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Abstract

In order to allow for the analysis of data sets including numeri-
cal attributes, several generalizations of association rule mining based
on fuzzy sets have been proposed in the literature. While the formal
specification of fuzzy associations is more or less straightforward, the
assessment of such rules by means of appropriate quality measures is
less obvious. Particularly, it assumes an understanding of the semantic
meaning of a fuzzy rule. This aspect has been ignored by most exist-
ing proposals, which must therefore be considered as ad-hoc to some
extent. In this paper, we develop a systematic approach to the assess-
ment of fuzzy association rules. To this end, we proceed from the idea
of partitioning the data stored in a database into examples of a given
rule, counterexamples, and irrelevant data. Evaluation measures are

∗This article is a revised and extended version of a paper presented at the 10th Inter-
national Fuzzy Systems Association World Congress, Istambul, 2003 [25].
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then derived from the cardinalities of the corresponding subsets. The
problem of finding a proper partition has a rather obvious solution for
standard association rules but becomes less trivial in the fuzzy case.
Our results not only provide a sound justification for commonly used
measures but also suggest a means for constructing meaningful alter-
natives.

Keywords: association rules, fuzzy sets, quality measures, fuzzy par-
tition.

1 Introduction

Association rules provide a means for representing dependencies between

attribute values of objects (data records) stored in a database. Typically,

an association involves two sets of binary attributes (features), A and B.

Then, the intended meaning of a rule A ⇀ B is that an object having all the

features in A is likely to have all the features in B as well.

Association rules of such type are often employed in the context of market-

basket analysis, where an object is a purchase and features are associated

with products or items. In this context, the association {paper, envelopes} ⇀

{stamps} suggests, for example, that a purchase containing paper and en-

velopes is likely to contain stamps as well.

A generalization of binary association rules is motivated by the fact that

a database is usually not restricted to binary attributes but also contains

attributes with values ranging on (completely) ordered scales, such as nu-

merical or ordered categorical attributes. In quantitative association rules,

attribute values are specified by means of subsets, typically in the form of

intervals. Example: “Employees at the age of 30 to 40 have incomes between

$50,000 and $70,000”.

The use of fuzzy sets in connection with association rules – as with data

mining in general [72] – has been motivated by numerous authors (see [15, 22]

for recent overviews). By allowing for “soft” rather than crisp boundaries

of intervals, fuzzy sets can avoid certain undesirable threshold effects [85].

2



Furthermore, fuzzy association rules are very appealing from a knowledge

representational point of view: The very idea of fuzzy sets is to act as an

interface between a numerical scale and a symbolic scale which is usually

composed of linguistic terms. Thus, the rules discovered in a database might

be presented in a linguistic and hence comprehensible and user-friendly way.

Example: “Middle-aged employees receive considerable incomes.”

As can be seen, moving from set-based (interval-based) to fuzzy associations

is formally accomplished by replacing sets (intervals) by fuzzy sets (fuzzy in-

tervals). While the formal specification of fuzzy associations is hence more or

less straightforward, the evaluation of fuzzy associations through appropriate

quality measures, notably the well-known support and confidence measures,

is more intricate [32]. Especially, it assumes an understanding of the seman-

tics of a fuzzy rule [50]. In this respect, many existing proposals can be

considered ad-hoc to some extent.

In this paper, we suggest a formal framework for the systematic derivation

of quality measures which is based on the classification of stored data into

examples of a rule, counterexamples of that rule, and irrelevant cases. In

the fuzzy case, this means defining a corresponding fuzzy partition of the

set of examples into positive, negative, and irrelevant examples of a rule.

Among other contributions, this framework sheds light on and provides a

sound justification of several measures that have been proposed in literature.

The remainder of the paper is organized as follows: By way of background,

Section 2 reviews classical association rules, and Section 3 gives a brief

overview of existing approaches to fuzzy associations. The idea of basing

the support and confidence of a fuzzy association on a fuzzy partition of

examples is presented in Section 4 and further elaborated in Section 5. The

paper concludes with a summary and an outlook on future work in Section 6.
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2 Association Rules

2.1 Binary Association Rules

Let D = {x1, x2 . . . xn} be a set of objects and R = {A1, A2 . . . Am} a set of

features or properties. Each property can be considered as a logical predicate

or, alternatively, a binary attribute with domain {0, 1}. Correspondingly,

Aı(xj) is true (false) or Aı(xj) = 1 (= 0) if the ı-th property applies (does

not apply) to the object xj.

As mentioned above, the Aı are often referred to as items in the context

of association rule mining. Moreover, the set {Aı |Aı(xj)} ⊆ R of features

that apply to an object xj is often called a transaction. In other words, a

transaction can either be considered as a subset of R or as an m-dimensional

binary vector (t1j . . . tmj ), where tıj = 1 if Aı(xj) and = 0 otherwise. To

illustrate, let an object again be a purchase, and let features correspond to

different products. Then, tıj = 1 means that the ı-th product is contained in

the purchase xj and tıj = 0 that it is not contained.

For a subset A ⊆ R of features, let

A(xj)
df⇔ ∀Aı ∈ A : Aı(xj), (1)

i.e., A is a new predicate (binary attribute) that corresponds to the logical

conjunction of individual properties. An association rule is a directed associ-

ation A ⇀ B with A,B ⊆ R and A ∩ B = ∅. The intended meaning of such

a rule is that A(x) usually entails B(x).

In order to find “interesting” association rules in a database (binary relation),

a potential rule A ⇀ B is generally rated according to several criteria. For

each criterion an appropriate measure is defined, and none of these measures

must fall below a certain (user-defined) threshold. In common use are the

following measures: A measure of support defines the number of objects that

satisfy both A and B, i.e.,

supp(A ⇀ B)
df
=

∣∣{x ∈ D |A(x) ∧ B(x)}∣∣ , (2)

where | · | denotes cardinality. Support can also be defined by the proportion

rather than the absolute number of objects, in which case (2) is divided by
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n = |D|. The confidence is the proportion of correct applications of the

rule and can be thought of as (an estimation of) the conditional probability

Prob(B |A) that the consequent is true given that the antecedent holds:

conf(A ⇀ B)
df
=

∣∣{x ∈ D |A(x) ∧ B(x)}∣∣∣∣{x ∈ D |A(x)}∣∣ . (3)

Further reasonable measures can be considered such as, e.g., the deviation

(significance, lift)

sign(A ⇀ B)
df
= conf(A ⇀ B) −

∣∣{x ∈ D | B(x)}∣∣
|D| ,

suggesting that A ⇀ B is interesting only if the occurrence of A does indeed

have a positive influence on the occurrence of B (i.e. Prob(B |A) > Prob(B)).

As can be seen, the support measure plays a central role. In fact, other

measures can generally be derived from the support [86, 69]. For example,

the confidence of an association A ⇀ B is the support of that association

divided by the support of its antecedent, A.

