
Abstract— Possibilistic logic is essentially a formalism for
handling qualitative uncertainty with an inference machinery
that remains close to the one of classical logic. It is capable of
handling graded modal information under the form of
certainty levels attached to classical logic formulas. Such lower
bounds of necessity measures are associated to the
corresponding pieces of belief. This paper proposes extensions
of the possibilistic logic calculus where such weighted formulas
can be attached to a set of agents or  which can be embedded
inside another weighted formula,  for the expression of mutual
beliefs. It is possible to express that all the agents in a subset
have some beliefs, or that there is at least one agent in a subset
that has a particular belief. The case of all-or-nothing beliefs is
first dealt with before presenting the inference rules for
handling graded beliefs held by multiple agents. Illustrative
examples are provided. The proposed framework offers a
reasonable compromise between expressive power and a
computational cost close to the one of classical logic.

1 INTRODUCTION

Possibilistic logic (Dubois and Prade , 2004; Dubois,
Lang and Prade, 1994) offers a convenient tool for handling
uncertain or prioritized pieces of information. Standard
possibilistic logic expressions are propositional logic
formulas associated with weights. Logical formulas with a
weight strictly greater than the inconsistency level in a
possibilistic logic base are immune to inconsistency and can
be safely used in deductive reasoning. This property is at the
basis of the representation of non-monotonic consequence
relations in possibilistic logic (Benferhat et al., 1997).

A possibilistic logic formula is a pair made of i) any well-
formed classical logic formula, and ii) a weight expressing
its certainty or priority. Such classical logic formulas can be
only true or false, and fuzzy statements with intermediary
degrees of truth are not allowed in standard possibilistic
logic. Then, a possibilistic logic base, viewed as a belief set,
is equivalent to a conjunction of such pairs expressing
graded pieces of belief (graded beliefs, for short).
Possibilistic logic can be viewed as a particular labelled
deductive system (Gabbay, 1996). In a possibilistic logic
formula, the weight is formally interpreted in the framework
of possibility theory (Zadeh, 1978) as a lower bound of the
value of the necessity measure of the proposition appearing
in the considered possibilistic logic formula. Thus, a
possibilistic logic formula is similar to a modal logic
formula with a graded modality (Farinas del Cerro and
Herzig, 1991). Possibilistic logic expressive power is
comparable to a fragment of modal logic that would use the
box symbol  only, with a computational cost close to the
one of classical logic (Lang, 2001).
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The paper investigates some extensions of possibilistic
logic for reasoning about beliefs entertained by sets of
agents, focusing as well on trust and mutual beliefs, issues
that usually require the use of modal logics (e.g., Cohen and
Levesque, 1990;  Herzig and Longin, 2004; Lorini et al.,
2005). This attempt takes advantage of the fact that a
possibilistic logic formula can be extended to a pair made of
a statement that is either true or false associated with a kind
of modality stating the circumstances under which the
statement can be regarded as true. For example, the
statement may represent a piece of information such as “if
the agents in group A are rather certain that p is true, then
they will have q as an important goal”, and this will be held
as “quite certainly true by a group of agent B”.

The paper is organized as follows. Section 2 restates the
necessary background on standard possibilistic logic.
Section 3 first describes an extension of propositional logic
modeling the beliefs of sets of agents, before handling the
general case of a graded collective possibilistic logic. In
these extensions, one is able to express that all agents in
some subsets, or that some agents in a subset have particular
beliefs, and to reason both on beliefs and on subsets of
agents. Section 4 explains how a possibilistic logic formula
can be viewed as a Boolean proposition evaluated on
information states. Negation or disjunction of graded beliefs
can then be defined.  Section 5 handle nested graded beliefs.
Section 6 discusses how to interpret nested possibilistic
multiagent formulas and provides an illustrative example.

2 BACKGROUND ON POSSIBILISTIC LOGIC

A standard possibilistic logic expression is a pair (p, α),
where p is a propositional (or first-order) formula and
α  ∈  (0,1] is interpreted as a lower bound of a necessity
measure N. A graded belief (p, α ) is semantically
interpreted as N(p) ≥ α, where N is a necessity measure.
Any discrete linearly ordered scale can be used in place of
[0,1].  Formulas of the form (p, 0), which do not contain any
information (∀p, N(p) ≥ 0 always holds), are not part of the
possibilistic language.

