crisp rule. A crisp rule “K is A thenZ is O” relates two universes of discourse
U andW that form the domains of variable§ andZ respectively, locally restricting the domains &f
and Z to subsetsA of U andO of . Such a rule can be interpreted in two ways according to veneth
one focuses on its examples or its counterexamples [11].ekhenples of the rule precisely form the
set of pairs(u,w) € A x O. Modeled as such, a rule cannot be understood as a congiraietd x O
does not encompass all admissible p&irsw) relatingU and V. Indeed, the rule does not prevext
from lying outsideA. So the rule cannot be understood as the necessity {Xlef) € A x O; it only
points outA x O as one set of explicitly allowed pairs foX, 7).

On the contrary, the counterexamples of the rules are thefsgairs (u, w) such thatu € A, w &
O. The Cartesian product x O¢, where O¢ is the complement oD, is the set of pairs of values
explicitly forbidden by the rule. It means that the set of litily allowed pairs of values form the set
(Ax O°)°=A°U0 = (A°x W)U (A x O) corresponding to a material implication. This is the usual
representation of rules in classical logic. Clearly, to skeA x O of examples, it adds the set® x )
of pairs of values uncommitted by the rule. Since a rule seferboth examples and counterexamples,
the complete representation of the rule is the pair< O, A°U O) made of explicitly and implicitly
permitted valuegu, w).

In the case of fuzzy rulest and O are fuzzy sets, and the two fuzzy seisx O and A° U O are

modelled using fuzzy connectives of conjunction and ingilan, respectively:
pra(u) A po(w); (1)
pra(u) = po(w). (2)

First we will present commonly used rules: conjunctive sulEhen implicative rules will be described.
An interpretation in terms of logic will be given and a comipan will be made according to several

properties.

A. Conjunctive Fuzzy Rules

In contrast to logic representations, the most popularesatation of fuzzy rules is the Cartesian

product of the fuzzy condition and the fuzzy conclusion)dwing the approach of Mamdani. These
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rules may have a simple interpretation in terms of guarahpeessibility distributions [2]. For a given
variable X, a guaranteed possibility distributi@r, is associated to statements of the forii € A is

possible”:
Yu € U, 0x(u) > pua(u).

The statementX € A is possible” only means that valuesdnare possible to some degrég.(u) = 1
indicates thatX' = u is an actual situation, an observed valéig(u) = 0 indicates no evidence in favor
of X = u has been collected yet. It does not forbid situations whieeestatement is falsé.y is a
lower possibility distribution. Note that this interpréta is at odds with classical logic where asserting
a propositionp explicitly forbids situations where is false.

Conjunctive rules “ifX is A thenZ is O”, can be understood as: “the makeis A, the more possible
it is that Z lies in O” [2]. In this approach, the operator “then” is modeled by ajooction and the rule
output is a guaranteed possibility distributidn;x = a4 A po. The traditional Mamdani conjunction
operator is thenin.

Vu € U, Yw € W, 0z x(u,w) can be interpreted as follows: whe¥ is A to some degree,Z is O”
is possible at least to levehin(pa(u), po(w)).

If we consider a crisp inputy, and if u4(ug) = a with « € [0, 1], values inO are guaranteed at

degreea. So the output)’ is given by the truncation of) at levela as shown on figure 1.

HA
1 ...................
B R S
0
Rule condition U Mamdani conclusion W
Fig. 1. Inference with Mamdani rules
In a knowledge bas& = {A; x O;,i = 1, ..., n} of n parallel fuzzy rules (having the same

input spacd/ and the same output spaldé), rule aggregation is disjunctive. As a rule suggests dstpu
with a guaranteed possibility degree, when two or more ratesfired, all the corresponding outputs

are guaranteed, each one at least to Iéggl,Vi. The final possibility distribution will then be:
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o > max 5iZ|X (3)

The maximum represents a lower bound of possibility degréésarly, 6 x(u,w) = 0 means that
if X = u, no rule can guarantee thatis a possible value foZ. Ignorance is then represented by a

null distribution: 6z x (u, w) = 0, Yaw.

B. Implicative Fuzzy Rules

The interpretation of implicative rules is based on a shtiayward application of Zadeh’s theory
of approximate reasoning [12]. According to Zadeh, eaclegief knowledge can be considered as a
fuzzy restriction on a set of possible worlds. It extendsdbeventions of classical logic.

The statement X is A; ” can be depicted as:
Vu € Uymx(u) < pia,(u) (4)

whererx(u) is a (potential) possibility distribution. X is A; ” now means: “X must be in4; 7,
it represents a constraint, i.e., negative informationhim $ense that it points out forbidden values.

In view of the above discussions, the two possibility digitionsé, x andwz x have very different
semantics: degrees of possibility expressedrpy are potential iz x(u, w) = 1 means that nothing
forbids (u, w) from further consideration, while x (u,w) = 0 means thatu, w) is forbidden by the
rule.

The difference of nature between conjunctive and impheatiules has impact when combining
several rules together: while several conjunctive rulescambined disjunctively (as they point to more
examples than a single rule), implicative rules are conbit@njunctively, because several constraints

lead to a more restricted feasible set of allowed situatibas a single constraint:

Tz1x (u, w) = Z.:Ullinn W%\X = i:UlliHn(,uAi (w) = po,(w)) (5)

Rule aggregation is conjunctive because the possibilithésense of (4) is not guaranteed: a value
estimated as possible by a rule can be forbidden by othes.rule

There are different kinds of implicative rules: certaintyes and gradual rules [2]. In this article,
we only focus on gradual rules. The behavior of gradual iogpive rules, “the moreX is A, then the
more Z is O”, depends on the selected implication. We consider in thigep the following residuated

implications :
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_ 1 ifa<b
« Resher-Gainest — b =

0 otherwise
. 1 ifa<b
« GOdelia — b =
b otherwise
min(1,b/a) if a #0
« Goguen.a — b = (1,6/a) 7
1 otherwise

Figure 2 clearly shows that under a precise inpgtthe resulting output affects the shape of the
conclusion part while maintaining the output values witktiie support of the rule conclusion. In all

cases the core of the output gets larger as the input memperalue decreases, thus relaxing the
constraint expressed in the rule conclusion at level 1. ;ndhse of Goguen implication, the output
membership function remains continuousy if(uy) > 0, while Godel implication almost always results
in a discontinuous output. In the case of Resher-Gainesdatfn, the output coincides with the core
of the output obtained by all other residuated implicatjansrisp interval in practice, that gets wider as
the input membership value decreases [7], [13]. In padicuf 14(uo) = 1 and the core of the output

is a singleton, the output is precise.

Rule condition

G -onclusi w . . w
oguen conclusion Resher-Gaines conclusion

Fig. 2. Inference with one gradual rule and a precise input

Modus Ponens in classical logic ist A (A — O) = O where |= represents the logical inference.