2.2 Quantitative Association Rules

In addition to binary attributes, a database (relation) usually contains nu-

merical attributes, i.e., attributes Aı whose domain dom(Aı) is a subset of

the real numbers rather than {0, 1}. One possibility to deal with a numerical

attribute Aı is to replace it by several binary attributes A1
ı , A

2
ı . . . Ak

ı [67, 80].

Each Aj
ı is identified with the property that Aı(x) lies in a subset of dom(Aı),

i.e., it is just the indicator function of that subset. For the sake of simplicity,

we shall not distinguish between the binary attribute itself and its associated

property (a subset of dom(Aı)), i.e., we shall employ the same symbol for

both of them.

The following property should of course be satisfied:

dom(Aı) ⊆
k⋃

j=1

Aj
ı,
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i.e., the binary properties should cover the domain of the original attribute

Aı. Note that the Aj
ı are usually defined as intervals. In other words, quanti-

tative association rules, understood as association rules involving numerical

attributes, are usually interval-based rules of the form

IF Aı(x) ∈ Aj
ı THEN Ap(x) ∈ Aq

p, (4)

which can be written equivalently as Aj
ı(x) ⇀ Aq

p(x). Note that (4) does make

sense only if the attributes in the antecedent and consequent are different

(ı 
= p), i.e., the binary attributes Aj
ı and Aq

p are related to different numerical

attributes. Moreover, (4) can of course be generalized to the case where the

antecedent and consequent part consist of several attributes.

By transforming numerical into binary attributes, not only the rating but

also the mining of associations can be reduced to the standard setting. Still,

finding a useful transformation (discretization) of the data is a non-trivial

problem by itself which affects both, the efficiency of subsequently applied

mining algorithms and the potential quality of discovered rules. Apart from

standard discretization methods [24], clustering techniques can be applied

which create intervals and rules at the same time [60, 94].1

2.3 Mining Algorithms for Association Rules

Apart from the formal problem specification, an important issue is the ef-

ficient mining of associations, that is algorithms for the extraction of all

interesting rules from a given database. Even though the focus of this paper

is on evaluation measures rather than mining algorithms, we briefly address

this issue since the latter is clearly not independent of the former. A partic-

ularly relevant question, for example, is whether or not the “fuzzification”

of a standard evaluation measure will preclude the use of an existing mining

approach, i.e., whether or not that approach can still be used in order to

extract those rules which are interesting according to that measure.

As databases are in general very large, mining algorithms should be scalable.

1Some authors reserve the term “quantitative association rule” for the case where
partitions are not predefined.
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The mining of association rules heavily exploits the structure of patterns

which presents itself in the form of a generalization/specialization relation.

Several efficient algorithms have been devised so far [2, 70, 76]. Typically,

such algorithms perform by generating a set of candidate rules from selected

itemsets which are then filtered according to several quality criteria. For

example, the well-known Apriori algorithm [2] generates rules from so-

called frequent itemsets: One subset of the itemset becomes the premise of

the rule and the complement becomes the conclusion. Due to definition (2),

the support of any rule derived from a frequent itemset equals the support

of the itemset itself. Thus, the problem of finding sufficiently supported

rules reduces to the problem of finding frequent (= sufficiently supported)

itemsets, which constitutes the main part of the Apriori algorithm.

Alternative techniques have been developed to avoid the costly process of

candidate generation and testing. The data mining method FP-growth (fre-

quent pattern growth) is introduced in [47]. This method uses an extended

prefix-tree (FP-tree) structure to store the database in a compressed form.

FP-growth adopts a divide-and-conquer approach to decompose both the

mining tasks and the databases. [18] describes how to compute partial sup-

port counts in one pass over the database and how to store them in an enu-

meration tree, a so-called P-tree. A related data structure, called T-tree (a

compressed set enumeration tree), has been proposed in [19]. Several new

algorithms combining different features (database format, the decomposi-

tion technique, and the search procedure) have been introduced in [97]. See

[49, 38] for a comparison of different mining algorithms and [39] for a report

on the performance of different frequent itemset mining implementations on

selected real-world and artificial databases.

2.4 Further Topics in Association Rule Mining

A crucial problem in association rule mining concerns the often huge number

of frequent itemsets and interesting rules that can be found in a dataset. In

this connection, one idea is to focus on so-called closed and maximal frequent
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itemsets [98, 71] which are typically (but not necessarily2) by orders of magni-

tude fewer than all frequent itemsets (a frequent itemset is maximal if it is no

proper subset of any other frequent itemset; an itemset is closed if no proper

superset is contained in every transaction in which this set is contained).

Still, it is guaranteed that all frequent itemsets can be generated from these

itemsets. Hence, algorithms mining closed and maximal frequent itemsets

are often more effective. Efficient algorithms for mining closed itemsets have

recently been described in [64, 88, 96].

Constraint-based mining of association rules aims at reducing the number

of rules presented to the user by incorporating constraints [73]. This way,

uninteresting rules should be filtered out. Constraints can be realized, e.g.,

in the form of metarules [56, 37] or templates [81]. In this connection, it is

also worth mentioning techniques for presenting the association rules found

in a database in a more compact and intelligible way [84, 82].

Association rule mining has also been generalized in other directions. For ex-

ample, alternative interest measures (besides support and confidence) have

been proposed such as, e.g., collective strength [1] or share frequency [9].

So-called multilevel association rules involve items at different levels of ab-

straction [46]. For instance, the item hardware is an abstraction of the items

computer, monitor and printer. An important topic in multilevel associa-

tion rule mining concerns the avoidance of redundancy, that is redundant

association rules [79]. The traditional model of association rule mining has

also been adapted to handle weighted association rule mining, i.e., problems

where each item is allowed to have a weight [13, 87]. Here, the goal is to steer

the mining focus to interesting relationships involving items with significant

weights.

2In fact, there are of course cases where the number of frequent itemsets will hardly be
reduced. In sparse domains, for example, most frequent itemsets are already closed.
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3 Fuzzy Association Rules

3.1 Background on Fuzzy Sets

A fuzzy subset F of a reference set U is identified by a so-called member-

ship function, which is a generalization of the characteristic function of an

ordinary subset [95]. For each element u ∈ U , this function specifies the

degree of membership of u in the fuzzy set. Usually, membership degrees are

taken from the unit interval [0, 1], i.e., a membership function is a mapping

U → [0, 1]. We shall use the same notation for ordinary sets and fuzzy sets.

Moreover, we shall not distinguish between a fuzzy set and its membership

function, that is, F (u) denotes the degree of membership of the element u

in the fuzzy set F . Note that an ordinary set F can be considered as a

“degenerate” fuzzy set with membership degrees F (u) = IF (u) ∈ {0, 1}.
Fuzzy sets formalize the idea of graded membership, i.e., the idea that an

element belongs “more or less” to a set. A fuzzy set can have “non-sharp”

boundaries. Consider the set of tall people as an example. Is it reasonable to

say that (in a certain context) 180 cm is tall and 179 cm is not tall? In fact,

any sharp boundary of the set of tall people will appear rather arbitrary.