The characteristic property of a necessity measure is its
decomposability with respect to conjunction namely, the
property N(p ∧  q) = min(N(p), N(q)). Important valid
syntactic inference rules are:

 • (¬p ∨ q, α); (p, β) |− (q, min(α, β))  (modus ponens)
 • for β ≤ α (p, α) |− (p, β)   (weight weakening),

where |− denotes the syntactic inference of possibilistic
logic. The min-decomposability of necessity measures
allows us to work with weighted clauses without lack of

generality, since N(∧i=1,n pi) ≥ α ⇔ ∀ i N(pi) ≥ α. It means

that in terms of possibilistic logic expressions we have the
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logical equivalence (∧i=1,n pi, α) ≡ ∧ i=1,n (pi, α). In other

words, any weighted logical formula put in Conjunctive
Normal Form is equivalent to a set of weighted clauses. This
feature considerably simplifies the proof theory of
possibilistic logic. The basic inference rule in possibilistic
logic put in clausal form is the resolution rule:

(¬p ∨ q, α); (p ∨ r, β) |− (q ∨ r, min(α, β)) .
Classical resolution is retrieved when all the weights are

equal to 1. Other valid inference rules for propositional
formulas are: 

 • if p entails q classically, (p, α) |− (q, α)
 (formula weakening)

 • (p, α); (p, β) |− (p, max(α, β))       (weight fusion).
Refutation can be easily extended to possibilistic logic.

Let K be a knowledge base made of possibilistic formulas,

i.e., K = {(pi, αi)}i=1,n. Proving (p, α) from K amounts to
adding (¬p, 1), put in clausal form, to K, and using the
above rules repeatedly until getting K ∪ {(¬p,1)} |− (⊥, α),
where ⊥ denotes the empty clause. Clearly, we are interested
here in getting the empty clause with the greatest possible
weight. It holds that K |− (p, α) if and only if Kα |− p (in the

classical sense), where Kα = {p | (p, β) ∈ K and β ≥ α}. See
Lang (2001) for algorithms and complexity issues.

An important feature of possibilistic logic is its ability to
deal with inconsistency. The level of inconsistency of a
possibilistic logic base is defined as

inc(K) = max{α| K |− (⊥, α)}
(by convention max∅ = 0). More generally, inc(K) = 0 if

and only if K* = {pi | (pi, αi) ∈ K)} is consistent in the usual
sense.

Semantic aspects of possibilistic logic, including
soundness and completeness results with respect to the
above syntactic inference machinery based on resolution and
refutation, are presented in (Dubois et al., 1994). From a
semantic point of view, a possibilistic knowledge base K =

{(pi, αi)}i=1,n is understood as the possibility distribution #K

representing the fuzzy set of models of K:

#K(ω) = mini=1,n #{(pi, αi)} (ω) (1)

(where #{(pi, αi)}(ω ) = 1 if ω  |= p i; #{(pi, αi)}(ω ) = 1 −  α i

otherwise). The degree of possibility of ω according to (1) is
computed as the complement to 1 of the largest weight of a
formula falsified by ω. Thus, ω is all the less possible as it
falsifies formulas of higher weights. In particular, if ω is a
counter-model of a formula with weight 1, then ω  is

impossible, i.e. #K(ω) = 0. It can be shown that #K is the

largest possibility distribution such that NK(pi) ≥ α i,
∀i=1,n, i.e., the possibility distribution that allocates the
greatest degree to each interpretation in agreement with the

constraints induced by K. NK is the necessity measure

associated to distribution #K, namely NK(p) = min{1 −

#K(ω),ω|=¬p}. It may be the case that NK(pi) > αi, for some
i, due to logical constraints between formulas in K.

3 COLLECTIVE POSSIBILISTIC LOGIC

We now introduce a multiple-agent extension of
possibilistic logic, by attaching sets of agents to classical
and then to possibilistic logic formulas. Individual agents
are denoted by letters a or b, or by indexed letter ai for i=1,
m. A set of agents is denoted by a capital letter A  or B,
which may be indexed, i.e. Aj. The set of all agents is
denoted by ALL, and an un-instantiated set of agents by X.
The case of binary beliefs is first considered, i. e., an agent
believes or not a given proposition. Mind that if agent a
does not believe p, it does not mean that it believes ¬p.
Intermediary levels of certainty, as in standard possibilistic
logic will be introduced in subsection 3.2.