In fuzzy logic, modus ponens can be non-trivially extended&eneralised Modus Ponens (GMP) [14]
A'"AN (A — O) [ O'. In the presence of an approximate fattand the implicationA — O, we are

able to calculate)’ defined by:

por(v) = sup (par(u) T (pa(u) — po(w))) (6)

The outputO’ constrains the value of the output variable. When an operato(implication) is
obtained fromT (conjunction) by residuation, the GMR" A ( A — O ) [ O'is recovered for
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fuzzy rules [15]. Note that for pure (Resher-Gaines) graduas, modus ponens is strengthened: from

A’ Cc A and A — O, a conclusion more precise th&hcan be obtained.

C. Rule Behavior Comparison

In line with their different meanings, conjunctive and imcglive rules do not behave similarly. In
the presence of fuzzy inputs or cascading systems of fudeg,raonjunctive rules have some unnatural
behavior.

1) Interpolation between rulesThe interpolation mechanism used for Mamdani rules is desdr
in depth in [16]. Let us consider input/output partitionlsuas core(A;) = {a;} and supp(A;) =
[a;_1,a;41], With a; 1 < a; < a;11

a) Conjunctive possibility rulesFigure 3 shows the output possibility distribution infetrby
three Mamdani rules4; A O; (i = 1,2, 3), when inputu, moves froma; to a, (see subfigure a): only
truncation levels ofD; and O, are affected (see subfigure b). A defuzzification step is ydweeeded.
Subfigures (c) and (d) respectively show results using méanaxima and centroid defuzzifications.
Only the centroid defuzzification leads to a continuous fiamg which is generally monotonic. However,
contrary to what could be expected, this function is notdimén fact it has been shown that in some
configurations, a set of fuzzy rules qualitatively expregsa monotonic behavior may fail to produce
a monotonic control law ([17] and [18]).

b) Gradual implicative rules:Figure 4 illustrates the case of three gradual rules— O;(i =
1,2,3). Due to the fuzzy partition structure, the maximum is unidbg and defuzzification is not
necessary in that case. Subfigure (c) shows the linear éwolot this unique maximum. This subfigure
holds for all residuated implications, as they yield the saore.

2) Influence of the specificity of the ruleket us consider two rules triggered at the same level.

a) Conjunctive possibility rulesWhen two trapezoidal output fuzzy sets have equal widths, th
inferred value (mean of maxima or centroid) is equaktsuch thatuo,(z) = po,(z). This result is
the one expected. Nevertheless, if one output set is widar the other, the defuzzified value moves
towards the wider one, which is counter-intuitive, as shawthe left part of figure 5.

b) Gradual implicative rules:This behavior is impossible with gradual implicative rulescause
rules are aggregated in a conjunctive way. In fact the resfuttiggering two gradual rules is more
precise than the result of triggering a single rule. Thisoiglty the opposite situation for conjunctive
rules, even with precise inputs. So there is a natural egpentof limited imprecision of results when
triggering fuzzy implicative rules with fuzzy inputs, inding the case when such fuzzy inputs result

from a previous inference step.
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TIXTIN
a uy Gz as U 01 02 03 W
(a) (b)
W W
03 i o3
0y 02
01 01
] Maxima
M . . — Centroid
—— Mean of maxima
ay ay az U @ ap a3 U
() (d)
Fig. 3. Interpolation with Mamdani rules
V N
Ay — M Ay A O, 03
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a1 uy  a» az U 03 w
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03
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01
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ay ay ag U
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Fig. 4. Interpolation with gradual implicative rules (Gadinplication)
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W W
v B conclusion v

Mamdani rules Gradual rules

Fig. 5. Fuzzy set width influence

3) Rule accumulationAdding a conjunctive rule enlarges the output possibilistribution. Then a
rule system is never inconsistent even if the rule base deduconflicting rules from a knowledge
representation point of view. When many rules are added ¢ortie base, the output possibility
distribution approaches the membership function of thelevheferential. That behavior, often hidden by
defuzzification, is not intuitive because we might thinkttadding new rules (hence new information)
to the knowledge base would lead to a more accurate systeconjéinctive fuzzy systems have to be
cascaded, it is clear that using the fuzzy output of the firstesn as a fuzzy input for the second one
may lead to unreasonably imprecise responses.

Implicative rules formulate constraints on possible inputput mappings. The more rules there are
in a rule base, the more precise the output fuzzy set becaamebe risk of reaching inconsistency.
Inconsistency arises when for a given inputc U, 7z x(u, w) < 1,Vw. This feature is interesting
because it allows to check logical consistency of the rukel{a9].

4) Inference MechanismWith conjunctive rules, the outpu?’ is equal to:

0 = Ao(| JAin0y) = J(Ao(A;i A Oy)) 7)
i=1 =1
because of the commutativity of theip — min composition (denote@) and thel J operator, the
maximum for Mamdani systems. This method, named E|T#orresponds to the right-hand side of
equation 7. The inference mechanism is easy to implememiusecthe inference can be performed rule
by rule.
With implicative rules, the outpud’ is given by:
O = Ao (4 — Oy) (8)
=1
where ) is the minimum operator. Wherd’ is a precise input, operatorsand () commute, the

output can then be written:

2FITA means "First Infer Then Aggregate”
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0 =[((A04;) — 0y))
=1
This formalisation corresponds to the FITA method for cotimmuinference results.
However, when the input’ is imprecise or fuzzy, the commutativity betweerp — min composition
and the( operator is no longer possible [14]. Only the expressionwBich is a FATP inference is

correct. For an approximate fact, the following inclusisrtriue :

n

Ao <ﬁAZ~ - Oi> <N ((A’ 0 Ai) — Oi)

=1
The FITA method only gives an upper approximation of the Itesu
Currently there are almost no practical methods for conmgutiference with implicative fuzzy rules.
One method had been developed in [20] for Godel implicatitven the fuzzy sets in condition parts
are one-dimensional and have overlapping cores. Anotbbnigue proposed by Ughetto and al. [21] is
devoted to Resher-Gaines implications with one-dimeraimputs; it presupposes an explicit calculation

of the (crisp) relation defined by a set of gradual rules, mftbrm of two piecewise linear functions.

D. Other fuzzy interpolation techniques

In this subsection we briefly discuss the difference betwgmdlual rule-based inference and other
fuzzy interpolation methods. Many fuzzy systems rely onghgposal previously made by Takagi and
Sugeno [22] to simplify Mamdani-like systems, turning thieZy conclusions of rules into precise ones.
Then, using the centroid defuzzification, the fuzzy systemputes a standard interpolation between
precise conclusions, weighted by the degrees of activatiamles, due to a precise input. There is a
precise connection between Takagi-Sugeno systems andajnades. In the one dimensional case, if
strong partitions are used for inputs and output, TakagieBa inference coincides with gradual rule
inference, both of which generalize linear interpolati@8][ In particular, a precise input yields a precise
output. In the multidimensional case, this equivalenceamgér holds because the output of a gradual
rule system under a crisp multidimensional input is gemeral interval [13]. Nevertheless it is possible
to devise a gradual rule system so that the output intervatbats the precise output of some prescribed
T-S system. In fact, even if gradual rule systems have iotatijpn capabilities built in the logic, their

scope is to reflect the imprecision pervading the input amdrthes in their output results, while T-S

3FATI means "First Aggregate Then Infer”
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systems aim at modeling a generalized form of precise iotatipn by means of rules having fuzzy
conditions.