Modeling the concept “tall” as a fuzzy set F , it becomes possible to express,

for example, that a height of 190 cm is completely in accordance with this

concept (F (190) = 1), 175 cm is “more or less” tall (F (175) = 0.5, say), and

160 cm is clearly not tall (F (160) = 0).

As can be seen, fuzzy sets can provide a reasonable interpretation of linguistic

expressions such as “tall people” or “high income” (in a given context). This

way, they act as a smooth interface between a quantitative, numerical level

and a qualitative level where knowledge is expressed in terms of natural

language. In data mining, fuzzy sets thus allow for expressing patterns found

at the quantitative level in terms of natural language.

Apart from that, the use of fuzzy partitions of the domains of quantitative

attributes can avoid some undesirable threshold effects which are usually

produced by crisp (non-fuzzy) partitions. Such effects are well-known, for

instance, from histograms in statistics: A slight variation of the boundary

9



points of the intervals can have a considerable effect on the histogram induced

by a number of observations (it may even lead to qualitative changes, i.e.,

changes of the shape of the histogram) [83]. Likewise, the variation of a

partition can strongly influence the evaluation of association rules [59].

To operate with fuzzy sets in a formal way, fuzzy set theory offers general-

ized set-theoretical resp. logical connectives and operators (as in the classical

case, there is a close correspondence between set-theory and logic). In the

following, we recall some basic operators that will be used in later parts of

the paper.

A so-called t-norm ⊗ is a generalized logical conjunction, i.e., an operator

[0, 1]× [0, 1] → [0, 1] which is associative, commutative, monotone increasing

(in both places) and which satisfies the boundary conditions α ⊗ 0 = 0 and

α ⊗ 1 = α for all 0 ≤ α ≤ 1 [55, 77]. Well-known examples of t-norms

include the minimum (α, β) �→ min(α, β), the product (α, β) �→ αβ, and the

Lukasiewicz t-norm (α, β) �→ max(α + β − 1, 0).

A t-norm is used for defining the intersection of fuzzy sets F, G : U → [0, 1]

as follows: (F ∩ G)(u)
df
= F (u) ⊗ G(u) for all u ∈ U . In a quite similar way,

the Cartesian product of fuzzy sets F : X → [0, 1] and G : Y → [0, 1] is

defined: (F × G)(x, y)
df
= F (x) ⊗ G(y) for all (x, y) ∈ X × Y .

The logical disjunction is generalized by a so-called t-conorm ⊕, an operator

[0, 1]× [0, 1] → [0, 1] which is associative, commutative, monotone increasing

(in both places) and such that α⊗1 = 1 and α⊗0 = α for all 0 ≤ α ≤ 1. Well-

known examples of t-conorms include the maximum (α, β) �→ max(α, β), the

algebraic sum (α, β) �→ α + β − αβ, and the Lukasiewicz t-conorm (α, β) �→
min(α + β, 1). A t-conorm can be used for defining the union of fuzzy sets:

(F ∪ G)(u)
df
= F (u) ⊕ G(u) for all u.

A generalized implication � is an operator [0, 1] × [0, 1] → [0, 1] that is

monotone decreasing in the first and monotone increasing in the second ar-

gument and that satisfies the boundary conditions α � 1 = 1, 0 � β = 1,

1� β = β. (Apart from that, additional properties are sometimes required.)

Implication operators of that kind such as, e.g., the Lukasiewicz implication

(α, β) �→ min(1 − α + β, 1), are especially important in connection with the
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modeling of fuzzy rules.

A repertoire of negation operators n(·) is also available, even though in prac-

tice one commonly employs the simple mapping α �→ 1 − α.

The cardinality of a fuzzy set F is usually defined in terms of the so-called

σ-count, that is, by the sum of the values of its membership function [27]:

|F | df
=

∑
u∈U F (u).

3.2 Fuzzy Associations

In the context of association rule mining, the comments above motivate a

“soft” partitioning of numerical attributes, that is, the partitioning of a nu-

merical domain into fuzzy sets (fuzzy intervals) rather than ordinary sets (in-

tervals). Thus, the domain dom(Aj) of the numerical attribute is described

by means of a set F 1
j . . . F n

j of fuzzy properties, and each of them can be

viewed as a [0, 1]-valued attribute Aı
j of objects such that Aı

j(x) = F ı
j (Aj(x)).

Such [0, 1]-valued attributes can be called fuzzy attributes and are actually

fuzzy subsets (events) of the set of objects D.

A fuzzy association rule is then understood as a rule of the form A ⇀ B,

where A and B are, respectively, sets of fuzzy attributes Aı and Bj. To

illustrate, consider a rule suggesting that experienced managers have high

income: {
manager, experienced

}
⇀

{
high income

}
Here, the attributes experienced and high income are reasonably modeled

as fuzzy attributes.

As an aside, we note that one should be careful with this type of modeling

via fuzzy attributes. In fact, it assumes that one disposes of a single scale

(the unit interval) for all attributes. Membership functions defined on the

domains of numerical attributes define a rescaling of these domains through

the fuzzy properties. While this is reasonable for attributes with an under-

lying numerical domain dom(Ai) (such as, e.g., height and the related fuzzy

property “tall” or income and the related property “high”), it is much less

obvious for attributes with complex domains or attributes the underlying
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dimensions of which are ill-defined. For instance, it might be quite tricky

to measure the property “experienced” on the unit interval if it does not

only depend on the length of time a manager has worked in his job, but also

on other dimensions such as, e.g., size of the company, number and type of

projects, etc.

Note that several (one-dimensional) fuzzy attributes Aı can be combined into

one multi-dimensional attribute A by means of a t-norm ⊗:

A(x)
df
=

⊗
Aı∈A

Aı(x).

This is a direct extension of definition (1) to the fuzzy case.

3.3 Quality Measures for Fuzzy Associations

Several generalizations of the quality measures (2) and (3) have been pro-

posed in literature [32]. The standard approach is to replace set-theoretic op-

erations, namely Cartesian product and cardinality, by corresponding fuzzy

set-theoretic operations. Modeling the Cartesian product and the cardinality

of a fuzzy set as defined in Section 3.1, one thus obtains

supp(A ⇀ B)
df
=

∑
x∈D

A(x) ⊗ B(x), (5)

conf(A ⇀ B)
df
=

∑
x∈D A(x) ⊗ B(x)∑

x∈D A(x)
. (6)

The most common choice for the t-norm ⊗ is the minimum, yet the product

has also been applied.