3.1  Binary certainty

Let (p, a ) and (p, A) denote the respective pieces of
information “at least agent a believes p” and “at least all
agents in A  believe p”. Strictly speaking, (p, a ) is a
simplified notation for (p, {a}). Let Agent(p) denotes the set
of agents that believe p”. Then, the semantic understanding
of (p, A) is Agent(p) ⊇ A. Note that

Agent(p ∧ q) = Agent(p) ∩ Agent(q),
and (p ∧ q, A) ≡ (p, A) ∧ (q, A),

which expresses that a set of agents believes p and q if and
only if they both believe p and believe q. This agrees with
N(p ∧ q) = 1 ⇔ N(p) = 1 and N(q) = 1.

Consider requirements for syntactic inference. For each
agent a, classical logic is supposed to be valid:

• if p entails q classically, (p, A) |− (q, A)
Since classical logic holds for any agent, and (p, A) means

that ∀a ∈ A, (p, a), we can postulate beliefs are preserved
by weakening of the set of agents :

 • if B ⊆ A, (p, A) |− (p, B)
So syntactic entailment is defined by these two constraints:

(p, A) |− (q, B) if and only if p |− q and  B ⊆ A.
Derived inference rules are:

• (¬p ∨ q, a); (p ∨ r, a) |− (q ∨ r, a),
(which is nothing but the counterpart of the standard
resolution rule for agent a );

• (¬p ∨ q, A); (p ∨ r, A) |− (q ∨ r, A);
more generally

(¬p ∨ q, A); (p ∨ r, B) |− (q ∨ r, A ∩ B) 
   (resolution rule)

since for each agent in A ∩ B, both ¬p ∨ q and p ∨ r are true.
If [p] ⊆  Ω  denotes the set of models of p, the set of

models of (p, A) is a subset of the Cartesian product Ω×
ALL. Namely

[(p, A)] = ( [p] × A) ∪ (Ω  × Ac),
since all agents in A believe (at least) p, while other agents
are left uncommitted. On such a basis a semantic entailment
can be defined such that (p, A) |= (q, B) if and only if [(p,
A)] ⊆ [(q, B)]. This is equivalent to p|=q and B ⊆A. Hence
(p, A) |− (q, B) if and only if (p, A) |= (q, B). Indeed, this
case if A ⊆ Agent(p) then A ⊆ Agent(q) since p|=q, hence B
⊆ Agent(q).

The fusion of the set of agents is also a valid rule:



• (p, A); (p, B) |− (p, A ∪ B).
The beliefs of a subset of agents may not be consistent

with the ones held by another disjoint subset of agents. Mind
that this does not create inconsistency, as now illustrated by
the following example.

Example. K = {(¬p ∨ q, A); (¬p ∨ r, A); (¬q ∨ r, ALL);
(¬p ∨ ¬r, B); (p, ALL); (q, A); (r, C)} with A ∩ B = ∅, C ⊂
A and A ⊂ ALL.

Note that K* is inconsistent, while K is not. Indeed, one
can infer from K, the formulas (q, A), (r, A), (r, C) and (¬r,
B). Observe that (r, C) is subsumed by (r, A) since A ∪ C =
A. Moreover, there is no contradiction between (r, A) and
(¬r, B) since A ∩ B = ∅. This illustrates the fact that disjoint
sets of agents may have opposite beliefs, without creating
inconsistency. Indeed (⊥ , ∅ ) does not express any
contradiction, while (⊥, A) does if A ≠ ∅.

As in standard possibilistic logic, in order to try to
establish that it is true that a set of agents believe r, one can
proceed by refutation, i.e., one adds to K the formula (¬r,
ALL). Thus, in the above example, one can obtain the empty
clause either under the form (⊥, C) or under the form (⊥, A),
as it can be checked. Then, we get (⊥, A ∪ C) = (⊥, A), from
which one can deduce that (r, A).

3.2 Graded certainty

We now introduce the multiple agent extension of
possibilistic logic, by supposing that a piece of belief
encoded by (p, α) is held by an agent, say a, and should be
distinguished from pieces of belief of the form (q, β) held by
another agent b.