Other interpolation methods exist for fuzzy systems havirlgs whose condition parts fail to cover
the input domain, starting with works by Koczy and Hirota][2¥sually, such methods start with a
given classical numerical interpolation scheme, and ekieto fuzzy data expressed by scarce fuzzy
rules. Reasoning alpha-cut-wise often leads to difficubgause the obtained output intervals for each
membership levels may fail to be nested. Jenei and collsa@ig, [26] provide an extensive analysis
of fuzzy interpolation techniques with a set of requirersefutzzy interpolation should satisfy. The
latter family of techniques is driven by the necessity toduwe an output result despite the scarcity of
information, while the gradual rule approach is tailored twoproduce an output result when a logical

inconsistency is detected [19], a conflict resulting fronmdiang too much information.

[1l. | NFERENTIAL INDEPENDENCE

To design a practical algorithm for implicative inferenees use the interesting property of inferential
independence [27], leading to well-conditioned systenestiBn IlI-A recalls the main results available

in the literature, that will be used in section IlI-B.

A. Definitions and results

A rule system{A;, — O;,j =1,...,n} is well-conditioned if it produces the output fact when

fed with the input fact4;, for anyi =1,...,n:

Vi, Ajo[ | (4; — 0;) = O,

J

More often than not, this condition is not satisfied, and tbguot is more precise:

Aio()(4; = 0;) = 0} C O;

J

According to Morsi[28], if we substitute each rule conclrsiwith the inferred outpu®;, the system

Aj — Oj is well-conditioned:

Aio[)(4A; = 0f) = 0;

J
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Morsi’s proof uses residuated implication properties [26}ified by Godel and Goguen operators
and the relation(;(A; — O;) =(1;(4; — O;) proved in [28]. In a well-conditioned system, rules
are said to benferentially independent

This way of doing requires an inference step. Alternatividlg inferential independence property can

be guaranteed by a proper design of fuzzy input partitions.

B. Sufficient conditions for a well-conditioned system

In the sequel, we look for a form of fuzzy input partition ensg a well-conditioned system. Two
cases are to be considered: residuated implications (GddeGoguen) and Resher-Gaines implication.
The following result does not work for Resher-Gaines butsittrue for all residuated implications
obtained from a continuous t-norm.

Theorem: A system of fuzzy implicative fuzzy rulegA; — O;,i = 1,...,n}, modeled by residuated
implications is well-conditioned as soon as

Vi =1, ..., n3x € core(A), pa,(x) = 0,V j # i.

Proof: Let T be a continuous triangular norm df, 1], and — be the corresponding residuated
implicationa — b = sup{c,aTc < b}. The max — min composition is generalized into @ax —T
composition. From equation (6), and because of the conpeeiggregation of implicative rules, we

require:Vz € W,

sup /i4,(%) T min (uAj () — uoj(z)) = 1o, (2)
zelU JEN

We can shiftu,(x) and t-normT inside of min. We are looking for sufficient conditions for the
equality: Vz,

sup iy (41, (#) T (1, (7) = 10,(2))) = o, (2)

to hold. This sufficient condition is equivalent to:

Vz,dx € U,
min (1a,(2)T (114, (2) = 1o,(2)) ) = o, (2)

Then, the following conditions are sufficient to ensure #uasiality:
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Vz,dx € U,

Vj 7£ Uy A, (‘T)T(HAJ' (:17) — KO, (Z)) > po, (Z) (9)

and

Ha; (m)T(:u’Ai (.I') — HO; (Z)) = HO; (Z) (10)

Choosingz € core(4;), equation (10) obviously holds sinde— po,(z) = po,(z) for residuated
(hence Godel and Goguen) implications.
Now, we must deal with equation (9). If we considein the core of4;, thenp 4, (x) = 1. A sufficient

condition is then:

Vz, 3z € core(A;), Vi # i, pa,(v) — po,(2) > po,(2) (11)
There are two cases:
o p1a,(z) > po,(2): then equation (11) is not usually true. If this strict inality holdsVz € core(A;),
the system is not well-conditioned.
o pa,(z) < po,(2): then equation (11) is always true.
Fuzzy systems will ever respect the latter inequality cbonlip s, (z) < uo,(2), if the following
property holds: at least one value in a fuzzy set core doebelohg to the support of other input fuzzy

sets. i.e. as we can see on figuredey € core(4;), pa,(z) = 0,V j # i. Q.E.D.

This proof holds for a n-dimensional-input system as weltgipretingz as a vector of coordinates).

Fig. 6. A fuzzy partition allowing inferential independenc

For strong input fuzzy partitions (see figure 8) the followvistronger property holds? j # i,

Vo € core(A;), pa,(r) = 0.Hence the system is always well-conditioned in this caseinferesting
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property useful for inference is that for strong fuzzy faotis, withx € core(A;), the system output

Is O; for Godel and Goguen implications.

For the Resher-Gaines implication, equation (10) holds:if we choose: such thafu, (z) = po,(z).
Then equation (9) will hold if and only ifia,(x) < 10,(2). Assume strong input and output partitions.
Then, in the one-dimensional case, only adjacent rdles» O;, A,_1 — O;_; and A;,,; — O, are

triggered. Then for # {i,i 4+ 1} equation (9) trivially holds. Foy = i + 1, this equation reads :

/~LAi<x) T ((:uAiH(x) - </~L0¢+1(z>>> > M0i<z)

Because of the strong partition assumption, the equati@gusvalent to:

pa(x) T (1 = pae) — (1 = po(2))) = po(2)

which holds ifu 4, () = po,(z) for Resher-Gaines implication. This behavior is also targf=i—1.
In the one dimensional case, exact analytical expressiande calculated for the inference result.

We give them for all different implication types.

IV. ANALYTICAL EXPRESSIONS FOR INFERENCE WITH A SINGLE FUZZY INBT

In the one dimensional case it is possible to provide arelygxpressions of the inference result. Let
us consider a fuzzy inpud as a unimodal fuzzy interval whose support lies in the irdebetween the
cores of two subsequent rule conditions (which is the mostptex case). Therefore, thefunction is

invertible.
The output is given by:

po(2) = sup (@) Tmin (pa, () = 10,(2), i () = 10,14 (7))

As we deal with strong partitions this is also, letting= 1.4, andv = pp, for short:

0(2) = sup j1a(@) Tmin () — v(2), (1 = p(x) = (1 = v(2)) (12)
zeU

Let us study the different implications. Figure 7 illusessome notations. Let’s denete- min <u(x) —

v(2), (1= (@) = (1= 1(2))).
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a; aq & ap Qit1 X 0;

Fig. 7. Notation (Resher-Gaines implication)

1) Resher-Gaines implicatior:et us consider the case of Resher-Gaines implication.dleigr that
e > 0 if and only if u(x) = v(z), and thene = 1. Hencex is equal tou~'(v(z)), the inference result

Orc is such as:

Hona (%) = pa(u™" (v(2))) (13)

In other words, if the input partition is the same as the oupautition, the computed output is the
same as the fuzzy input.
2) Godel implication: Now in the case of Godel implication; = min, and the inference process

reads, distinguishing 3 cases:

e u(x) =v(z) thene=1
e pu(x) >v(z) thene = v(z)
e u(x) <v(z)thene=1—v(z)

From equation 12, we can deduce:

/’LOGod(Z) = ax <IUA(N_1(V(Z)))7 (S)lip( )min (/LA(.Z’),

w(z)>v(z)

1— y(z)), sup min (uA(x), I/(Z)))

= max (uA(ul(V(z))),min (1 —v(z),

(@) <v(2) (@) >v(2)

sup ,uA(ac)),min(Z/(z), sup MA(m))>
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Note that, for a given, {z|u(x) > v(z2)} is of the form[a;, n~!(v(2))], and so, the possibility degree
SUD ()50 (2) 1a(2)) I8 1 if =1 (v(2)) > a (the core ofA), andpa ("' (v(2))) otherwise. In other words,
it is the membership degree pf!(v(z)) to the fuzzy intervala;, A.

