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Abstract

This position paper discusses the role of the existing body of fuzzy set aggregation operations in various
kinds of problems where the process of fusion of items coming from several sources is central. Several kinds
of membership functions can be useful according to the nature of the information to be merged: numerical
vs. ordinal inputs, preferences vs. uncertain data, observations vs. constraints. In each case, some aggregation
operations look more plausible or feasible than others. The aim of this discussion is to suggest directions for
putting at work the results of recent mathematical investigations in the structure of aggregation operations.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The last 10 years have witnessed a considerable interest in information fusion processes, related
to the improved sophistication of information and communication sciences and their tremendous
social impact. In parallel, a mathematical study of aggregation operations has been systematically
carried out under the joint umbrellas of fuzzy set theory and non-classical decision theory. Tra-
ditional aggregation operations such as the weighted average, which plays a key-role in proba-
bility and classical decision theories are now acknowledged as particular cases of more general
families of aggregation operations, such as Choquet integrals [44]. These traditional aggregation
functions have also been articulated with logical connectives stemming from many-valued logics,
and interpreted as fuzzy set unions or intersections. The latter have been generalized in the the-
ory of triangular norms [47]. Other aggregation operations have been laid bare like symmetric
sums [60], and more recently uninorms [38], null-norms [11], etc. Overall, an impressive organized
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collection of aggregation operations is available, most of the time within a well-understood mathe-
matical framework [12].
However, the question of how such mathematical tools can be applied to fusion processes has

not been studied in a systematic way although some particular areas already take advantage of this
advanced state-of-the-art, such as multicriteria decision making, or pattern recognition. The role of
this position paper is to contribute to bridging the gap between aggregation operations and their
potential users. Some information fusion paradigms are outlined, and in each of them we try to
suggest which kinds of aggregation operations look best adapted. Modelling assumptions are also
discussed, as the choice of a formal framework may restrict the possible choices of appropriate
aggregation modes. This discussion is also greatly inAuenced by the results of a European Working
Group on fusion processes edited by Bloch and Hunter [9].

2. The roadmap of information fusion

Information fusion consists of merging, or exploiting conjointly, several sources of information so
as to answer questions of interest and make proper decisions. More precisely, the aims of information
fusion can be one or several of the following:

• to improve the available knowledge about the current state of the world;
• to update the current information on a case of interest;
• to lay bare a consensual opinion, the global point of view of a group;
• to derive or improve generic knowledge by means of data.
It may be interesting to merge various kinds of information items, according to the context: sensor

data, databases, expert opinions, human reports, beliefs, preferences, desires, generic knowledge
such as default rules or regulations, plausible conclusions of inferences, and so on. Such items of
knowledge may take various forms depending on how they are modelled formally: numbers, intervals,
fuzzy sets, probability distributions, ordering relations, terms of natural language, and also sets of
logical formulas in a classical or non-classical logics, especially “if–then” rules.
For the sake of clarity, it makes sense to distinguish between several kinds of information items

according to their intended meaning [9, p. 1010]:
Observations: They reAect how the world is (or was) believed to be in a particular situation of

interest. They may consist of numerical data, evidence, reported facts, beliefs, measurements, etc.
Some observations can be called objective when supplied by a sensor [1]. Other can be called sub-
jective if reported by a person who describes a situation, for instance the opinion of an expert on
the value of the failure rate of some component in a physical system [13]. Objective observations
can be tainted with uncertainty when sensors are not reliable. So they may take the form of uncer-
tainty distributions, instead of point values. Subjective observations may take the form of assertions
formulated in linguistic terms to which degrees of belief can be attached.
Knowledge: As opposed to observations that pertain to particular situations, knowledge means

information that describes how the world is generally. In other words, it refers to some population,
some class of situations, well deFned or not. For instance statistical data modelled by means of a
probability function pertain to a well-deFned population. In contrast, the class of situations referred
to by common-sense knowledge is often unclear. It is known that generally birds Ay, but not clear
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which set of birds is precisely alluded to in such a statement. Statistical knowledge can be termed
objective as it is induced from a collection of objective observations made on a representative sample
of situations. Objective knowledge can take the form of probability distributions, mathematical models
of laws of nature, etc. Common-sense knowledge is subjective and is often expressed by rules having
exceptions, fuzzy rules and so on. It is often cast in a logical setting. It is also more qualitative
than objective knowledge and may take the form of plausibility orderings on a given set of possible
events or propositions.
Preference: Preference information consists of subjective descriptions of an individual or a group

of people’s desires about how THEY WOULD LIKE the world to be. It contrasts with subjective
observations where a person is only a witness and produces a testimony. Individual or collective
preferences are often either modelled quantitatively by means of utility functions, or qualitatively by
means of ordering relations (see [10]). More recently, qualitative decision theory has promoted the
notion of utility functions with values in Fnite ordered scales [32]. It is possible to adopt a setting for
preference modelling that is both relational and numerical, using for instance fuzzy relations [37].
Of course, one may have unreliable information about preference. Preferences can be incomplete
(partially revealed preferences), imprecise or uncertain, and often conAicting.
Regulations: They are pieces of generic information describing how the world SHOULD BE

GENERALLY, according to some law. It tells what is forbidden, what is compulsory, what is
permitted (explicitly or implicitly). Regulations pertain to a class of situations, not to a single
situation. They may contradict individual or collective preferences. There is a great interest to-date
in the formal modelling of regulations, especially in connection with computer security problems,
and the handling of restricted access to websites (see [14] for instance). Regulations are often
modelled by rules and expressed in some deontic logic. The merging of regulations is motivated by
the detection of inconsistencies.
Given the variety of information items, it is not surprising that the choice of a fusion mode is

not unique and depends on:

• the nature of the items to be merged: knowledge fusion and preference fusion may require diNerent
speciFc families of aggregation functions;

• the representation framework: qualitative information fusion cannot use the same mathematical
tools as quantitative information fusion.