Note that the support of A ⇀ B corresponds to the sum of the individual

supports provided by the objects x ∈ D if the individual support is defined

as

suppx(A ⇀ B)
df
= A(x) ⊗ B(x). (7)

According to (7), an object x supports the rule A ⇀ B if it satisfies both,

the antecedent A and the consequent B.
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3.4 Related Work

Even though the majority of contributions to fuzzy association analysis is

based on the canonical extensions as outlined above (e.g. [5, 21, 41]), it is

worth to mention some alternative proposals. Firstly, the use of implication

operators instead of generalized conjunctions for modeling association rules

has been motivated by some authors [12, 16, 51, 33], a point that we shall

come back to in later sections. Secondly, interestingness indices other than

the standard support and confidence measures have been discussed in several

publications [44, 22, 32]. In [59], a significance factor and a kind of certainty

factor have been proposed as a generalization of support and confidence,

respectively. Moreover, so-called measures of adjusted difference and weight

of evidence have been suggested in [5].

There are also some approaches in which the interpretation of fuzzy associa-

tions is quite different from the common understanding. In [92], for example,

a fuzzy itemset is not a crisp set of fuzzy items (fuzzy sets) but rather a

fuzzy set of crisp items. That is, a degree α ∈ [0, 1] is associated with each

item, reflecting its relative importance in the itemset (importance can refer

to different aspects such as, e.g., the frequency of the item in the itemset).

Using the standard extension of the set-theoretic inclusion relation (A ⊆ B
iff A(x) ≤ B(x) for all x), the support and confidence measures for itemsets

resp. association rules can be derived in the usual way.

Since the quality and efficiency of association analysis is strongly influenced

by the fuzzy partitions of the numerical attributes involved, the problem

of determining such partitions constitutes one of the most important pre-

processing steps. Thus, it is hardly astonishing that much research effort

has been devoted to this problem. For example, the effect of normalizing

fuzzy membership degrees (in order to guarantee a partition of unity) has

been investigated in [43]. One of the earliest automated methods for find-

ing fuzzy sets in association rule mining has been proposed in [36]. Like

many other approaches, this method makes use of clustering techniques in

order to find fuzzy partitions that are in line with the structure of the data

[17]. Apart from common clustering techniques such as k-means, approaches
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based on genetic algorithms have recently been developed [54]. An exten-

sion of the equi-depth partitioning algorithm [80], which allows for combining

crisp values, intervals and fuzzy sets in the antecedent and consequent part

of association rules, has been proposed in [99]. As a disadvantage of purely

data-driven approaches to partitioning let us mention that they cannot guar-

antee the linguistic interpretability of the resulting fuzzy sets. In principle,

this problem can be avoided by using predefined fuzzy partitions [6]. Needless

to say, however, specifying all fuzzy partitions by hand might be a tedious

job for the user of a data mining system, all the more if the dataset under

consideration comprises a large number of attributes.

Apart from key questions concerning the preprocessing of numerical at-

tributes and the fuzzy-logical modeling of association rules, several other

extensions addressing diverse aspects of fuzzy association analysis can be

found in the literature. For example, why should the frequency of a fuzzy

pattern in a database be expressed in terms of a scalar cardinality? This

question is as legitimate as the question why the cardinality of a fuzzy set

should be a precise number [27]. An indeed, at the end of the paper we

will point to a potential disadvantage of the σ-count (5). In [11, 31], the

authors proposed to measure the support of a fuzzy association rule in terms

of a fuzzy set-valued cardinality. On the one hand, a fuzzy cardinality of that

kind comprises more information about the (statistical) occurrence of a fuzzy

pattern. On the other hand, while scanning a database, the simple count-

ing procedure (addition of membership degrees) sufficient for the standard

support (5) has to be replaced by a more complex updating procedure.

Fuzzy association rules with weighted items are considered in [78]. Here, a

degree of importance is assigned to each item and, correspondingly, weighted

versions of the (fuzzy) support and confidence measures are proposed. An

extension along the same line has been developed in [42]. In [8], the prob-

lem of mining changes in association rules is addressed: Given collections of

association rules, which have been mined (in an evolving database) for dif-

ferent time periods, the authors seek to discover systematic changes in these

rule sets (and hence of the underlying database). To this end, they induce

so-called fuzzy meta-rules on the basis of a fuzzy decision tree. The prob-
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lem of mining rules in fuzzy taxonomies, i.e., hierarchically structured sets of

items, has been considered in [14]. Fuzzy taxonomies reflect partial belong-

ings among items on different levels (e.g., a tomato can be regarded as both

a fruit and a vegetable). The same paper also addresses the incorporation of

linguistic hedges in fuzzy association rules.

Efficient algorithms supporting the mining process, i.e., the extraction of

interesting associations from a database, have received less attention in the

fuzzy community. This might be explained to some extent by the fact that,

for fuzzy extensions of association analysis, standard algorithms can often

be used or at least adapted in a relatively straightforward way. Still, some

contributions have also been made in this field. For instance, a method for

the parallel mining of fuzzy association rules was proposed in [90]. Besides,

some authors have worked on methods for the reduction and the intelligent

structuring of (fuzzy) association rules using the theoretical framework of

formal concept analysis [10, 93].

Finally, a notable number of interesting applications of fuzzy association anal-

ysis have been realized. Just to mention some examples, fuzzy association

rules have been used for medical data mining [23], for intrusion detection

[65], for web access case adaptation [89], and for mining in bank-account

databases [7].

4 Fuzzy Partitions of Examples

4.1 Rules and Conditional Objects

In the tradition of expert systems, a “rule” is understood as a production rule

and associated with a modus-ponens-like deduction process. Thus, it is a kind

of inference rule, even though it does not have a clear mathematical status.

In more recent probabilistic expert systems, rules are encoded as conditional

probabilities in a belief network. Even though this view of a weighted rule

is mathematically sound, it is at odds with the logical tradition, since the

probability of a material implication describing a rule clearly differs from

15



A 

B 

A 

B 

A 

B 

Figure 1: Illustration of the partition into positive (black region in the left

picture), negative (middle) and irrelevant examples (right) induced by an

association rule.

the corresponding conditional probability. This observation [61] has led to a

vivid debate in philosophical circles since the late seventies [48] without fully

settling the case.

The important point to notice is that a rule is not a two-valued entity but

a three-valued one (see e.g. [29]). In fact, an (association) rule A ⇀ B
partitions the data D into three types of objects, namely positive examples S+

that verify the rule, negative examples S− that falsify the rule, and irrelevant

examples S± that do not provide any information about the rule:

S+
df
= { x ∈ D |A(x) ∧ B(x) }

S−
df
= { x ∈ D |¬(A(x) ⇒ B(x)) } (8)

S±
df
= { x ∈ D |¬A(x) }

Fig. 1 illustrates this partition for an interval-based association rule with

one-dimensional attributes.

Each of the three cases should be encoded by means of a different truth-

value. The first and the second case correspond respectively to the usual

truth-values “true” and “false” for the rule. The last case corresponds to a

third truth-value, however. Depending on the context, it can be interpreted

as, e.g., unknown, undetermined, or, as suggested above, as irrelevant. This

idea of a rule as a “tri-event” actually goes back to De Finetti [20] in 1936.