Similarly, sup,,(,)<,(.) #a(z) is 1if p=(v(2)) < a, andpa(u~"'(v(2))) otherwise. In other words, it
is the degree of membership pf!(v(z)) to the fuzzy intervalA, a;,,] [30]. Hence

1064 (2) = max | pra(u™ (v(2))), min (1= v(2),

e (7 ((2))) ) min (0(2), (1 (0(2))))
So, the inference resuldc,; has the same core= v~!(u(a)) asOre and is such that:
max((o,s(2), 1 —v(z)) if z <o, o= core(O)

God(z) =
Ho max((ous (2), v(2)) if z> o0, 0= core(O)

3) Goguen implication:For Goguen implicatior; = min (min(l, Zgi))), min(1, i:;gib) andT = .

We know thatu,(z) = 0, Vx ¢]a;, a,.[; we will then only consider the intervad,, a,.[. For a givenz,

we denotery = 1~ 1(v(2)). Then we have 3 cases:

pu(z) =v(z) & o =z thene=1

pu(z) > v(z) & x €a, x|
— min [ &) _ v

thene = min (u(r)’ 1) = @

p(z) <v(z) e x €y, ar

. 1-v(z) \ _ 1-v(2)
thene = min (1, 17u(r)> — 1—p(z)

The result for Goguen is now given by:

14 W4
[Og., (?) = max (MA(CL‘O), E?UP [uA(w)*MExi
rE|ar,xo

1-v(z)
sup pa(z) *
z€]xo,ar| ( ) 1- M($))

)

Then, there are two cases:
o 2 <O .

First, let studysup ¢, o[ 14 (7) * % On|ay, zo[, pa(z) is increasing and.(x) is decreasing. For
v(2)

T = anM(x) = V(Z) SO Supxe]al,xo[ﬂA("E) * w(z) = MA(:EO)'

Then, we study the intervaty, a,[. This study is more complex and gives the resuit, ., , (114 (z)*

t:g;; = }:Zgzg We do not give details here, but a geometrical demonsirgtioves thatvz <
0, ::EZ% is always greater thap ().

So the final result is equal to:

1—1/(2)) _ 1-v(2)

HOGoqg () = max ('LLA(:E())"U'A(:EO)’ 1—u(a) 1—u(a)
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e Z>0.

v(z : v(z . 1—
The study oBup, iy, [ 14 () * 2 gives Us=. In the intervalzo, a [, supy,, , ffa (@) *
pua(wo). As previously one can show th&E} > 4 (x).

As a consequence, the result of the inferencezfor o is:

v(z) ) v(z)

0, (2) = max 1 (wo), )

p(a)
So, the resulD,,, of the inference has the same cere- v~ *(u(a)) asOrq and is such that:
v <o
/’LOGog (Z> = izzl;(a) .
e if 2>o0

Let us stress that all analytical expressions given hereoale valid for a fuzzy input lying in the
overlapping area between two fuzzy sets of the input pantitThe case of a fuzzy input lying within

a fuzzy set core is obvious.

V. 1D INFERENCE ALGORITHM

We now use strong input fuzzy partitions and the inferenitiaependence property to design a
practical inference process by input decompositions. & liescompositions are instrumental due to the

following property of a fuzzy relation R:
(AU A")oR = (AoR) U (A'0R) (14)

whereo is a sup-t-norm composition and is the maximum operation.
We first consider one-dimensional inputs for explanatiorppses. We detail the output calculation
for an a-level rectangular input, which our inference algorithmlwe based upon. The decomposition

algorithm proposed here in 1D scales up to 2D inputs whileptiegious analytical expressions do not.

A. Partitioning the input space

To partition the input space, we consider supports and c@psrately. Let),, be intervals forming a
partition, obtained as a alternating sequence of cores anphgral parts of rules conditions (see figure
8). This decomposition isolates the fuzzy set cores. Therémice is straightforward from a fuzzy input
lying in a core area, as, due to the strong fuzzy partitioncstire, only one rule is fired. In this case,
the output possibility distribution is either the whole setresponding to the fired rule conclusion for

Godel or Goguen operators, or its core for Rescher-Gainesup.
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U
El Ez E3 E4 E5
Fig. 8. Partitioning decomposition with strong fuzzy piot
B. Fuzzy input decomposition
An a-cut of A is an interval defined by:
Va >0, A, = {z € Rlua(z) > a}.
According to Zadeh’s representation result: = Uoce]O 1 aA,. In the presence of a fuzzy input

A’, we first decomposel’ in terms ofa-cuts . Then, we decompose these cuts in terms of the above

partition of the input space. In consequence, we have th#tiige

A =, <a<Uk:1,...,p B0 AQ))

wherep is the number of interval&),.
In practice we use only a finite number of cuts with threshelgs=1 > ay, > -+ > «a, > 0. A

fuzzy setA’ is then included within two inner and outer approximatiosse( figure 9).

U ejde, cAC | ajda,., (15)

jzlv--'vn jzlv--'vn

Fig. 9. a-cut decomposition

External approximations seem to be more appropriate bectney include the fuzzy input. The
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1 A; Ay 1 O; Oip1

@i X [ U 0 0i z [ESTEAY
Rule condition Resher-Gaines conclusion

o Oin 1 Oi O

a;

g i H i /
: ay ;

: . 0 ; )
0 ] z o1 W L, O z . Oix1 W
Godél conclusion Goguen conclusion

Fig. 10. Inference with two gradual implicative rules andragise input

approximated output contains the true output. It could lder@sting to keep both inner and external
approximations in order to reason with two approximatiake for Rough Sets [31].

The double decomposition presented above will be used infeesnce algorithms that follow.

C. Inference with am-level rectangular input

Due to the partitioning of the input space, the rectangulpui (£, N A,) overlaps on at most two
fuzzy sets. If this input lies within the fuzzy set core 4f, the result is obvious: we obtaif?; for
Godel and Goguen implications any’s core for Resher-Gaines implication. Figure 10 recalference
results with a crisp input and two gradual rules whose camttform a strong partition.