Yet we claim that to some extent it makes sense to reinterpret most information items in a unique
formal setting by means of a pro5le, that is, a function � from a set S (of possible worlds, of states,
of alternatives) to a partially ordered set L acting as a scale. This is what can be called, in the
wide sense, and abstractly speaking, the membership function of a fuzzy set, even if the original
deFnition [67] is much more restrictive. Our view is also more general than the lattice-valued
fuzzy sets of Goguen [41]. This claim is not an attempt to reduce the variety of representation
frameworks by taking a dogmatic stand. It only accounts for the fact that fuzzy set theory is a
formal framework that looks versatile enough to model, sometimes in an approximate way, the
kinds of information items reported above. This framework can be either qualitative or quantitative.
Besides, a generalized membership function can be interpreted in terms of a preference proFle or
as an uncertainty distribution, or yet have a deontic Aavour. We do not claim that all items of
information take this form. We only suggest that they can be interpreted, at least approximately, in
this form, as shown by the following examples.
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For instance, if the information comes in the form of a set K of logical formulas in some lan-
guage, S is the set of interpretations of the language and the characteristic function of the set of
models of K represents a (two-valued) proFle (L= {0; 1}) which precisely captures the meaning of
K . If K is expressed in possibilistic logic [22], the induced proFle will precisely be the membership
function of a fuzzy set of models expressing a possibility distribution on interpretations [68]. More
generally, Zadeh [69] has suggested a systematic translation of linguistic statements into possibility
distributions. Besides, probability distributions can be viewed as special kinds of proFles, and fam-
ilies of probability measures as well as belief functions can be approximated (even if sometimes
roughly) by means of numerical possibility distributions [26,27]. Lastly, preference relations on S
can be viewed as ordinal proFles. The simplest theory of comparative uncertainty (based on ordering
relations on events) is comparative possibility theory, Frst proposed by Lewis [50]. A comparative
possibility relation on the power set of a Fnite set is completely characterized by its ordinal proFle
on S [29].
Taking the fairly general, even if slightly restrictive, view that any item of information can be

represented, after a suitable semantic transformation, into a proFle for some set S and scale L, it
is clear that fusion processes can be modelled by suitable proFle aggregation operations. This point
makes it clear that the setting of aggregation operations, provided it is suQciently extended to the
aggregation of qualitative and ordinal proFles (not only those taking values in the unit interval),
is a natural one for discussing many information fusion problems at hand. It does not mean that
information fusion should be implemented on the proFles underlying the information items. For
instance, we do not rule out the syntactic fusion of belief bases in classical logic. We only insist
that the meaning of such fusion operations is better understood if expressed as a combination of
proFles, taking advantage of the classiFcation of aggregation operations.

3. On unipolar vs. bipolar scales

The set L acting as co-domain of a membership function � is at least partially ordered by some
irreAexive and transitive relation ¿. L generally contains distinguished elements, especially a top, de-
noted 1 and a bottom denoted 0, respectively, such that ∀�∈L, � �=0, 1, it holds 0¿�¿1. Sometimes,
a speciFc role is played by a “mid-point” �. In order to deFne it, it is assumed that L possesses an
order-reversing map n which is a decreasing involutive bijection from L to itself such that n(0)= 1.
Then a mid-point � is such that n(�)= �. On a totally ordered set, when it exists, it is unique.
How these distinguished elements are interpreted in the various application settings is crucial for

a proper understanding of the role of the various existing aggregation operations. They can have
a positive, a negative or a neutral Aavour. For instance, the top value is supposed to rate the best
possible situation, and the bottom has a neutral Aavour. Then L is said to be a positive scale. On
the contrary L is called a negative scale if the bottom rates the worst possible situation and the top
has a neutral meaning. In those cases, mid-points, if any, play no speciFc role. Moreover, mapping
L to itself via an order-reversing map n turns a negative scale into a positive one, and conversely.
In contrast, a bipolar scale is such that the top value rates the best possible situation, and the bottom
rates the worst possible one. The mid-point then serves as the neutral landmark separating positive
grades from negative ones. The real line is often used as a prototype of bipolar scale. When L is
simply a partially ordered set, distinguishing between these notions is more diQcult.
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In the theory of fuzzy sets, [0; 1]-valued membership grades clearly belong to a bipolar scale, since
1 means full membership and 0 full non-membership. Then the value 0.5 represents the crossover
point which is a balance between membership and non-membership (sometimes debatably interpreted
as uncertainty about membership). The role of these three anchor-points is very clear in the prop-
erties of indices of fuzziness (e.g. [53]), since extreme fuzziness is reached by the fuzzy set where
all elements have membership 0.5, while making a fuzzy set less fuzzy comes down to contrast
intensiFcation (reAected by the ambiguity ordering of Mukaidono [52]).
Now using membership functions in the various contexts described in Section 2 does not neces-

sarily goes along with the bipolar view of membership grades.
In possibility theory [25,29,68], information pertaining to generic knowledge is modelled by pos-

sibility distributions 
x attached to an ill-known quantity (an uncontrollable state variable) and is
valued on a negative scale. This is the view proposed by Shackle [58]:


x(s) = 0⇔ “x = s” never occurs (impossibility);


x(s) = 1⇔ “x = s” is a normal; typical; unsurprising situation (neutral value):