Reasoning will combine the basic patterns of reasoning of
sections 2 and 3.1 together. Syntactically the fact that “agent
a believes p at least at level α” is denoted by the expression
(p, α/a). Similarly, (p, α/A) will encode “all the agents in A
believes p at least at level α”, while (p, {α/a, β/b}) means
“agent a believes p at least at level α, and agent b at level at
least β”. We shall also write (p, a/A ∪ β/B}) for “at least the
agents in A believe p at least at level α, and the agents in B
at level at least β”. In particular, with these notations the
following rewritings are allowed:

1/A ∪ 1/B = 1/(A ∪ B) = A ∪ B
α/{a, a’} = {α/a, α/a’} = α/{a} ∪ α/{a’} = α/a ∪ α/a’,

and more generally {α/A, b/B} = α/A ∪ β/B.
This kind of information can be compactly written as (p,

F) where F  is the fuzzy set of agents that believe p, is
understood as ∀a ∈ ALL, Na(p) ≥ µF(a). Then the fuzzy set
of models of  (p, F) on Ω × ALL, is defined as

µ[p, F](ω, a) = max(µ[p](ω), 1 − µF(a))
For instance, if F = α/A, it yields µ[p, F](ω, a) = 1 if ω |= p

and a ∈ A, or if a ∉ A whatever ω ; µ[p, F](ω, a) = 1− α if
ω |= ¬p and a ∈ A.

Then the following inference rule generalizes the
resolution rules of sections 2 and 3.1.
(¬p ∨ q, {α/a, β/b}); (p ∨ r, {γ/a, δ/b})

|− (q ∨ r, min(α, γ)/a, min(β, δ)/b})
where possibly α = 0, β = 0, γ = 0, or δ = 0, with {α/a, 0/b}
= {α/a}. It can be written for any subset of agents rather
than only two. For  homogeneous subsets of agents the
resolution rule can be written more compactly as
(¬p ∨ q, α/A); (p ∨ r, β/B) |− (q ∨ r, min(α, β)/(A ∩ B))

The generalized weakening and fusion rules write:
• if p entails q classically, (p, α/A) |− (q, α/A)

                                       (formula weakening)
• if B ⊂ A, α ≥ β,  (p, α/A) |− (p, β/B)

 (weakening of a fuzzy set of agents)
• (p, α/A); (p, β/B) |− (p, α/A ∪ β/B)

(fusion of fuzzy sets of agents)
where ∪  is Zadeh’s fuzzy set union, i.e. if a  ∈  A ∩  B,
max(α, β)/a appears in α/A ∪ β/A.

4 A BOOLEAN VIEW OF POSSIBILISTIC  FORMULAS

Observe that a possibilistic formula such as (p, α) is
crisply entailed or not from a possibilistic knowledge base
K, since either the inequality NK(p) ≥ α holds and then (p,
α) can be regarded as certainly true, or NK(p) < α holds and
(p, α) is certainly false. In this sense, it is tempting to
consider (p, α) as a Boolean formula. On the other hand, the
semantics of possibilistic logic leads to interpreting (p, α) as
a multiple-valued proposition having a fuzzy set of models.

In order to make sense of this apparent contradiction,
consider the formula (p, 1). It expresses that p is certainly
true (and stands for |= p in classical notation). While the set
of models [p] of p is a subset of interpretations (objective
states of the world), the set of (meta-)models [(p, 1)] of  (p,
1) is a subset of information states, that is a subset of the
power set of Ω, namely all A ⊆ Ω such that A⊆[p]. Since
from “p is certainly true”, it follows that (for the agent
asserting it) “p is true”, the set of information states
compatible with (p, 1) only leaves the set of models of p as
possible states of the world ([p] is the weakest information
state coherent with (p, 1)).

Similarly the set of meta-models [(p, α)] of  (p, α) is a
subset of (fuzzy) information states, namely the set of
possibility distributions π on Ω  such that N(p) ≥ α. The
possibility distribution π  = max(µ[p](ω ), 1 −  αi) is the
weakest information state compatible with (p, α).