Let the interval of interesfF, N A,) be denotedi;,i,|]. An a-level rectangular input membership

o . a ify <z <i,
function is defined by, ;,) such thatyu, ;1(z) =
0 otherwise

Since the rectangular inpUt;, i.] lies in the support of two consecutive fuzzy sets (see figure 1
the output is given by:
por(z) = sup  min (aTpua(x) = po,(2) )

i<e<iy =l
In this specific case, it is equal to:
por(z)= sup min (aTuAi(fc) — po,(2),

1 <z<i,

aTMAi+1 (x) — MO (z)> (16)

for somes.

Sincea and T are independent of andi, the system is equivalent to:
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O; Oi

@
0

: ' a : ;

i AN () T 1N\

a; a1 U 0; o1 W
Rule condition Resher-Gaines conclusion

O; O 1 0; Oiy1

0 =
0; 0iv1 - W
Goguen conclusion

a;
0

0; 01 W
Godel conclusion

Fig. 11. Inference with two gradual implicative rules anduazy input decomposed on three levels < a; < 1

po(2)=aT sup min (,uAi (z) — po,(2),

y<z<ir

i (2) = o, (2)

Next, the output behavior depends on the chosen residuatgdtation. We consider Resher-Gaines,
Godel and Goguen implications.

Level o has only a truncation effect on the output’'s height. No ougdement can have a higher
membership than level because the minimum is the upper bound of t-norms. Accorttirtbe chosen
implication, a different t-norm will be used. For Reshemt&s and Godel ones, the t-norm is the
minimum. Then, the output is truncated at leuglbut its shape is preserved. For Goguen implication,
t-norm is the product. The output is also truncated at levbéut the support slopes are modified (See
figure 11).

Output computation for one rectangular input is straightrd depending on the chosen implication.

The approximate one-dimensional inference process is ltatpby performing the union of outputs

inferred from eachx-level rectangular input taking both decompositions intocant.

D. Results of the double decomposition

The result of the inference based on a fuzzy inguis O’ of the form:

O = Uk:l,..-,p (Ua OE)

whereO” = (E,NA,)oR is obtained in two steps. First the output possibility digttion is calculated

for a level 1 rectangular input. Then the t-norm is appliedhis output possibility distribution. The
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minimum t-norm truncates the output possibility distribautwhile the product t-norm also affects its

slope, as illustrated in Figure 11.

E. Complexity

The inference process summary is given below./Lé&e the number ofi-cuts, ands the number of

E). intervals within the input partition.

« Decompose the fuzzy input by a-cuts in order to consider it as a series wlevel
rectangular inputs.
« Decompose each rectangular input according talhentervals within the input partition
in order to separate cores from intermediate zones.
Then, for eachn-level rectangular input, it is necessary to:
— Infer from each bound of the-level rectangular input.

— Compute the convex hull of the partial inferred sets

« Compute the union of the convex hulls.

An analysis of the algorithm complexity follows.
« «-cut input decomposition linearly depends on
« Decomposition of rectangular inputs linearly depends:@nd on the number of their intersections
with the subsets resulting from the partition decompositice. k.
« Inference from both bounds of the rectangular input reguirealculations for eacl-cut.
« Convex hull can be determined by consideritiginferred bounds.

« Last step is the union at convex hulls.

As all operations linearly depend on this algorithm has complexitg(n).

F. «a-cut related approximation

The only approximation made in the one dimensional infezealgorithm described above comes
from the a-cut input decomposition. All the other steps include ex@etompositions, they are only
introduced in order to increase the algorithm efficiencyt. e give some elements to quantify thecut
related approximation. For that purpose, we consider tidali input and output partitions, such as
the ones shown on Figure 12, with the same ramge:, maz| and two fuzzy sets each. In that case,
the analytical expression given in Equation 13 reducegdQ.(z) = pa(z), Vz € [min, maz]. The

inferred output must be identical to the fuzzy input (seeuFegl?2).

April 11, 2008 DRAFT



23

Il Exact outpy

[
a-cuts
(]

[ JFuzzy inpy

min

Fig. 12. «-cut related approximation

Table | gives the number af-cuts required for reaching various accuracy levels, deipgnon the
fuzzy input characteristics. The fuzzy input is chosen agransetrical trapezoidal fuzzy set.

Irrespective of the number ef-cuts, the computed output has the same core as the exact.oliye
accuracy level is evaluated as the ra‘f@mﬁfiu‘;ﬁ“ﬁwzr“. It only depends on the fuzzy input slope,

which varies from 45 to 90 degrees. The results show thatfevbathe slope, at most tencuts are

necessary for ensuring an accuracy level better than tenguer

Min. Accuracy (%)
Slope| 20 15 10 5 2
45° 6 7 10 22 81
50° 5 6 8 15 47
60° 3 4 5 22
70° 2 3 3 5 12
80° 2 3 6
90° 1
TABLE |

NUMBER OF @-CUTS REQUIRED FOR A GIVEN ACCURACY

VI. 2D INFERENCE ALGORITHM

We now examine inference with fuzzy inputs in the two-dimenal case. We use the same decom-
position method as in the one-dimensional case. In the $egealenote a rule asi, A B, — Oy;. The
aim of this section is to determine the output in the presefdsvo fuzzy inputs. In order to reduce

the complexity, a double decomposition is used again:
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« a-cut decomposition: decompose each fuzzy input into a upforectangular inputs of levek,
0 < a < 1. This decomposition allows to consider each fuzzy input achedimension as a set of
a-level rectangular inputsy is identical in both dimensions.

« Partitioning decomposition: For each rectangutacut, a decomposition is made according to the
different parts of the partition in order to handle the iefece process locally. Thanks to inferential

independence, the inference from the core part is obvious.

As a consequence, the inferred output is now the result ofudbldaunion:

O = Uk:L...,p <U0l O;ﬁa’l)

O,fl is the inferred output resulting from inpufs, N A, and E; N B,

The key issue to be considered is how to infer withcatevel rectangular input in each dimension.
If the function to be represented by the fuzzy rule-basedesyss monotonic and continuous, it is
sufficient to infer from each bound of the rectangular inputeach dimension, in order to get the fuzzy
output interval bounds. If the output is not monotonic, wedé¢o detect the extrema of the function
and deal with monotonic parts separately.

To sum up the inference process in two dimensions, it is sacg<o:

« decompose the fuzzy input by-cuts in order to consider the fuzzy input as a setaeievel

rectangular inputs.
« decompose each rectangutarcuts according to the input partition in order to separates @and

overlapping zones. This allows a local inference.

for eacha-level rectangular input,

— infer from each of the 4 vertices of theazlevel rectangular inputs.
— test if there are other useful points lying inside the regtdar input, and infer from all such
values.

— the final output is the convex hull of all the outputs so indeltr

« The union of all outputs previously computed is the final lesu

A. Implementation

We have three key points to study:
« output partition To preserve coherence and to insure interpretability ef djstem, we need to

choose proper output partitions.

« Continuity we must insure continuity across the different areas nbthby decomposition.
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If X is Ay andY is By thenZ is O1,1
If X is Ay andY is B; thenZ is O 2
If X is A> andY is By thenZ is Oz,
If X is A andY is B thenZ is Oa,2

TABLE I

THE SET OF SIMULTANEOUSLY FIRED RULES FOR TWO INPUTS

« Extremal pointsif the output is not monotonic between the two bounds of #aangular input,

we need to detect the extremal points and to consider therthéoinference process.