For instance, consider the case of set-valued statistics modelled by a basic probability assignment m
and a set {A1; : : : ; An} of focal elements such that

∑
i=1;:::;n m(Ai)= 1, where m(Ai) is the frequency

of observing exactly Ai (= the probability of knowing “x∈Ai” only). This is what is assumed
in Shafer’s [59] evidence theory. The above conventions totally Ft with the induced possibility
distribution


x(s) =
∑
s∈A

m(A):

These conventions also enable beliefs on the current situation to be described, assuming 
xnow(s)=

x(s), where xnow is the current state of the world, supposedly a typical case of the underlying
population. More generally, possibility degrees of events �(E)= supx∈E 
x(s) are also valued on a
negative scale.
Possibility distributions valued on a negative scale can also be used in preference modelling for

the description of soft constraints [17]. Then the variable x is (usually, but not necessarily) a decision
variable, the value of which can be decided upon. Then 
x has the following meaning:


x(s) = 0⇔ the choice x = s is not feasible; is totally rejected;


x(s) = 1⇔ the choice x = s is fully feasible; not objected to:

Then 
x is a kind of utility function expressing only negative utility values, but no positive
preference.
Lastly, such possibility distributions can also account for the semantics of deontic statements

expressing implicit permission with similar conventions. Then 
x has the following meaning:


x(s) = 0⇔ the choice x = s is forbidden;


x(s) = 1⇔ the choice x = s is not explicitly forbidden:

Positive value scales in possibility theory have been seldom used. However, note that degrees of
necessity being dual of degrees of possibility (N (A)= 1−�(Ac), where Ac is the complement of A)
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belong to a positive scale which is the possibility scale, reversed. Indeed N (A)= 1 expresses full
belief, while N (A)= 0 expresses a complete lack of belief in A, but not full disbelief. However, the
consideration of degrees of guaranteed possibility [21,33,66] has led to the study of value proFles
having a positive Aavour.
When pertaining to observations, a guaranteed possibility distribution �x describes cases that have

been actually observed and are more or less relevant for the description of a system. It is a mapping
from S to L with the following conventions:

�x(s) = 0⇔ x = s has not been observed;

�x(s) = 1⇔ x = s has been observed and is totally relevant:

�x(s) can be interpreted as a degree of evidential support, as suggested by Weisbrod [66]. Typi-
cally, �x represents a database, a memory of cases, etc., while in this setting 
x rather captures the
semantics of integrity constraints [33]. The coherence condition between guaranteed and usual possi-
bility distributions is that �x(s)6
x(s) for all values s [62]; for instance �x(s)¿0 implies 
x(s)= 1.
The pair (�x, 
x) forms an interval-valued fuzzy set where the upper and lower membership functions
have diNerent meanings.
When modelling preference, it is natural to represent positive proFles that represent desires, gains

and the like, under the following conventions [5]:

�x(s) = 1⇔ the choice x = s is a desired; fully satisfactory state;

�x(s) = 0⇔ the choice x = s oNers no guarantee of satisfaction:

The latter case means that x= s is either rejected or indiNerent. When modelling deontic values,
explicit permission can be taken into account, namely [21]

�x(s) = 1⇔ the choice x = s is explictly permitted (e:g: it has precedents);

�x(s) = 0⇔ the choice x = s is not explicitly permitted (but maybe legal anyway):

The case of numerical bipolar scales for preference modelling is frequent in utility theory when
modelling the negative impact of losses and the positive impact of gains simultaneously on the
real line. It is much less common with an ordinal scale of preference (see [45]). In the case of
uncertainty modelling, probability measures are clearly valued on a bipolar uncertainty scale since
P(A)= 0 means that event A is impossible and P(A)= 1 means that event A is sure. The neutral
value is 0.5, but the normalisation constraint of probability distributions severely restricts its role of
neutral value to binary universes.
Note that if a value in a bipolar scale L is ill-known, and represented by an interval, L can be

viewed as a negative scale for the upper bound of this interval, and as a positive scale for the lower
bound of this interval.
Conversely, it is interesting to put together a positive and a negative scale and build a bipolar

scale. For instance the set L�= {(a; b);max(a; b)= 1; a; b∈ [0; 1]} can be viewed as a bipolar scale
ordered by the following relation: [19], [40]

(a; b)6(c; d) iN either a = c = 1 and b6 d;
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or b = d = 1 and a¿ c;

or a = 1 and d = 1:

The bottom of this scale is (1,0), its top is (0, 1) and its neutral point is (1, 1). The canonical
example of such a scale is the set of pairs (�(Ac); �(A)) of degrees of possibility for events A
and their complements. When (�(Ac); �(A))6(�(Bc); �(B)), it means that B is at least as likely
(certain or plausible) as A, (1, 0) means “impossible”, (0, 1) means “sure” and (1, 1) means
“unknown”. Giang and Shenoy [40] use it as a bipolar preference scale where the midpoint (1, 1)
means “indiNerent”.

4. Aggregation operations

An aggregation operator is a family of functions {fn; n∈N}, called aggregation operations, where
fn attaches to each n-tuple (�1; : : : ; �n) of values from L another value fn(�1; : : : ; �n) in L [12].
Minimal requirements on aggregation operations are that they are monotonically increasing in the
wide sense with respect to each argument, that the tuple containing the bottom value of L yields
the bottom of L (fn(0; : : : ; 0)=0), and likewise for the top value of L (fn(1; : : : ; 1)=1). The
monotonicity property can be strengthened in two steps:

• global strict increasingness: if ∀i, �i¿�i then fn(�1; : : : ; �n)¿fn(�1; : : : ; �n). This property holds
for the minimum and the maximum operations.