Since the act of asserting (p, α) is crisp, it can be encoded
as a crisp formula to which classical connectives can be
applied, considering [0, 1]Ω as the corresponding set of
(meta-)interpretations.  Then ¬(p, α) means N(p) < α., not to
be confused with (¬p, α), that encodes N(¬p) ≥ α. Similarly,
a disjunction (p, α) ∨ (q, β) refers to the set of information
states such that one or both of N(p) ≥ α,  N(q) ≥ β, hold.
Clearly (p, α) ∨ (q, β)  is not equivalent to (p∨q, max(α, β)),
it only entails the latter, since N(p∨q) ≥ max(N(p),  N(q)),



while (p, α) ∧ (q, β)  is equivalent to (p∧q, min(α, β)), an
equivalence agreeing with usual possibilistic logic bases.

For instance, it is possible to handle possibilistic
inference as a classical inference rule. Namely, modus
ponens can be rewritten as
¬(¬p ∨ q, α) ∨ ¬(p, β) ∨ (q, min(α, β)); (¬p ∨ q, α); (p, β)

|−  (q, min(α, β)).
Indeed the first premise reads “if (¬p ∨ q, α) and (p, β)

hold then (q, min(α, β)) holds also”.
Other valid possibilistic inference rules can be handled in

the same way. For instance, ¬(p, α) ∨ (p, β) holds provided
that β ≤ α. Assuming (p, α), we get (p, β) by modus ponens.
This result perfectly agrees with the ‘weight weakening’
inference rule recalled in section 2.
    Note as a particular case the tautology ¬(p, α) ∨  (p, α),
which itself generalizes ¬p ∨ p, retrieved for α = 1, i.e., ¬(p,
1) ∨ (p, 1). The latter expression should not be confused
with (¬p, 1) ∨ (p, 1) which is not a tautology, since this is
the syntactic counterpart of the false claim “either N(¬p)  =
1 or N(p) = 1”.  The latter does not question the excluded
middle law, but sheds light on the difference between truth
and certainty.

More generally, any entailment about necessity measures
can be written at the syntactic level. Thus, for instance, N(p
∧ q) = min(N(p), N(q)) entails N(p) = 0 or N(¬p)) = 0, reads
:  ¬(p, α) ∨ ¬(q, β) ∨ (p ∧ q, min(α, β)) for any α > 0 and β
> 0, which once particularized with q = ¬p, yields ¬(p, α) ∨ 
¬(¬p, β) ∨ (p ∧ ¬p, min(α, β)), i.e. ¬(p, α) ∨ ¬(¬p, β) ∨ (⊥,
min(α, β)), still equivalent to ¬(p, α) ∨ ¬(¬p, β). It indeed
means N(p) < α or N(¬p) < β  for any α > 0 and β > 0.

Remark: Other modalities
Another interesting type of piece of information worth

handling in reasoning is of the form “at least one agent in A
believes p”. This will be denoted by (p, ∃A), with the
intended meaning that ∃a ∈  A  (p, a ), or if we prefer
Agent(p) ∩ A ≠ ∅, where Agent(p) is the set of agents that
believe p. Observe that (p, ∃ALL) encodes the piece of
information “there exists at least one agent that believes p”.
Then the following hybrid resolution rule should be
endorsed : (¬p ∨ q, A); (p ∨ r, ∃A) |− (q ∨ r, ∃A)

This kind of information could be expressed as a
disjunction (p, a) ∨ (p, a’) ≡ (p, ∃{a, a’}). More generally,

(p, ∃A) ∨ (p, ∃B) ≡ (p, ∃(A ∪ B)).
Note also that the following inference rule should

obviously hold
(p, A) |− (p, ∃A)      (quantification weakening)

Lastly, the information that the set of agents that believe p
is included in A, i. e., Agent(p) ⊆  A means that no agent
outside A believes p.  It could be encoded as   ¬(p, ∃Ac) with
Ac = ALL − A. Indeed, ¬(p, ∃Ac)  means that ⁄∃a ∈ Ac (p, a),
i.e. no agent in Ac can believe p.

The hybrid resolution rule generalizes into
• (¬p ∨ q, α/A); (p ∨ r, β/∃B) |−

 (q ∨ r, min(α,β)/∃B) if B ⊆ A.