In the sequel, we first study output partitions and the mesharmf inference for a precise input.

Then, we deal with continuity and kink points.

B. Output partitions coherence and interpretability

In this section, we focus on Resher-Gaines implication bseats computation provides the core of
outputs inferred using residuated fuzzy implications.lEmput variable is associated to a strong fuzzy
partition (see figure 13). The purpose of this section is td &intput fuzzy sets capable of ensuring the
logical coherence of the rule base system [19]. Furtherme@esneed to have an interpretable output
partition.

Thanks to the strong fuzzy partition a given two-dimensigracise input can trigger at most four

rules, shown on table II.

Al Az Bl BQ

Fig. 13. Input partitions

Coherence:a rule system is coherent if for all input values, there is astone output value totally
compatible (the infered output must be normalized)
To obtain a coherent system, a necessary condition is to@aye1 O, ;N 0,1 N 045 # 0. Sufficient

conditions are more demanding and can be found in [19]. Basegsults presented in [13], we build

April 11, 2008 DRAFT



26

an output coverage whetg, ; andO- > form a strong partition. In order to have an interpretablkgtem,

we chooseSupport(Oy 2) = Support(Os,1) = Support(Oq1) N Support(Oy2). (See figure 14)
Note that this partition satisfies both system coherenceitedpretability properties. According to

whether the system we want to represent is symmetric orot,and O, ; may be identical or not.

()1,1 ()1,2 ()2,1 02,2

Fig. 14. Output partition for coherence and interpretapili

C. 2D inference for a precise input
With strong input partitions, there are 3 different sitoas according to the location of the precise

input (see figure 15).
o Case 1: both inputs lie within the fuzzy set cores of each dsim. In this situation we can

directly infer the output thanks to inferential indepencker{see section Ill). Output is equal to

core(Oy,,;) for Resher-Gaines implication.

vV
By 1 2 1
B 1 2 1 |
T
Ay Ay

Fig. 15. Areas defined by input partitions
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Fig. 16. Notation

By

Fig. 17. Case 3: Four interesting areas

« Case 2: ther input lies within the fuzzy set core in a dimension and in therapping zone of
the other dimension. For example, choasa the core ofA; andy between the cores dB; and
Bs. In consequence, 2 rules are triggered:A By — O; and A; A By — Oy.

. Case 3: Bothr andy inputs lie between the cores of adjacent fuzzy sets iand inV" (see figure

17). Four rules are triggered. This is the most complicatesec

Let us first study case 3 since case 2 is a particular case wti3elsequel, we denote fy («), o™ ()]
the a-cut of the fuzzy intervabl (see figure 16).

1) Case 3:Given a 2D precise input, we can compute the Resher-Gaingsitojd 3], which is an
interval defined by its lower bound,,;,, and its upper bound,,... Let us denotey; = 4, (z) and
B; = pp,(x). Zones are defined on figure 17 according to the valugiof= min(ay, as, 1, 52),
wherea; = 1 — ag, /7 = 1— [, corresponding to changes in the inference results. Tablgviés

the m value for each zone. Let us detail what happens for the inéerén zone 3.1, which corresponds
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Zone 31| 32|33 34

min(ai, a2, 51,82) | 61 | a1 | B2 | a2

TABLE 11l

ZONE PROPERTIES

to 5, > (3 anda; and a, both greater tham,.
In zone 3.1, the lower bound can come from four rules:
o« Ay NB; — Oy, gives us bound;il(ﬁl) since; is less thamy;.
o Ay A By — Oy gives us bound; ,(a;) sincea; is less thans,.
o Ay A By — O, gives us bound,,(3;) sincep, is less tham,.
o Ay N By — Oy gives us bound;;Z(ag) sinceay, is less thans,.

Since rule aggregation is conjunctive, the overall lowenrimbis the maximum of these bounds.

Zmin = max(011(61), 015(c1), 051 (B1), 035(a2))

01,(61) is always less than other bounds because its maximum is #er loound of the core of
O,,1. Furthermoregp, , () is always lower tham, ,(a») becaused; < a,. As a consequence, the lower

bound is:

Zmin = maX(Oi2(a1)7 05,2(&2))

Similarly, we are able to compute the upper bound:

Zmazr = min(oil(ﬁl)a Oi‘:Q(al)? 0;—,1(61)7 03_,2(&2))

which becomes:

Zmazr = min(ofl(ﬁl)v 0{2(0[1))

Table IV shows results for all sub-zones of zone 3.
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Zone Lower boundzmir, Upper Boundzy,qx
3.1 | max(oyy(a1),055(a2)) | min(of, (1), 01 »(a1))
3.2 | max(0y,(B1),055(82)) | min(of;(a1),05,(B1))
3.3 Inax(oil(ag),oig(ﬂg)) mln(of’l(al),oil(ag))
34 | max(oy,(B2), 055(2)) | min(of,(B1),01,(B2))

TABLE IV

OUTPUT INTERVALS FOR CASE3

B, 1o 2.3 ol

Fig. 18. Several input areas

2) Case 2:Zone 2 can be seen as a special case of zone 3. There are fas (2oh, 2.2, 2.3 and
2.4) adjacent to zones 3.1,3.2, 3.3 and 3.4 (see figure 18).

There are at most two rules fired in zone 2 because of the sinpug partition.

For example, in case 2.1 whefe = 0 and 3, = 1 only the following rules are triggered:

o Ay NBy — Oq2

o Ay N By — Oy

The behavior is the same as in zone 3 but less rules are twdggsy;, is the same as in zone 3.1

because output9, , and O, are triggered :

Bmin = maX(Oi2(a1)7 OE,Q(QQ))

01, i1s not triggered s, becomes:

Zmax = 0{2 (al )
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Similar calculations can be made for other subzones. Osliputone 2 are summed up in table V

Area Lower boundz,n, Upper boundz,,qz

2.1 | max(oy,(a1),05,(az)) of 5(an)
2.2 | max(05,(51),055(82)) 0;1([31)
2.3 051 (a2) min(o}, (a1), 03, (a2))

2.4 ( 2) Inln(ofl([ﬁ) 0y 2(5 )

TABLE V

(a
(8

OUTPUT INTERVALS FOR CASE2

D. The continuity of inferred outputs

In this section, we study the output continuity with respiectnput variations. Figure 18 shows all
possible transitions. Since zone 3 is the most general vasdirst study possible transitions between
its subzones. Let us examine the transition from 3.1 to 8.@cdurs wheny; = 5, anday = 35. Thus
in zone 3.1, we havg; < (3, (see table Ill) andv; < a,. The lower bound,,;,, can be computed from

each of these subzones:

o Zminil = I’IlaX(OiQ<Oél), 0£2<a2>>

* Zmin32 = maX(OQ_J(Bl)v 02_,2(52))

which gives zpins1 = 055(2) @Nd Zpinz.2 = 055(52). Thus, we obtainz,ins1 = zmins.2 Decause
ay = [35.