• Strict increasingness in each place: if ∀i, �i¿�i and ∃i, �i¿�i then fn(�1; : : : ; �n)¿fn(�1; : : : ; �n).
It rules out the minimum and the maximum operations.

These properties express various forms of compatibility with the natural partial ordering of vectors
of values in L, induced by the ordering in L (also called Pareto-ordering in economics). It is
reasonable to consider global strict increasingness as a minimal requirement for practical applications.
There are at least four classes of aggregation operations one may consider as being currently

investigated.

• Operations generalizing the notion of conjunction. They are basically the minimum and all those
functions f bounded from above by the minimum operation.

• Operations generalizing the notion of disjunction. They are basically the maximum and all those
functions f bounded from below by the maximum operation.

• Averaging operations: all those functions lying between the maximum and the minimum. Some
of them coincide with the Boolean conjunctions (like the geometric mean on the unit interval),
or the Boolean disjunctions on {0; 1}.

• Operations not aNected by the midpoint of L: fn+1(�1; : : : ; �n; �)=fn(�1; : : : ; �n). They are not so
much studied, but uninorms [38] are a typical family thereof.

Protopypes of generalized conjunctions and disjunctions on the unit interval are triangular norms
and co-norms (see [47], for an extensive treatise). They are associative, commutative and mono-
tonically increasing in the wide sense, with suitable identity and zeros taken as the top and the
bottom of the scale. Basic conjunctions of that kind are the minimum operation, the product,
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and the linear operation max(a + b − 1; 0). Strict t-norms, isomorphic to the product, are strictly
increasing. Basic disjunctions are the maximum operation, the “probabilistic sum” a + b − a · b,
and the bounded sum min(1; a + b). Virtually all other practically interesting (e.g. continuous) are
isomorphic transforms of these ones or locally coincide with one of these transforms. A companion
family of generalized conjunctions are copulas [61] which are instrumental in the combination of
marginal probability distributions and capture stochastic dependence. Two-place copulas need not be
associative but lie between the minimum and the linear triangular norms. Triangular-norms which
are copulas are characterized by a Lipschitz condition.
Averaging operations are best exempliFed by the arithmetic mean, and its isomorphic transforms.

Virtually no averaging operation is associative, but other weaker properties such as bisymmetry are
usually requested. The latter expresses the ability to aggregate entries of a matrix either starting by
aggregating elements in rows, and then the partial results, or starting with aggregating elements in
columns. It is known for a long time [39] that the only associative averaging operations are of the
form median(a; b; �) for 0¡�¡1, a poorly expressive family of operations.
Uninorms are associative operations on the unit interval, monotonically increasing in the wide

sense, whose identity � is such that 0¡�¡1. It plays the role of a neutral element on the scale [0, 1],
and can typically be chosen as 0.5. Uninorms are often obtained by “gluing” together a triangular
norm (on [0; �]) and a triangular conorm (on [�; 1]) [38]. Some uninorms are associative on (0, 1)
such as Dombi’s operation ab=(ab+ (1− a)(1− b)). Such uninorms are transforms of the addition
on the real line by monotonic functions [47, p. 224]. They are adapted to working on bipolar scales.
This operation is also a symmetric sum, like the arithmetic mean, which means it is invariant via a
De Morgan-like transformation (taking 1− · as the negation).
Considering the case of qualitative value scales (such as Fnite chains), the range of operations is

much restricted. For instance, the basic triangular norms on Fnite chains cannot be strictly increasing,
and only counterparts of the linear t-norm and the minimum remain. Other well-behaved symmetric
aggregation operations on Fnite ordinal scales seem to be constant on signiFcant subsets of their
domains (e.g. [36]) which make these aggregations not so attractive in practice. For instance the
associative operation median (a; b; �) for �∈L\{0; 1}, is constant whenever min(a; b)6�6max(a; b).
Qualitative aggregation operations suNer from a lack of discrimination power expressed by the fact
that they cannot be strictly increasing, but only globally strictly increasing (like the minimum and
the maximum operations) when a unique Fnite scale is used for all arguments and the range of the
aggregation operator (see [30]). Namely n-tuples (�1; : : : ; �n) of values from L are partitioned into
no more equivalence classes than the number of elements in the scale L. Discrimination power can
be improved by pairwise comparisons of tuples (�1; : : : ; �n) and (�1; : : : ; �n), neglecting arguments
i with equal values �i= �i (for instance the discrimin partial ordering which reFnes the minimum
operation, see [18]); or using lexicographic techniques (the leximin ordering, for instance). Similar
critiques can be addressed to the pessimistic and optimistic criteria of Dubois et al. [32], which
use weighted versions of minimum and maximum operations. The problem of their reFnement by
lexicographic schemes is has recently been considered by Fargier and Sabbadin [35].
If the Fnite scale is bipolar, it is even more diQcult to deFne aggregation operations having good

mathematical properties (see for instance [43]). When they have good properties, aggregation oper-
ations have little discrimination power. For instance, the qualitative preference functional considered
by Giang and Shenoy [40] for decision under uncertainty takes values on the bipolar scale L� in-
troduced at the end of Section 3, considered as a utility scale. This preference functional maps acts,
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viewed as n-tuples f=((�1; �1); : : : ; (�n; �n)) of values of L�, to L� itself using possibility weights
(
1; : : : ; 
n) such that maxi=1; n 
i=1. The utility of an act f, is computed as the pair

u(f) =
(
max
i=1;:::;n

min(
i; �i); max
i=1;:::;n

min(
i; �i)
)