Another rule applies when B ⊆ A does not hold:
• (p, α/A); (¬p, β/∃B) |− (¬p, β)/∃(B − A))

   if B ∩  Ac ≠ ∅.
while 

(p, α/A); (¬p, β/∃B) |− (⊥, min(α,β)/∃B)
                                                    if B ∩ Ac = ∅,

which is a particular case of the previous rule when B ⊆ A
holds. Lastly, the following weakening rule obviously holds.

• If β ≤ α then (p, α/A) |− (p, β/∃A)
 (quantification weakening)
Note that all the above inference rules follow easily from

the ones of possibilistic logic writing them for each agent
that is involved, according to the semantics of formulas of
the form (p, A) and (p, ∃A).

5  NESTED POSSIBILISTIC FORMULAS

Booleanization of possibilistic formulas gives us the
capability of embedding them inside other possibilistic
formulas. Remember that (p, α) already means that “it is
certain at least at level α  that p is true”. Thus a nested
formula such as ((p, α), 1) should mean “it is completely
certain that (p, α) is true”, i. e., “it is completely certain that,
the statement “it is certain at least at level α that p is true”,
is true”. Let us more generally consider the nested formula
((p, α), β), which reads “it is at least certain at level β that p
is certain at level α”. Since the set of models of (p, 1) is a
family of subsets of Ω , the set of models of  ((p, 1), 1)
should be a family of subsets of the power set of Ω
(actually, the power set of [p], here). So, interpreting ((p, α),
β) in the crisp way comes down to considering the set of
meta-possibility distributions πm on 2Ω such that

Nm(π |= (p, α) ) ≥ β,
where π is a standard information state. This is in line with
Zadeh’s approach to possibility qualification [13]. Using the
many-valued semantics of possibilistic logic on ((p, α), β)
and the Boolean metasemantics on  (p, α) leads to reducing
((p, α), β) to a standard possibilistic formula. Namely:

- it is fully possible that (p, α ) represents the
information i.e., πm(#) = 1 if  π ≤ #{(p, α)},

- and it is possible at level 1−  β that  the information
(p, α) is not believed, i. e. consider  πm(#) = 1− β if
π ≤ #{(p, α)} does not hold.

Focusing on the least specific possibility distributions on
Ω restricted by πm yields
πm*(#) = 1 if  π = #{(p, α)},

  = 1− β  if π(ω) = 1 ∀ω ∈ Ω.
 Then, in agreement with necessity-qualification, the

meta-information ((p, α), β) is reduced via a disjunctive
weighted aggregation to a new possibility distribution #*.
Namely, it yields

#* = max(min(#{(p, α)}, 1), min (1, 1 − β))
    = max(µ[p], 1 − min(α, β)).

Thus, the meta-information of the form ((p, α), β) is
reduced to a standard possibilistic formula (p, min(α, β)). In



practice, such a reduction ((p, α), β) expresses a discounting
of the information (p, α ). It can be also viewed as a
counterpart of the fact that in modal logic systems such as
KD45, p ≡ p holds. In particular, ((p, α), 1) reduces to
(p, α), and is also equivalent to ((p, 1), α).  Similarly (p, 1)
can be reduced to p: in this view, the certainty that “p is
true” entails that “p is true”.
Under the discounting view, (p, α) |− ((p, α), α) and ((p, α),
α) |− (p, α) are valid inference rules. Then, nesting formulas
brings no additional expressivity to  standard possibilistic
logic, but this will be no longer the case in multiple agent
logic, as we shall see in the next section.
More interestingly, it is also allowed to deal with embedded
formulas such as (¬(p, α) ∨ q, β) for instance (since (p, α) is
either true or false), where formulas of different levels are
mixed. Thus, the previous formula expresses that it is certain
at least at level β that if p is at least certain at level α then q
is true”, where q may be also a possibilistic logic formula.