It is also the basis of De Finetti’s approach to conditional probability.
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Indeed, it is obvious that the probability Prob(B |A) is entirely defined by

Prob(A ∩ B) and Prob(A ∩ B). (In the framework of association analysis,

an event corresponds to a transaction, i.e., the subset A ⊆ R of attributes

with Aı(x) = 1 for a given x. The logical conjunction of two events A and

B, expressing that Aı(x) = 1 for the attributes in A and the attributes in B,

corresponds to an intersection of sets of objects A ∩ B. This again clarifies

the connection between the confidence of an association A ⇀ B and the

conditional probability Prob(B |A) = Prob(A ∩ B)/Prob(A).)

This framework for modeling a rule suggests a mathematical model in which

a rule is formalized as a pair of disjoint sets representing its examples and

counter-examples, namely (A∩B, A∩B). This definition has several conse-

quences. First, it justifies the claim made by De Finetti that a conditional

probability Prob(A |B) is the probability of a particular entity which can be

called a conditional event, denoted (B |A). Second, it shows that the mate-

rial implication does not fully capture the intended meaning of an “if-then”

rule. It is obvious that the set of objects for which the material implication

is true, {x | ¬A(x)∨B(x)}, is the complement of the set of counter-examples

of a rule. Thus, the usual logical view does not single out the examples of

the rule, only its counter-examples. This is clearly in agreement with the

fact that propositions in classical logic represent negative information in the

sense of stating what is impossible (and combining in a conjunctive way what

is left possibly true by different pieces of information). Still, the set of exam-

ples of a rule is {x | A(x)∧B(x)} and clearly represents positive information.

Thus, the three-valued representation of an “if-then” rule strongly suggests

that a rule contains both positive and negative information. This also ex-

plains why two indices, support and confidence, are necessary to evaluate

the quality of an association rule. In fact, the primitive quality indices of an

association rule are the proportion of its examples and the proportion of its

counter-examples.

As an aside, let us mention that this three-valued representation also tolerates

non-monotonicity. It is intuitively satisfying to consider a rule R1 = “If A
then B” to entail a rule R2 = “If C then D” if R1 has more examples and

less counter-examples than R2 (in the sense of set inclusion). This can be
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formally written as

(B | A) |∼ (D | C) ⇔ A∩ B |= C ∩ D, C ∩ D |= A∩ B.

The second condition (on exceptions) of this entailment corresponds to the

classical inference between material conditionals. The non-monotonicity of

this entailment is patent if we notice that the conditional object (B | A) does

not entail (B | A ∩ C) generally, since the latter actually has less examples

than the former. Indeed, it has been shown in [29] that the three-valued

semantics of rules provides a representation for the calculus of conditional

assertions of Kraus, Lehmann and Magidor [58], which is the basis of the

rationality postulate-based approach to nonmotonic reasoning. The above

entailment is also in agreement with probability theory since it was proved

that, if A ∩ B 
= ∅ and C is not a subset of D, then, (B | A) |∼ (D | C) if

and only if Prob(B|A) ≤ Prob(C|D) for all probability measures Prob(·) such

that Prob(A) 
= 0 and Prob(C) 
= 0 on the underlying space [40].

4.2 Fuzzy Partitions

The key idea of our approach is to provide a sound basis for the assessment

of fuzzy association rules by generalizing the aforementioned classification of

data into positive, negative, and irrelevant examples of a rule. In fact, the

most important quality measures for association rules (support and confi-

dence) are naturally expressed in terms of the cardinalities of the above sets.

Namely, the support is the number of positive examples, and the confidence

is the number of positive over the number of relevant examples:

supp(A ⇀ B)
df
= |S+|,

conf(A ⇀ B)
df
= |S+| ·

( |S+| + |S−|
)−1

.

The basic question in connection with fuzzy association rules now concerns

the generalization of the partition (8). Clearly, if A and B are fuzzy sets

rather than ordinary sets, then S+, S−, and S± will be fuzzy sets as well. In

other words, an object x can be a positive (negative) example to some degree,

and may also be irrelevant to some extent. We denote by S+(x) the degree
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of membership of x in the fuzzy set S+ of positive examples and employ the

same notation for S− and S±.

The bipolar view of a rule as a conditional object suggests the following

(logical) specification of positive, negative, and irrelevant examples:

x ∈ S+
df⇔ A(x) ∧ B(x)

x ∈ S−
df⇔ ¬(A(x) ⇒ B(x))

x ∈ S±
df⇔ ¬A(x)

(9)

where ⇒ denotes the material implication. In the fuzzy case, (9) translates

into

S+(x)
df
= A(x) ⊗ B(x)

S−(x)
df
= 1 − (A(x)� B(x)

)
S±(x)

df
= 1 −A(x)

(10)

where � is a generalized implication operator.

Moreover, a proper fuzzy partition into positive, negative, and irrelevant

examples should satisfy

S+(x) + S−(x) + S±(x) = 1 (11)

for all potential objects x [75]. This leads us to the admissible opera-

tor problem: Which generalized conjunctions (t-norms) ⊗ and generalized

implications � do satisfy (11) with S+, S−, and S± given by (10)?

As an aside, let us note that questions of similar type have also been studied,

e.g., in fuzzy preference modeling, where the problem is to decompose a

weak (valued) preference relation into four parts: strict preference (in both

directions), indifference, and incompatibility [34].

Before investigating this problem in more detail, let us anticipate the critique

that it might have been stated in an overly restrictive manner. First, it is

true that fuzzy logic offers negation operators n(·) more general than the

mapping α �→ 1 − α as employed in (10). However, apart from the fact

that this operator is the standard choice in most applications, it does also

have desirable theoretical properties. For example, (up to an isomorphic
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transformation) it is the only involutive operator, i.e., the only n(·) such

that n(n(α)) ≡ α. Second, one might think of replacing the addition of

membership degrees in (11) by a disjunctive combination:

S+(x) ⊕ S−(x) ⊕ S±(x) = 1,

where ⊕ is a t-conorm. As noted above, t-conorms are commonly used as

operations for set-theoretic union. One should realize, however, that in the

context of data mining we are dealing with frequency information. From this

point of view, (11) appears reasonable since it guarantees |S+|+|S−|+|S±| =

|D|, i.e., the sum of positive, negative, and irrelevant examples corresponds

to the overall number of objects in the database (when using the standard

cardinality). Moreover, note that (11) would be equivalent to

max(S+(x),S−(x),S±(x) ) = 1

in the case where ⊕ is a strictly increasing t-conorm. Needless to say, this is

a questionable property since it means that each object is either a completely

positive or completely negative or completely irrelevant example.

4.3 Solution to the Fuzzy Partition Problem

Now, let us come back to the admissible operator problem as stated above.