∈L�:

This form results from simple very natural axioms on possibilistic lotteries, which are counterparts
to the Von Neumann and Morgenstern axioms [64]: complete preorder of acts, increasingness in
the wide sense according to the ordering in L�, substitutability of indiNerent lotteries, and the
assumption that any consequence of an act is valued on L�. Yet, this criterion has similar drawbacks
as median (a; b; �): Whenever there two states i and j are such that �i=1 and �j =1 (respectively,
a bad or neutral, and a good or neutral state) and these states have maximal possibility 
i= 
j =1,
then u(f)= (1; 1) results, expressing indiNerence.
In the purely ordinal case, it is generally very diQcult to perform the aggregation of ordering

relations, a problem extensively studied in social choice [57]. Starting from several complete pre-
ordering relations R1; : : : ; Rn, it is impossible, under mild assumptions, to perform an aggregation
yielding another complete preordering R that does not coincide with any of the original relations, so
long as the global ordering between two objects (xRy) only depends on the local ordering relations
between these two objects (xRiy). Counterparts to conjunctive and disjunctive aggregations can be
deFned as follows:

conjunctive: xR∧y iN ∀i; xRiy;

disjunctive: xR∨y iN ∃i; xRiy:

However, it is clear that R∧ is certainly not complete and will be hardly discriminant. On the
other hand, R∨ may fail to be transitive. Numerical data are hard to get from human observers, who
rather deliver qualitative reports. So, the more qualitative we go, the less arbitrary representations
we use, but the more diQcult it is to perform useful and expressive aggregations.

5. Various information fusion problems

The various information items surveyed in Section 1 can be, at least approximately, modelled
by proFles on a suitable set S of alternatives. However, not all aggregation operators make sense
in any context. Here, we brieAy discuss three kinds of information fusion problems: the merging
of uncertain observations, the merging of preference and the merging of logical databases. For the
merging of regulations, see [14].

5.1. Merging uncertain observations

The problem of merging uncertain observations can be summarized as follows: given a set of
sources of information, generally heterogeneous ones, supplying data about the value of some pa-
rameter or the description of a situation, Fnd the most plausible values of the observed parameter
or the most credible description of the situation, trying to discard erroneous pieces of information,
while remaining faithful to the available information. By a source, we mean a lot of diNerent things:
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it can be a human (an expert), a sensor, or a database, hence a potential heterogeneity of the pieces
of information.
This is a problem met in various areas, for instance:

(i) in robotics, data coming from various sensors must be merged in order to establish the posi-
tioning of autonomous robots [1];

(ii) in image processing, several remotely-sensed images of some area must be merged with maps of
the same area; the same problem occurs with medical images that must be exploited conjointly
with anatomic pictures (e.g. [8]);

(iii) in risk analysis, information items pertaining to the reliability of physical components are
supplied by several experts and must be fused [13];

(iv) the fusion of databases, or of replies to queries addressed to several databases is also of current
interest [2].

The uncertain observation merging problem is a matter of Fnding the truth in a reliable way:
what is required is to make the best of the available information by discarding the wrong data when
possible, and keeping the right information. Logical combinations are then natural candidates as
fusion operators. Conjunctive combinations apply when all the sources are reliable, while disjunctive
combinations deal with the case of unreliable sources hidden in a group of other reliable ones.
Obviously, prioritized logical combinations may be considered, in particular when the sources are
not equally reliable.
Averaging operations in uncertain observation aggregation are justiFed when the set of sources

can be viewed as a single random source producing diNerent inputs. In that case, indeed, the set of
data to be fused can be interpreted as standard statistics. For instance, several successive independent
measurements from a single sensor can be viewed as the result of a random experiment. Then the
discrepancies between the sources can be explained in terms of random variability and fusion comes
close to a Fltering problem. However, in the case of unique measurements issued from heterogeneous
sensors, or in the case of expert knowledge or databases, it is not clear that averaging combination
modes make sense.
Uncertain observations are modelled in various formal settings, especially probability theory, pos-

sibility theory, random sets [31]. For instance the opinion of an expert on the value of a parameter,
or the result of a measurement is sometimes modelled by means of a probability distribution which
then stands as a proFle [13]. Alternatively it can be modelled by an interval or a fuzzy interval whose
membership function is viewed as a possibility distribution, especially when the information is lin-
guistic. An alternative probabilistic approach consists in considering possibilistic proFles as likelihood
functions P(u0|u) representing the probability of precisely observing Xobs = u0 when actually X = u.
The likelihood function P(u0| ·) is actually very similar to a possibility distribution. In the case of a
random set model, the uncertain observation takes the form of a set of pairs {(Ai; mi); i=1; : : : ; k}.
The proFle of the information is deFned as Pl(u)=&i: u∈Aimi only summarizes the original data,
and subsumes both probability and possibility distributions [49].
The choice an aggregation operator is sometimes constrained by the mathematical framework. If

the merging of probability degrees of events must result in a probability measure, then only a convex
mixture is generally possible [13]. No conjunctive, nor disjunctive modes are allowed. Enlarging the
mathematical framework may allow for such combination modes. For instance, the product of two
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probability measures on a Fnite set yields a belief function (a two-additive measure) and corresponds
to a disjunction operation.
The choice of an aggregation operator also needs assumptions on the sources (Dubois and