6 TRUSTING OTHER AGENTS VS EXPLOITING OTHER

AGENT BELIEFS

Reasoning with mutual beliefs requires the handling of
nested expressions such as ((p, α/a), β/b), ((p, α/A), β/b), or
((p, α/A), β/∃B). However, the meaning of such formulas
can be ambiguous. A nested formula like ((p, α/a), β/b) may
mean

- either “agent b  believes at level β  that  agent a
believes p at least at level α”

- or “agent b is believes agent a  at level β  when  a
believes p at least at level α”

 The first case is a matter of reasoning with our belief in
other agents beliefs. The information state of agent b
depicted by this formula is a possibility distribution over
possible information states of a  (each of which is a
possibility distribution on Ω. The weight β bears on the fact
that agent b considers (p, α) appears or not among agent a’s
graded beliefs. If BEL(a) is the set of beliefs of a, β ≤ Nb((p,
α) ∈  BEL(a)). In particular agent b may be certain that
agent a believes p with some certainty ((p, α) ∈ BEL(a)),
but agent b may believe ¬p at the same time, without any
contradiction. Common knowledge is represented by
formulas of the form ((p, ALL), A L L), i.e. “each agent
believes that each agent believes that p is true”. It entails
that ((p, a), b) for all pairs of agents a and b.

The second case is a matter of acquiring new beliefs from
other agents. Agent b considers agent a as a more or less
reliable source of information. The weight β  is now the
degree to which b  trusts a  about p. Here the reduction
process outlined in the previous section can apply, namely b
endorses (p, α) with a discounting effect modelled by
weight β, and b eventually ends up with the graded belief (p,
min(α, β)) which is contradictory with b believing ¬p.

Nested well-formed formulas can be recursively defined
in the following way.
ϕ = (p, α1/A1 ∪…∪ αk/Ak) where p is a proposition (built

from a given language)  and the Ai’s are subsets of agents,
and the αi’s are certainty weights.

(ϕ, α ’ 1/A’1 ∪…∪ α’k/A’k) where ϕ  is a logical
combination of (Boolean-viewed) possibilistic formulas,
with connectives ¬, ∧,∨.

Nested formulas can be handled by means of the
following recursive inference rules, valid whatever their
interpretation, in terms of trust or mutual beliefs. Namely,

• if ϕ |− ψ then (ϕ, α/A) |− (ψ, α/A)
• (ϕ, α/A); (ψ, β/B) |− (Res(ϕ, ψ), min(α,β)/(A ∩ B))
•  (ϕ, {α/a, β/b}); (ψ, {γ/a, δ/b}) |−

      (Res(ϕ, ψ), {min(α, γ)/a, min(β, δ)/b})
where ϕ ; ψ  |−  Res(ϕ , ψ ), and |− denotes the recursive
application of any valid inference rule, such as the ones
described in the previous sections. For instance, consider the
following rule involving hybrid labels:

((p, β/B), α/A); ((¬p ∨ q, β'/∃B), γ/C) |− 
         ((q, min(β, β')/∃B), min(α, γ)/(A ∩ C)).

Moreover, the following particularization rule is
obviously valid:

• ((p, α/A), β/B) |− ((p, α/a), β/b)
where a ∈ A and b ∈ B.

Also, from ((p, α/a), β/b) and ((¬p ∨ q, ALL), ALL) one
can deduce ((q, α/a), β/b).

When nested formulas represent one agent’s confidence
into a piece of information believed by another agent (not
the confidence in the fact that the other agent possesses this
belief), a special inference rule which can be called
“endorsement” makes sense:

((p, α/a), β/b) |− ((p, α/b), β/b)
by which agent b adds agent a’s belief to his own belief
base, with some caution (expressed by the discounting factor
β). Then, one can apply the discounting rule

 ((p, α/b), β/b) |−  (p, min(α, β)),
which reduces meta-beliefs to simple beliefs. Lastly, let us
suggest the practical interest of this inference machinery on
an illustrative example involving mutual trust between
agents.

Example: Let Peter (pt) and Mary (m) be two agents.
They have some common knowledge about the fact that for
being able to go (ag) together to a particular place on a
Sunday, what they plan to do, they can use either the train
(t) or Mary’s car (c), but nothing else. Thus we have
  ((¬ag ∨ c ∨ t, ALL), ALL) ; ((¬t ∨ ag, ALL), ALL) ; ((¬c ∨
ag, ALL), ALL).