First, note that (11) in conjunction with (10) implies

α� β = (1 − α) + (α ⊗ β) (12)

for all 0 ≤ α, β ≤ 1 and, hence, suggests a definition of the implication �
in terms of the conjunction ⊗. In fact, (12) defines a form of the so-called

QL-implication [4] with t-conorm (α, β) �→ min(1, α + β) as a disjunction

(and α �→ 1−α as a negation). A QL-implication is derived from a negation

n(·), a t-conorm ⊕, and a t-norm ⊗ as follows: α � β = n(α) ⊕ (α ⊗ β).

Thus, noting that 0 ≤ (1 − α) + (α ⊗ β) ≤ 1 always holds since α ⊗ β ≤ α

for any t-norm ⊗, we obtain

α� β = (1 − α) + (α ⊗ β)

= min((1 − α) + (α ⊗ β), 1)

= n(α) ⊕ (α ⊗ β)
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Figure 2: Illustration of the partition into positive (left), negative (middle)

and irrelevant examples (right) in the fuzzy case (⊗ = product).

with n(·) and ⊕ as above.

Here are some examples of standard conjunctions ⊗ together with induced

implications:3

⊗ �
min(α, β) Lukasiewicz: min(1, 1 − α + β)

αβ Reichenbach: 1 − α(1 − β)

max(α + β − 1, 0) Kleene-Dienes: max(1 − α, β)

Note that S−(x) = 1 − B(x) appears rather natural in the case A(x) =

1. Depending on the actual truth degree of the premise, α = A(x), this

basic evaluation is modified by the above implication operators in different

ways, namely by shifting (Lukasiewicz), scaling (Reichenbach), or bounding

(Kleene-Dienes); see Fig. 3.

The general question concerning the operators ⊗ and � that can be chosen

in (10) can be stated as follows: For which t-norms ⊗ does (12) define a

proper implication operator? Note that the boundary conditions α� 1 = 1

and 0 � β = 1 do hold for all 0 ≤ α, β ≤ 1. Apart from that, (12) is

obviously increasing in β. Thus, as a major point it remains to guarantee

that (12) is monotonically decreasing in α.

First of all, let us show that indeed not all t-norms are admissible, i.e., there

are t-norms ⊗ for which (12) is not monotone decreasing in α. In fact,

3See Fig. 2 for an illustration of the product t-norm.
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Figure 3: Modification of S−(x) = 1 − β (dashed line) by shifting

(Lukasiewicz, left), scaling (Reichenbach, middle), or bounding (Kleene-

Dienes, right) in the case α = 0.7.

a simple counter-example is the (weakly) drastic product [55], defined by

α⊗ β = min(α, β) if max(α, β) = 1 and 0 otherwise, for which (12) becomes

α� β =

⎧⎪⎨
⎪⎩

1 if β = 1

β if α = 1

1 − α if α < 1 and β < 1

.

Besides, there are even continuous t-norms that violate the above monotonic-

ity condition. For instance, consider the Hamacher family [45] of t-norms:

α ⊗γ β =
αβ

γ + (1 − γ)(α + β − αβ)
, (13)

where γ is a non-negative parameter. With γ = 10, (12) yields 0.9� 0.5 ≈
0.41 < 0.5 = 1 � 0.5. Similar counter-examples can also be constructed

for the families of t-norms introduced by Yager, Schweizer-Sklar, and

Dombi (see e.g. [57] for definitions and references).

Note that the monotonicity condition

(α ≤ α′) ⇒ 1 − α + (α ⊗ β) ≥ 1 − α′ + (α′ ⊗ β)

is equivalent to the following Lipschitz-condition on ⊗ which hence charac-

terizes admissible operators:

(α ≤ α′) ⇒ (α′ ⊗ β) − (α ⊗ β) ≤ α′ − α. (14)
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As a consequence, we find that a t-norm ⊗ is admissible in (12) if it is a

so-called copula [68, 77]. In fact, the following result is stated as a theorem

in [77]: A t-norm ⊗ is a copula iff (14) holds. A related result concerns

continuous Archimedean t-norms in particular and shows that such t-norms

are admissible in the sense of (14) if and only if their additive generator4 is

convex. For many parameterized families of t-norms [55], the latter result

makes it easy to check whether or not a parameter is admissible. For instance,

γ ≤ 1 is necessary (and sufficient) for the Hamacher family (13) to satisfy

(14).

The following results provide further insight into the class of admissible t-

norms (see [77] for proofs).

Proposition 1: The Lukasiewicz t-norm ⊗L : (α, β) �→ max(α + β − 1, 0) is

the smallest copula (i.e., the smallest t-norm admissible in the sense of (14)).

Proposition 2: For the family of Frank t-norms [35], parameterized through

ρ > 0 according to

⊗ρ : (α, β) �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min(α, β) if ρ = 0

αβ if ρ = 1

max(0, 1 − α + β) if ρ = ∞
lnρ

(
1 + (ρα−1)(ρβ−1)

ρ−1

)
otherwise

,

the operator 1 − α + α ⊗ρ β is always monotone decreasing in α.

This proposition immediately follows from the fact that (α⊗ β) + (α⊕ β) =

α + β holds for all Frank t-norms. Thus, substituting α ⊗ β in (12) by

α + β − (α ⊕ β), the right-hand side becomes 1 + β − (α ⊕ β), which is

obviously monotone decreasing in α.

A further interesting result concerns the possibility of combining admissible

t-norms into new admissible t-norms (see [68]).

Proposition 3: The ordinal sum5 of copulas is again a copula.

4A definition of an additive generator can be found in the appendix.
5A definition of an ordinal sum is given in the appendix.
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Since each element of the family

⊗γ : (α, β) �→ αβ

max(α, β, γ)
, 0 < γ ≤ 1 (15)

of t-norms, introduced by Dubois and Prade [26], is an ordinal sum of the

minimum and the product, we obtain that each t-norm (15) is admissible in

the sense of (14).

5 Particular Types of Fuzzy Associations

In this section, we shall consider two special cases (refinements) of the admis-

sible operator problem that will further reduce the class of solutions. In fact,

in both cases a unique solution will be obtained. Moreover, in Section 5.3 we

will reconsider the idea of gradual fuzzy rules in the context of association

analysis.

5.1 Self-Implication

The first refinement concerns the demand for a property (axiom) which is

motivated by the following observation: Consider a tautology in the form of

a rule A ⇀ A with identical premise and conclusion part.6 According to

the solution that we have obtained above, such a rule is usually not fully

confident, that is, it is thoroughly possible to have conf(A ⇀ A) < 1. As

this might strike as odd, one might think of postulating conf(A ⇀ A) = 1 as

an axiom. This postulate is closely related to the self-implication property of

implication operators, namely α � α = 1 for all α ∈ [0, 1]. More generally,

it seems sensible to require the following property to hold:

(∀x ∈ D : A(x) ≤ B(x)) ⇒ (conf(A ⇀ B) = 1). (16)

Now, it is obvious that this property holds iff

A(x) ≤ B(x) ⇒ S−(x) = 0 (17)

6Strictly speaking, such a rule is of course forbidden if an attribute is not allowed to
be part of the antecedent and consequent at the same time.
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and, therefore, S+(x) = 1 − S±(x) = A(x) = min{A(x),B(x)}. In other

words, requiring (16) to hold leads to the unique solution ⊗ = min, i.e., the

minimum is the only admissible operator.