Prade [24,28,31,34]).
(i) When all sources are assumed to be reliable it is natural to perform a conjunctive fusion

of the proFles. Generally the presence of partial conAicts between the proFles yields a subnormal
resulting proFle (such that 
(s)¡1, ∀s). Applying the principle that whatever remains as possible
in the end, however implausible it may look, is the truth, a normalization step takes place. There
remains some degree of freedom for the choice of the conjunction operation to apply. When sources
are assumed to be independent, a reinforcement eNect between the proFles is justiFed. Typically, the
pointwise product of proFles is performed (followed by a renormalization). The archetype of such
a methodology is Dempster rule of combination in evidence theory [59]. Interestingly, it is seldom
used when the proFle is a probability distribution (because the conAict between several probability
distributions is always rather high, viewed from a conjunctive combination point of view). When
sources cannot be considered as independent, it is more cautious to use idempotent operations.
The archetype of such a methodology is the minimum rule in possibility theory. Interestingly, no
idempotent conjunctive fusion rule is known in the theory of evidence, except in particular cases,
nor in probability theory. Note that renormalized versions of a conjunctive aggregation may fail to
preserve associativity (except for the product, see [24]).
(ii) In the case of strongly conAicting heterogeneous sources, normalized conjunctive operations

on proFles become discontinuous, hence numerically unstable [24]. Besides, performing an aver-
aging operation between proFles is not always recommended, because it may suggest results that
sources individually reject. For instance, the mean value of the arithmetic mean of two very distinct
probability distributions may have zero probability. It seems more reasonable to use disjunctive op-
erations on conAicting observations. It presupposes that at least one of these observations is correct,
while other ones may be wrong. The result preserves the normalization of the operands but may
become very imprecise. Avoiding such imprecision presupposes not to combine all observations. For
instance, the conAict may be explained by the fact that observations pertain to diNerent objects. One
may also consider prioritizing the sources in terms of reliability, discarding the less reliable sources
in conAict with more reliable ones [28]. Another way of reducing the resulting imprecision due to
the use of a disjunctive operation is to use a quantiFed merging operation, like an ordered weighted
minimum [34]. It is based on an assumption regarding how many sources are reliable among the
ones providing observations. A more sophisticated approach is to exploit adaptive combination rules
where the assumed number of reliable sources results from a conAict analysis between observa-
tions to be merged [28]. Techniques borrowed from logical approaches to inconsistency handling
can be adapted, such as looking for maximal consistent subsets of uncertain observations on which
conjunctive operations apply, and performing a disjunctive aggregation of the partial results [31].
(iii) Averaging operations are justiFed in the case of numerous identical independent sources

which can be viewed as a single one governed by some unique stochastic process. This is typically
what is done when synthesizing the (precise but scattered) results of random experiments. Statistics
are based on averaging operations on data. It can be viewed as a very particular case of uncertain
observation merging.
(iv) The so-called “naive” Bayesian approach to information fusion consists in computing the

probability P(u|u1; : : : ; uk) that X = u when Xobs = (u1; : : : ; uk) from k sources, from the knowledge
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of the likelihoods P(ui|u), and an independence assumption, namely
P(u1; : : : ; uk |u)=

∏
i=1;:::;n

P(ui|u);

using Bayes theorem. This computation presupposes some a priori knowledge on the value of X
under the form of a probability measure P which is conjunctively combined with the likelihood
functions. When this a priori knowledge is lacking, only P(u1; : : : ; uk |u) is available and can be
viewed as an estimation of the possibility that X = u computed in accordance with the possibility
theory setting for independent reliable sources. Hence, up to the existence of probabilistic a priori
knowledge, the Bayesian technique for fusing uncertain observations is consistent with our setting of
proFle merging. It could be extended using copulas. Nevertheless the proFle merging setting does not
exclude a priori knowledge. For instance, counterparts of Bayes theorem exist in possibility theory
and evidence theory [29].

5.2. Aggregation of preference pro5les

The problem of preference aggregation consists in deriving a global preference proFle achieving
a consensus between the preference proFles supplied by the various sources. This new preference
proFle may be diNerent from all the input ones provided that it remains close to all of them. Note
that contrary to the fusion of uncertain observations there is no notion of “true state” involved.
Generally, averaging operators are natural candidates for preference merging except if preference
proFles are valued on a negative scale and express Aexible constraints. More usually, they are
valued on numerical positive or bipolar scales. Several types of preference merging problems exist:

(1) Multiagent fusion: It consists in Fnding a consensus among individuals expressing their pref-
erences on a set of candidate choices. The aim is often to determine the average opinion likely to
avoid extreme positions. This problem has been widely studied in social choice theory [57].
(2) Multicriteria decision making: It consists in rating and ranking individual decisions from

several points of view. Multiple goals are involved and the problem is to Fnd trade-oNs between
them [46].
(3) Decision under uncertainty: It consists in rating and ranking individual decisions whose con-

sequences depends on the current state of the world which is partially unknown [55,64].

These problems are mathematically very similar (see, e.g. [16,20,23]): agents, criteria, and states
play the same role of sources supplying preference proFles across potential decisions (candidates,
objects, uncertain acts). Importance coeQcients for agents or criteria play the same role in aggregation
schemes as plausibility weights for states. While in uncertain observation fusion the normal situation
is that all sources faithfully report correct information, and the abnormal situation is the case of
conAicting reports, conAicts are the normal situation in preference merging. It leads to searching for
consensus preference proFles. When this is impossible, incomparability phenomena results [63].
In the setting of preference merging, it is very natural to require idempotent aggregation operations.