Mary believes that there is a train running on Sunday, and
that her car has a breakdown, while Peter is sure that there is
no train going to the place they want to go on Sunday, while
he believes Mary’s car is working. Thus we have

- (t, α/m) ; (¬c, δ/m)
- (c, β/pt) ; (¬t, 1/pt)

Thus, by particularization from ((¬t ∨ ag, ALL), ALL) and
((¬c ∨ ag, ALL), ALL), one gets ((¬t ∨ ag, m), m) and ((¬c ∨
ag, pt), pt), and then by reduction (¬t ∨ ag, m) and (¬c ∨ ag,



pt). Then, it yields (ag, α/m) and (ag, β/pt), thus  (ag, {α/m,
β/pt}) and then (c ∨ t, {α/m, β/pt}) follows using ((¬ag∨ c ∨
t, ALL), ALL).

Suppose now that Mary tells Peter about her car problem,
i. e., Peter adds ((¬c, δ/m), γ/pt) to his belief set, where γ
reflects his trust in Mary’s information relevance. Note that
if Peter fully trusts Mary then γ = 1, and by endorsement
((¬c, δ/pt), 1/pt), which reduces to (¬c, δ/pt). It expresses
that Peter endorses Mary’s judgement. Since we have (¬ag
∨ c ∨ t, pt), it yields (¬ag ∨ t, δ/pt). This reveals to Peter that
(¬ag, δ/pt), since (¬t, 1/pt). Hence, Peter is convinced by
Mary that they cannot go. The conclusion about ‘ag’ has
been reversed by addition of the new piece of information
((¬c, δ/m), 1/pt), provided that Mary believes here car is
down sufficiently strongly, i.e. this piece of information
does not get drowned by the level of inconsistency (here
equal to β ) of Peter’s belief base, i. e.,  β  <   δ . However,
observe that:

- in case Peter does not trust Mary on her judgment, he
adds to his epistemic state ((¬c, δ/m ), γ/pt). After
endorsement and discounting it yields (¬ag ∨  t,
min(γ, δ ) /p t ). If γ  <   β , Mary’s information is
drowned in Peter’s beliefs regardless of how strong
she believes her car to be down, and he will believe
they can go (ag), although he knows there is no train
because he does not believe Mary is competent about
cars (not that he thinks she is lying).

- in case Peter only believes that Mary thinks her car is
down, even if she did not tell him, he may only add
((¬c, δ /m ), 1/pt) to his belief base, while not
endorsing (¬c, δ). Then, this meta-information
cannot be used without additional meta-knowledge
about what beliefs Peter would entertain if he knew
Mary’s beliefs. Here, Peter sticks to his belief  they
can go (ag) with Mary’s car, since he knows there is
no train.

7  CONCLUDING REMARKS

In this paper, we have outlined extensions of possibilistic
logic that handle reasoning about the beliefs of agents and
their mutual beliefs. An important distinction  is laid bare
between agents that consider other agents as more or less
reliable information sources, and agents that think they
know what other agents’ beliefs are and take action on this
basis. Potentially, it considerably extends the representation
and the inferential power of standard possibilistic logic. This
framework seems to offer a reasonable compromise between
expressive power and a computational cost. The latter
should remain close to the one of classical logic, since we
continue to benefit from the computational simplicity of
possibilistic logic.

Clearly, many issues remain to discuss. In a longer paper,

it would be interesting to develop the formal semantics of
this extended possibilistic logic in terms of fuzzy sets of
agents, following ideas already suggested in (Dubois et al.,
1992). It remains also to separately develop the multiagent
possibilistic logic of  trust and the one for reasoning about
other agent’s belief.  The effective potential of such
representations in multiagent deliberation systems should be
explored, as opposed to modal multiagent logics systems.

We have implicitly assumed the commensurability of the
scales used by the different agents for grading their beliefs.
It should be possible to handle different scales with partial
information about the relative positions of their levels using
a recent extension of possibilistic logic with symbolic
weights (Benferhat and Prade, 2005). One may also handle
cardinality information, such as “at least k agents in A
believe p at least at level α”, denoted (p, α /k:A). For
instance, a rule such as (p, α /k:ALL); (¬p ∨  q, β/ALL)
|− (q, min(α, β)/k:ALL) clearly holds.

It would be also of interest to consider agents having
more or less strong beliefs and preference, and beliefs on
other agent beliefs and preferences in order to be able to
reason about actions agents should perform. The framework
of possibilistic can handle both preference and beliefs, and
introducing multiagent decision processes in the possibilistic
logic format  should be feasible.
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