In connection with (17) it is interesting to note that the t-norm ⊗ can indeed

be used to control the “punishment” of a pattern, as expressed by S−(x).

Using (12), S−(x) can be written in the following form:

S−(x) = A(x) −A(x) ⊗ B(x).

As can be seen, the larger ⊗, the smaller S−(x). Therefore, the smallest

degree possible, S−(x) = 0, is obtained for the largest t-norm ⊗ = min.

5.2 Strong Implication Operators

A second specialization of the admissible operator problem is obtained by

assuming a particular type of implication in (10), namely a strong implication

operator. The latter is of the form α� β
df
= n(α)⊕ β, where n(·) is a strong

negation. This definition is obviously derived from the logical equivalence

A ⇒ B ≡ ¬A ∨ B.

If n(·) is the standard negation and ⊕ the t-conorm associated with the

t-norm ⊗ (i.e., α ⊕ β = n(n(α) ⊗ n(β)), then

1 − (α� β) = 1 − (n(α) ⊕ β) = α ⊗ (1 − β).

Thus, the expression for S−(x) can be simplified to A(x) ⊗ (1 − B(x)), and

we obtain the following special case of (10):

S+(x)
df
= A(x) ⊗ B(x)

S−(x)
df
= A(x) ⊗ (1 − B(x))

S±(x)
df
= 1 −A(x)

(18)

The admissible operator problem is now to find a t-norm ⊗ such that (11)

holds with S+, S−, and S± given by (18). This is equivalent to finding ⊗
such that

(α ⊗ β) + α ⊗ (1 − β) ≡ α. (19)
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Interestingly enough, from Alsina’s results in [3] it follows that the only

t-norm solving this problem is the product. In fact, in his paper Alsina

even considers a problem more general than (19), seeking solutions (⊗,⊕, n)

to the functional equation

(α ⊗ β) ⊕ (α ⊗ n(β)) ≡ α.

5.3 The Case of Gradual Rules

Fuzzy rules of the form “If P then C”, where P and C are fuzzy propositions,

play an important role not only in data mining (association analysis) but also

in other fields such as e.g. automated control and approximate reasoning.

Rules of this type can be interpreted in different ways [30]. Depending on

the interpretation, different (fuzzy) logical operators are used for modeling a

rule at a formal level.

A special type of fuzzy rule, referred to as gradual rules, combines the premise

part P and the conclusion part C of a rule by means of a residuated implica-

tion operator�. The latter is derived from a t-norm ⊗ through residuation:

α� β
df
= sup{ γ |α ⊗ γ ≤ β }. (20)

This approach to modeling a rule is in agreement with the following inter-

pretation of a gradual rule: “The more the premise P is true, the more the

conclusion C is true” [74, 28], for example “The larger an object, the heavier

it is”.

So-called pure gradual rules are obtained when using the implication opera-

tor7

α� β =

⎧⎨
⎩

1 if α ≤ β

0 if α > β
(21)

A rule “The more x is A , the more x is B” can then be interpreted as an

ordinary constraint

A(x) ≤ B(x) (22)

7This operator is the core of all residuated implications (20).
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This constraint is satisfied if x has property B at least as much as property

A, otherwise it is violated. (The operator (20) satisfies the property of self-

implication, cf. Section 5.1.)

Having this constraint-based interpretation in mind, one might argue that the

specification of positive examples in (10) is not fully in line with the semantics

of a gradual rule. In fact, the meaning of the above constraint is obviously

not captured by requiring an object x to satisfy both the condition and the

conclusion part, as suggested by a conjunctive combination A(x) ∧ B(x).8

Indeed, requiring A and B to hold is clearly different from requiring B to

hold at least as much as A. However, simply replacing the conjunction in

the definition of S+(x) by an implication is questionable. For example, since

an implication is true if its antecedent is false, an object x with A(x) = 0

would fully support a rule A ⇀ B.

As proposed in [51], a possible way out is to combine the implication A(x)�
B(x) conjunctively with the relevance of an object x for the rule, RelA,B(x),

thereby expressing that x supports A ⇀ B if

• it satisfies the rule in the sense of an implication (correctness), and

• it is a relevant (non-trivial) example for the rule in the sense that is

satisfies the condition part (non-triviality).

This approach suggests a support measure of the following kind:

suppx(A ⇀ B) = RelA,B(x) ⊗ (A(x)� B(x)
)
.

Regarding the definition of RelA,B(x), note that the constraint (22) is trivially

satisfied only in the case A(x) = 0. Therefore, it appears sensible to let

RelA,B(x) = 1 if A(x) > 0 and = 0 otherwise. In combination with the

implication (21), this yields the following simple (non-fuzzy) partition:

8This conjunctive approach to modeling fuzzy rules has first been proposed by Mam-

dani and Assilian [66] in the context of fuzzy control and is now widely known as Mam-
dani rules.
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A(x) = 0 0 < A(x) ≤ B(x) A(x) > B(x)

S+(x) 0 1 0

S−(x) 0 0 1

S±(x) 1 0 0

Depending on the type of application it might of course be reasonable to

consider relevance resp. non-triviality as a gradual concept. For example, one

might argue that the larger A(x), the more difficult it is to satisfy constraint

(22), i.e., the less trivial this constraint becomes. In this case, an obvious

definition of relevance (non-triviality) is RelA,B(x) = A(x). This approach

suggests the following specification of a fuzzy partition:

S+(x)
df
= A(x) ⊗ (A(x)� B(x)

)
S−(x)

df
= A(x) ⊗ (

1 − (A(x)� B(x))
)

S±(x)
df
= 1 −A(x)

(23)

With regard to the admissible operators ⊗ and�, i.e., those operators satis-

fying (11) with S+, S−, and S± given by (23), we can again refer to Alsina’s

result. That is, the t-norm ⊗ is necessarily the product. Apart from that,

however, any implication operator can in principle be chosen.

To illustrate, the following partition is obtained when using (21), regardless

of the t-norm ⊗:

A(x) ≤ B(x) A(x) > B(x)

S+(x) A(x) 0

S−(x) 0 A(x)

S±(x) 1 −A(x) 1 −A(x)

Again, this result has an intuitively appealing interpretation: An object x

is a positive example (and not a negative example, i.e., a negative example

to degree 0) if it satisfies the constraint A(x) ≤ B(x), otherwise it is a

negative example. The degree to which x is a positive resp. negative example

corresponds to the degree to which it satisfies the antecedent A, i.e., to its

degree of relevance.
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Of course, a questionable property of the above measure is its discontinuity

(on the diagonal {(α, α) | 0 ≤ α ≤ 1}): A slight variation of B(x) can have

an extreme influence on the degree to which an object is a positive resp.

negative example. This problem is obviously caused by the discontinuous

implication operator (21) and the associated “hard” constraint (22).