If all individuals have the same preference proFles, this preference proFle should be the global one.
If an act has the same consequence regardless of the state of the world, its rating should reAect the
utility of this consequence only. Given the natural assumption of increasingness in the wide sense
for aggregation operations, it is clear that they can only be averaging ones.
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Despite their mathematical analogy, the methodology adopted for expressing and solving preference
merging problems depends on the context. In multiagent fusion the tradition of social choice is to
adopt purely ordinal approaches, leading to impossibility theorems (like Arrow’s), that scholars try
to bypass by Fnding suitably relaxed settings [57]. The reason for this approach is that the key-issue
seems to be the diQculty of comparing preference scales of diNerent individuals. They are generally
supposed to be non-commensurate. Voting schemes considered to be rational in such a setting are
often very drastic, and one is often led to resort to lexicographic choice rules, or to leave many
incomparabilities unsolved.

In decision under uncertainty, the traditional approach is numerical and relies on expected utility
(after Von-Neumann and Morgenstern [64] and Savage [55]), that is basically a weighted arithmetic
mean. More recent approaches advocate the use of Choquet integrals [56]. Numerical approaches
are natural because this Feld comes from economics where consequences of acts are expressed in
terms of money, and statistics are sometimes available for the quantiFcation of uncertainty. The
commensurability problems that are patent in the multiagent problems are far less acute in decision
under uncertainty due to the assumption of a unique set of consequences independently of the
considered state; moreover decision under uncertainty often relies on the notion of certainty equivalent
to an uncertain lottery. It enables to assume that utilities and probabilities can be compared on the
same scale.

More recently, the emergence of qualitative utility theory has been observed in artiFcial intelligence
[15]. This trend has tried to give up the numerical settings, because in robotics, or in recommender
systems for instance, it is not so easy to formulate goals, or uncertainty in purely numerical terms.
When preserving commensurability between uncertainty and utility on Fnite chains, Sugeno integral
has been proposed as a counterpart to expected utility [32]. Besides, giving up all commensurability
assumptions and adopting a purely relational setting leads to the same diQculties as ordinal social
choice theories [16].

The case of multicriteria aggregation has led to many approaches (see [10]), according to the
assumptions made about the information that can be supplied by a decision maker regarding the
preference scales for criteria and the weighting scale for criteria importance. The most conservative
approach consists in assuming that preference scales for each criteria are not commensurate and that
no weighting pattern for criteria importance is available. Then the aggregation of proFles consists
only in ranking vectors or ratings for decisions. It results in a partial ordering with very little
discrimination power. The most data demanding traditional approach is multiattribute utility theory
[46] where every preference scale can be made commensurate with every other one, and preference
can be quantiFed. This approach essentially results in the extensive use of the weighted arithmetic
mean. It fully Fts the proFle merging setting of this paper. More recently, the necessity of taking into
account redundancies or synergies between criteria has led to the proposal of Choquet integral as a
versatile tool for preference aggregation [42]. A balanced attitude between a full-Aedged numerical
modelling and the vector-maximization school is to adapt the multiagent preference merging paradigm
to multicriteria decision making. However this school of thought (see [63]) admits of the existence of
weights attached to criteria and adopts decision rules in the spirit of the Condorcet pairwise majority
scheme: a decision d1 is globally better than another d2 if the sum of the weights of criteria that
prefer d1 to d2 is greater than the sum of the weights of criteria that prefer d2 to d1. Generally,
this kind of procedure generates intransitive preference relations. This decision analysis school also
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leaves room to incomparability when the preference proFles of two decisions are severely conAicting,
and proposes methods to exploit the resulting ill-behaved preference relation.
Bellman and Zadeh’s approach to decision-making in a fuzzy environment [3] strongly departs

from the tradition of compensatory operations in preference merging, by proposing a fusion of
preference proFles using a minimum operation. A counterpart to this proposal was made quite early
in decision under uncertainty by Wald [65] and is known as the maximin criterion. This technique
for combining preference proFles is severely non compensatory. It comes down to requiring that all
criteria should be satisFed in order to select a decision. This request may sound too demanding.
However, we have advocated the idea that this approach makes sense when combining Aexible
constraints, none of which should be violated completely [17]. The preference scale is then negative
since the top of L corresponds to a feasible decision, and the bottom to an unfeasible one. In
some practical problems (like avoiding delayed jobs in scheduling, for instance) a balanced decision
achieving all goals to some extent may look more satisfactory than a decision that fully meets
almost all goals and totally violates some of them. It is clear that many averaging schemes (like
the arithmetic mean) may yield optimal solutions of the latter kind, while optimization under the
minimum rule tends to balance the local satisfaction levels. So, the minimum rule and, to a large
extent, other conjunctive aggregation operations are adapted to reasoning with Aexible or valued
constraints in artiFcial intelligence [7]. It is well known that negative utilities and positive ones
are not combined likewise by decision makers. The latter are more careful with losses than with
gains. A maxmin approach to combining negative utilities (which membership functions of fuzzy
constraints are) seems to be plausible, while averaging operations look natural for combining positive
preferences.

5.3. Fusion of logical databases

This section is concerned with the combination of n sets of propositional formulas representing
deductive databases. Generally if several databases supply information on a given topic, one might
expect that putting them together in order to improve the overall knowledge leads to an inconsistent
database. The question is then how to make the best of the available knowledge by coping with
such inconsistency. This problem has been considered in ArtiFcial Intelligence for some years [2].
To cope with inconsistency there are basically three attitudes:

(1) Extract a suitable consistent subset of formulas, and do away with the other pieces of informa-
tion.

(2) Keep the inconsistent database, but use some non-trivial inconsistency-tolerant approach to in-
ference for question–answering.

(3) Merge the databases while preserving consistency.