Let us now consider the upper boung,.:

* Zmaz3.1 = min(ofl(ﬁl),OIQ(&l))

* Zmaz32 = min<oi’:1<al)7 0;;(51))

Similarly znaes1 = 07 (51) @nd zmazs.2 = 0f (). Sincea; = B, We havezmas1 = Zmass.2-

Thus, the inferred output is continuous between area 3.las®l 3.2. In the same way, we can show
that transitions from areas (3.2,3.3), (3.3,3.4) and 8314,are continuous.

Furthermore, for the single point at the intersection ofesalvareas, continuity is also guaranteed.
Indeed, this point has levels, = a, = 51 = 5, = . The lower bound is equal to, 2( ) for all areas
and the upper bound is equal 49, (3)

This proves that the inferred output is continuous all tigftoarea 3. Since area 2 and area 1 are just

particular cases of area 3, the output is also continuousdset zones.
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= Zone 3.2, Zone 3.1 . Zone 3.4,

031(8)
055 ,/ 011(&1)

// //
055(52) ‘ ////////

021 035( (12/ ”//”' ﬂz

3 1 019 dz 3
| o1 5(1) ! !
O14 : : o

extremal point

Fig. 19. Output evolution according t@; level

E. Extremal points

However, we need a continuous and monotonic output to betkatehe result of the output is the
convex envelope of outputs inferred from rectangular inpotindaries. In the sequel, we prove that
the output boundary functions defining the set-valued dutjpel not always monotonic and we detect
extremal points that need to be considered. An extremalt psitypically obtained if the two local
functions defining an output bound (table IV) evolve in opposdirections.

For example, in figure 19, an extremal point appears at therdwund in zone 3.1. In this area,
the lower bound is equal tmax(o; 5(1),055(2)), Whereo; ,(a;) increases and,,(a,) decreases.
Thus, there is an extremal point wheq,(a1) = 0;,(a2). As we know fuzzy set®), , and O, ,, we
can easily find they; level that corresponds to this extremal point.

For each zone, an extremal point can appear on only one bamé a&an see on table VI. When
necessary, we split the non monotonic output in order taicesiurself to monotonic outputs.

The complexity analysis can be done in a similar way to thedbmensional case. All steps described
for one dimension still hold for each input. One additiongdpsis needed: extremal point detection.

This operation requires two tests percut. Thus the two dimensional algorithm has complexity:).
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Zone lower bound upper bound
3.1 | oy q(a1) =05 ,(a2) No
3.2 og’l(ﬂl) = 0;2(52) No
3.3 No of 1 (an) = 03, (az)
3.4 No 0{1(51) = otg(ﬂg)
TABLE VI

CONDITIONS FOR EXTREMAL POINTS ACCORDING ZONE

1 1] 1 N
i 1 inpu 2 AN
4 k I Ref. output
6 n. samples
Output ’ \ |-;-IG c(fcutsp

Fig. 20. Comparison of naive sampling anecut sampling

F. Comparison with a naive sampling procedure

To demonstrate the efficiency of the proposed algorithm, & give some results comparing it
with inference from a naive sampling of the support. Inputtipans and fuzzy inputs are shown on
Figure 20. The chosen fuzzy inputs are symmetric triangésnly a reasonable width with respect to
the partition fuzzy sets. Figure 20 also displays the oupautition and the inference results, for 1000
naive samplesréference outpyi 6 a-cuts and 6 naive samples. The rules are the ones given ie Tabl
I, with O 52 = Oq1.

Table VII summarizes the comparison between our algorith&sed om-cut decomposition, and a
naive sampling strategy. For each row, the number given enfitist column is either the number of
a-cuts or the sample size. For thecut based algorithm, the first-cut is of level 1, and the following
ones are regularly spaced in the unit interval. For the ngamapling algorithm, samples are regularly
spaced in the 0.1 level-cut, and combinations of all samples are considered. Foin eaw of the
table, the second column, labeledix gives the maximum possibility degree of the output distrdou
for naive sampling. Obviously, this degree is not given tog &-cut based algorithm, as it is always
equal to 1. The last two columns show tﬁ% ratio, the reference area being computed by
taking 1000 alpha-cuts. Let us first point out that the comiplas not the same for the two algorithms.

n a-cuts result in2n + 2 strict inferences, whilex naive samples require? strict inferences. An
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n max (naive s.) %area (naive s|.)%area {-cut)
2 0.1 11.8 88.5
3 1 81.1 92.3
4 0.7 66.3 94.2
5 1 90.4 95.4
6 0.82 79.2 96.2
7 1 93.8 96.7
8 1 85.2 97.2
10 | 0.9 88.3 97.7
151 97.2 98.5
20 | 0.953 94.2 98.9
50 | 0.982 97.6 99.5
60 | 0.985 99.6 99.8
TABLE VII

COMPARISON OF NAIVE SAMPLING AND-CUT SAMPLING

examination of this table then shows that, for naive samgplthe maximum possibility degree does
not have a monotonic behaviour whenncreases, causing a non monotonic behaviour of the irferre
output possibility distribution area. Furthermore, thiepomenon is amplified by the random handling
of extremal points with the naive sampling. We also note #ratccuracy of 95% is obtained with 5
a-cuts, i.e. 12 strict inference operations, while the saooeii@cy requires more than 20 naive samples,
i.e. 400 operations. To conclude this discussion, we cathsdyhea-cut decomposition based algorithm

provides an “intelligent” sampling by the means@fcuts.

VIl. I LLUSTRATION: DIAGNOSING A CHEESEMAKING PROCESS

To show the interest of our method, we will consider a probtEnpredictive diagnosis for a hard-
cooked type cheese-making process. Two parameters aretampto determine cheese firmness: MC
(Moisture Content), the cheese moisture content percerdgaghe end of the making process and DEE
(Dry Extract Evolution), the loss of water during the first days of the maturation process. The goal
is to predict the cheese firmness at the end of maturatida {0 months or longer) according to these
two parameters. The two measurements (MC and DEE) come feoreoss tainted with significant
imprecision. So, we need to use fuzzy inputs in our systemrderoto correctly represent these
measurements. The firmness is a crisp real value rangingebativand 10, supplied by an expert

sensory panel, and cannot be measured by a mechanical deyoé and output expert partitions are
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high

low high

0.2 0.5 0.7 0.8 DEE
1 soft normal hard
0 35 5 6.5 Cheese firmne:

Fig. 21. Fuzzy sets for prediction of firmness - A fuzzy inpsitpiot in dash lines

shown on figure 21. Let us refer to the typical output partitshown on Figure 14, we note th@f -
and O, are identical and represented by the fuzzy detmal Experts know some relations between
MC, DEE and cheese firmness. This rule system is a simplifistesythat does not take into account
the whole complexity of the process:

« If MC is high and DEE is low then the cheese will be soft

« If MC is high and DEE is high then the cheese will be normal

« If MC is low and DEE is low then the cheese will be normal

« If MC is low and DEE is high then the cheese will be hard

Some explanations follow. When the cheese is very wet, ibésdnot lose enough water, the cheese
will be soft, but if it loses a lot of water, the cheese firmnask be normal. Similarly, if moisture

content is low and if a lot of water is lost, the cheese will laedh

A. Inference from a fuzzy input

1) Implicative rules: Fuzzy inputs are shown in dashed lines on figure 21. MC is nhexdiddy a
trapezoidal fuzzy set, due to two kinds of imprecision (seresror plus calculation error) to take into
account. DEE only suffers from sensor error. We apply ouordtigm as follows:

« Alpha-cut decomposition: for this example, we decide tood®o3«-cuts for the decomposition,

as shown on figure 22.
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high

Fig. 22. Partitioning decomposition

« Partitioning decomposition: We decompose MC and DEE inpatording to partitions as shown
on figure 22. We see the 3 zones activated by the correspondings of MC = 54.12 + 0.75
and DEE = 0.6 £0.1.