At Frst glance, database fusion looks very diNerent from the proFle merging approach. Yet some
existing approaches come down to proFle merging [51,54]. One of the most common methodology
is “distance-based merging” (see [48] for a general framework).
The Frst step is to derive a distance from a database. Let K be a logical database, containing

propositional formulas described by means of propositional variables in a set V . Let S be the set
of interpretations of the language (maximal conjunctions of literals). Let [K] be the set of models
of K (a subset of interpretations where all formulas of K are true). A natural distance between
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interpretations is the Hamming distance H (w; w∗) evaluating the number of literals with diNerent
signs in w and w∗. The distance between w and the database K is d(w; K)= minw∗∈[K] H (w; w∗).
If w is a model of K , d(w; K)= 0. The greater d(w; K), the stronger the violation of K by w.
On such a basis, the process of merging two databases K1 and K2 which use the same language

proceeds as follows [48]:

(1) Compute d(w; K1) and d(w; K2).
(2) Compute �(w)=d(w; K1)⊕d(w; K2) using an aggregation operation ⊕.
(3) Retrieve a merged belief base K12 as one having as models:

[K12] = {w minimizing �(w)}:

Hence the merging process is clearly based on the aggregation of proFles. Clearly, if K1 and K2
are not expressed in the same language, there is a preliminary problem of translation between sets of
propositional variables. This issue is always present in practical fusion problems, be they numerical
or logical as it is not obvious whether sources refer to the same frame of discernment or not.
The range of distances is the set of integers instead of the unit interval. Typical choices for

operation ⊕ are minimum, maximum, the sum, the weighted sum, the leximax ranking. A drawback
of the method is that, for n sources, the merging has to be done in one step, because the scheme
is not associative even if the operation ⊕ is. Indeed, if K12 is merged with K3, d(w; K12) has to be
combined with d(w; K3), but d(w; K12) generally diNers from �(w).
The framework of possibilistic logic enables this diQculty to be solved and the merging operation

to be performed at the syntactic level [6]. Given a belief base K , and a∈ (0; 1), deFne 
(w)= ad(w;K).
Then the fusion of the possibility distributions by operation ⊗= max, min, product, weighted prod-
uct, leximin corresponds to the fusion of the distances by operation ⊕= min, max, sum, weighted
sum, leximax, respectively.
The syntactic counterpart of the possibility distribution 
 is a possibilistic knowledge base, that is

a set of pairs &= {(*j; �j); j=1; : : : ; n} where �j is a priority level understood as a lower bound
of the degree of necessity of [*j]. The possibility distribution on interpretations induced by & is


(w)= min{1− �j; w =∈ [*j]};
that is, for each interpretation we check for the violated formula with a maximal priority.
Consider possibilistic databases &i provided by k sources. Each possibilistic database &i is asso-

ciated with a possibility distribution 
i which is its semantic counterpart. The syntactic encoding of
the above-mentioned fusion modes proceeds as follows. Given a semantic combination rule f, we
look for a syntactic combination C such that:

f(
1; : : : ; 
k) = 
C(&1 ;:::;&k);

where &C =C(&1; : : : ; &k) is the result of syntactically merging &1; : : : ; &k .
For instance the result &min obtained with f=minimum is simply the union of the &is. The result

&max obtained with f=maximum is, for k =2:

C(&1; &2) = &max = {(*i ∨  j;min(�i; �j)) | (*i; �i) ∈ &1 and ( j; �j) ∈ &2}:
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It is the intersection of the fuzzy set of possibilistic consequences of &1 and the fuzzy set of
those of &2. More generally, the aggregation of 
1 and 
2 using a monotonic operation ⊗ such that
1⊗1=1 corresponds to the following syntactic fusion of &1 and &2:

{(*i ∨  j; 1− (1− �i)⊗ (1− �j)) | (*i; �i) ∈ &1; ( j; �j) ∈ &2}
∪{(*i; 1− (1− �i)⊗ 1)) | (*i; �i) ∈ &1} ∪ {( i; 1− 1⊗ (1− �i))|( i; �i) ∈ &2}:

For instance, if ⊗=arithmetic mean, then 1 − (1 − �i)⊗ (1 − �j)= (�i + �j)=2 and 1 − (1 − �i)
⊗ 1= �i=2.
The distance-based fusion can be embedded in this setting which preserves the associativity of

semantic merging operations. To this end it is necessary to encode the distance d(w; K) into a
possibilistic knowledge base (see [4]). The result of the fusion is a possibilistic knowledge base
whose most prioritary layer is the classical database searched for. This kind of fusion tools can also
be useful for merging regulations or logically represented preferences [5].

6. Conclusion

This discussion paper has tried to point out major potential application Felds for aggregation
operations in the scope of information sciences and engineering. The main messages of this paper
are as follows. Aggregation operators can be useful in a variety of information fusion problems.
Many information fusion tasks, even in the case of syntactic fusion of logical databases, come down
to the aggregation of proFles. The choice of an aggregation operation crucially depends on the type
of value scale to be used: bipolar or not, quantitative or qualitative. Qualitative value scales do not
allow for as many aggregation modes as numerical value scales. Qualitative bipolar value scales are
especially constrained. There is a trade-oN to be studied between expressiveness of the aggregation
process (which is maximal for numerical frameworks) and its meaningfulness (in some problems
the information is only available in ordinal form). The fuzzy set community has come up with
an impressive body of formal results on aggregation operations mainly using the unit interval as
a reference value scale. The ambition of this paper is merely to suggest some hints towards their
practical use, and to point out the need for more research on aggregation modes under qualitative
settings.
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