« Inference: for a two-dimensional-cut rectangular input, we need to infer the four vertiaes, ¢
and d. We denote right and left rectangular inputievels by«,, 6, and«;, 5;. Figure 23 shows
level 1 rectangular inputs on each dimension. Poinend b are in zone3.3 and pointsc and d

are in zone2.3. The intervals inferred from each point are :

— Point a: [hard (ay), soft*(Fa.)] = [5.3,5.8]. The interval is deduced from table IV. For
example, the lower bound isiax (o, (a2), 055(82)) = max(hard™(ay), normal™(By) =
hard~(ag) in this case. The upper bound and the bounds of other interva similarly
computed.

— Point b: [hard™ (ay,.), softT(0s)] = [5.8,5.8]

— Point c: [hard™ (ag,), normal™ (as,)] = [5.8,6.1]

— Point d: [hard ™ (ag), normal™ (ay;)] = [5.3,5.9]

There are no extremal points within that zone. Indeed thetpohere hard («as) is equal to

normal™ (cy) is not in the range of variation af; anda,. Consequently, the level 1 output is the
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low high

Fig. 23. Partitioning decomposition for a levelotcut

soft normal hard

QU oo SN

Qpp |oommrrmmmm ] 7

3.5 5 6.5 Cheese firmness

Fig. 24. Output for a level v-cut

interval: [hard™ (ag;), normal™ (ay,)] = [5.3,6.1] as we can see on figure 24.
In the same way, it is possible to compute inferred interf@ighe other twoa-level rectangular
inputs.
« Final result: The final output result is the union of aHlevel inferred outputs (see figure 25).
This example shows how the imprecision is propagated wheiaghmaintained within reasonable
bounds through the inference process. The double decotigpogives a discrete approximation of
the real output. The higher the number @ftuts, the better the approximation. Let us point out that

inferences for albv-cuts are exact. The approximation only concerns the inpabohposition inte-cuts.
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b osoft normal hard

W= WIN

3.5 5 6.5  Cheese ﬁ;mness

Fig. 25. Output union of the different-cuts

b soft normal hard

7/// / . ¢ Defuzzified valut

0 3.5 5 6.5 10
Cheese firmness

Fig. 26. Inference result with a conjunctive rule system

The inferred output interval may intersect several outpiaizy sets. If it belongs to a single fuzzy
set, the inferred output is considered as precise. If itrpgoto two fuzzy setsspft and normal for
example), it is considered as imprecise.

2) Conjunctive rulesThe output obtained from Mamdani inference [32] using theesdata is shown
on figure 26. Note that the output partition is a strong partitThe inferred output overlaps the three
output fuzzy sets. Consequently, it is difficult to inteeréhis result without defuzzification. Centroid
defuzzification gives us a firmness equabtd. Note that, as we saw on section |I-C, defuzzification is
influenced by the fuzzy sets shape. The imprecision of theyfugut is not respected in the defuzzified

inference result.

B. Numerical results

We tested the rule system given above with crisp inputs fertio different kinds of rules. Since
this example is a simplified rule system, the quality of thedmtion is not very good. However, it is
sufficient to demonstrate the difference between conjuactiles and implicative rules. A representative

sample of 103 cheeses was studied.
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Inference results are analyzed at a symbolic level: Thernadeoutput is considered apod if it
mainly belongs to the same output fuzzy set than the crisgrerte outpuiyrong otherwise.

1) Implicative rules:

« 33 wrong predictions

« 49 good but imprecise predictions, meaning that the infeetput contains the observed value

but overlaps two output fuzzy sets.

« 21 good and precise predictions.

These results show a lot of imprecise predictions. This Wehavas expected since the rule system
is a simplified one. However, only 33 wrong predictions arelenby this system. As we saw in section
[I-C, by adding more rules (and more input variables), thplioative rule system could be more precise
and the output quality improved for 49 imprecise prediction

2) Conjunctive rules:

« 56 wrong predictions

« 47 good and precise predictions

With conjunctive rules, there are many wrong predictionsalse of the defuzzification process.

Each inferred output is then an artificially precise valuagtionjunctive rules it is impossible to
refine the inference result because adding more rules wil iogrease the output imprecision because
of the disjunctive agregation.

This example shows us the negative side effects of defuatitit. It also points out the ability of

implicative rules to respect the input imprecision and ttmusbtain a better prediction quality.

VIIl. CONCLUSION

This paper lays the foundation for a practical inferencehm@twith a system of implicative fuzzy
rules and fuzzy inputs. For a fuzzy input, we can get an exadretization of the result using-
cuts and a partitioning decomposition of inputs. Inferrimgh this kind of fuzzy system is especially
appropriate when modeling expert knowledge expressingtcaints (as opposed to Mamdani rules).
The interest of the method has been shown on a simplified gineglidiagnosis case-study of cheese
production process, for which expert rules with two dimenal input conditions are available. In the
future, more rules will be introduced to improve the results

Extending the approach beyond 2D inputs is also the nextesitahg task. The use of implicative
rules within high dimensional spaces with crisp inputs isiobs, thanks to the FITA method. When

dealing with fuzzy inputs, the question arises whether tlop@sed algorithm may or may not be run in
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higher dimensional spaces. Some properties, such as gremtifl independence, do not depend upon
the dimensionality. Whatever the space dimension, whemningt data are located within a given core
in all input dimensions, the result is the corresponding rdnclusion4; AB; A--- AN, — O, k. In
this case, the computational time is constant. Howeverxtremal point detection complexity increases
with the dimension. Once the extremal points found, therélgm is generalizable ta dimensions.

Special care should be given to the output partition de#\gr2" rules are likely to be simultaneously
fired, the partition may courit” overlapping fuzzy sets with a non empty intersection. Thaymarm
the system interpretability, even with small valuesrofFortunately, as previously mentioned in the
comment of figure 14, some of them may be identical.

When thinking about use in a high dimensional space, one maisfiorget the nature of implicative
rules, i.e. that they represent constraints. Thereford, nsasonable to formalize constraints in many
dimensions at once?

There is an alternate way of dealing with larger systemsenkéleping in mind their interpretability:
combination of various systems of lower dimension. Unlikajanctive rule bases, implicative ones
may be combined in either a parallel or a sequential way. énfethmer case, both rule bases use the
same output universe and the result is their intersectlos:i$ in full agreement with implicative rule
agregation. In the latter case, the output is used to feedebe system. As the algorithm is able to
manage fuzzy inputs, no defuzzification step is needed. iDgieecision is properly taken into account

at all steps.
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