A weakening of this constraint can be obtained by using other (larger) resid-

uated implication operators such as, e.g., the Goguen implication

α� β =

⎧⎨
⎩

1 if α ≤ β

β/α if α > β
(24)

In this case, a rule can be violated in a partial way. Or, stated differently, a

rule can be satisfied to some extent even if A(x) > B(x). When using (24)

in conjunction with the product t-norm, the following partition is obtained:

A(x) ≤ B(x) A(x) > B(x)

S+(x) A(x) B(x)

S−(x) 0 A(x) − B(x)

S±(x) 1 −A(x) 1 −A(x)

Now, x is to some extent a positive example even if it violates the constraint

A(x) ≤ B(x). In fact, the degree to which it is a negative example now

depends on “how much” the constraint is violated, as expressed by the dif-

ference A(x)−B(x). Interestingly enough, this result exactly corresponds to

the result that is obtained when using ⊗ = min in the general approach (10).

And indeed, it was already noticed that min is the only t-norm that – in con-

nection with (10) – guarantees property (16), which in turn is in agreement

with the concept of a gradual rule.

More generally, α⊗ (α� β) = min(α, β) if ⊗ is a continuous t-norm and�
is the implication derived from that t-norm through residuation.9 In other

words, when using a continuous t-norm ⊗ together with the associated resid-

uated implication, then S+(x) = min(A(x),B(x)). Thus, we have obtained

9Using the definition (20) of a residuated implication,this equality is easy to prove.
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yet another result that emphasizes the particular role of the support measure

(5) with ⊗ = min.

5.4 Summary of Results

In summary, the results that we have obtained in this section suggest three

reasonable support measures of the form
∑

x∈D suppx(A ⇀ B) for fuzzy as-

sociations, where

1. suppx(A ⇀ B) = min{A(x),B(x)}
2. suppx(A ⇀ B) = A(x) · B(x)

3. suppx(A ⇀ B) = A(x) · (A(x)� B(x))

The first measure guarantees the confidence condition (16) to hold. The

second measure is obtained when defining the counterexamples of a rule in a

particular (though natural) way, namely in the form (18). The third measure

is in agreement with a gradual rule interpretation of a fuzzy association.

As an aside, note that since the degree of relevance of an example is A(x) in

all of the above cases, the confidence measure of a fuzzy association is still

given by

conf(A ⇀ B) =

∑
x∈D suppx(A ⇀ B)∑

x∈D A(x)

6 Concluding Remarks

Several fuzzy extensions of association rule mining have already been pro-

posed in literature. Despite of this great interest in fuzzy associations, the

question of how to evaluate fuzzy patterns in a proper way has mostly been

approached in an ad-hoc manner.

In this paper, we have proposed a formal framework for constructing eval-

uation measures in a systematic way. Our approach is based on the idea

of partitioning the data into positive, negative, and irrelevant examples of a
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rule, and to derive measures from the cardinalities of these sets. This ap-

proach is rather general and can in principle be applied to any type of fuzzy

pattern.

The possibility to specify positive and negative examples in a logical way

appears to be especially useful in connection with association rules, as it

allows one to reflect the semantics of a rule in a more or less direct way.

Indeed, our approach has shown that different types of fuzzy rules call for

different evaluation measures, depending on their semantic interpretation.

Interestingly enough, the differences between various types of rules, such

as conjunction-based and implication-based rules, becomes obvious only in

the fuzzy case. It remains invisible, however, in the non-fuzzy case, where

different interpretations formally coincide. This might explain to some extent

that semantic issues have not received much attention in association rule

mining so far.

On the one hand, our results provide a sound justification of the commonly

used support and confidence measures (5–6) and, in this connection, point

out the particular role of the product and minimum t-norms. On the other

hand, alternative measures might be meaningful for certain applications, es-

pecially in connection with implication-based fuzzy rules (gradual rules). The

best choice of an operator does of course depend on the type of application

and cannot be answered in general. Anyway, an interesting question that de-

serves consideration concerns the difference between operators regarding the

data mining results. Our current impression is that changing the t-norm in

the evaluation measures (5–6) does not change the results (set of interesting

association rules) dramatically. There is a stronger difference, however, be-

tween the conjunction-based and the implication-based approach. Studying

these issues on an experimental basis is an important topic of future work.

Since algorithmic aspects of rule mining have not been addressed in this

paper, let us mention that the standard methods based on the Apriori

principle can easily be extended to the fuzzy case. If the support measure is

expressed in terms of a conjunction, this extension is indeed straightforward

and has already been implemented by several authors. An extension for the

case where the logical expression of positive examples involves an implication
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Figure 4: Objects (statistical entities) are the fields of a 10 × 10 array. The

property of interest is the attribute light which is in direct correspondence

with the level of grey.

operator (cf. Section 5.3) has been proposed in [52].

Before concluding the paper, let us point to a caveat that concerns the deriva-

tion of frequency information such as, e.g., frequency-based evaluation mea-

sures, in the fuzzy case where attributes can apply to statistical entities in

a partial way. To exemplify the problem, consider the three 10 × 10 arrays

shown in Fig. 4. Each of these arrays consists of 100 fields (the statistical

entities) that are light to a certain degree (as represented by the correspond-

ing level of grey). Suppose that we are interested in the frequency of light

fields: What is the support of the attribute light?

Intuitively, light seems to be well supported in the first case (left picture)

where fields are either completely black or completely white. Indeed, 75 out

of 100 fields are white, i.e., the support is supp(light) = 75 in this case. As

opposed to this, the property light does not seem to be well supported in

the third case (right), where actually none of the fields is really light. Still,

if supp(light) is computed by the sum of membership degrees S+(x), the

support is again 75. In fact, the same support is obtained for the second case

as well.

This counter-intuitive result is due to the fact that, when using the σ-count

for computing the cardinality in the fuzzy case, several small membership

degrees can compensate for a few large degrees [32]. Admittedly, the third

case above is an extreme example. Still, it clearly reveals a weakness of the
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standard aggregation of membership degrees.

There are different possibilities for coping with the above problem. One

idea is to replace the scalar cardinality (σ-count) of a fuzzy set by a fuzzy

set-valued cardinality. As noted in Section 3.4, the latter comprises more

information about the (statistical) distribution of membership degrees. Still,

as a disadvantage of this approach let us note that it makes the specification

of support thresholds more difficult, since such thresholds would no longer

be scalar. Moreover, the computation of measures that are derived from the

support requires arithmetic operations for fuzzy cardinalities.

An alternative approach is to complement the assessment of fuzzy associa-

tions by a measure of “clarity” which might be defined as

1

n

∑
x

|1 − 2S+(x)|. (25)

The idea of this measure, which is directly related to a measure of fuzziness

introduced in [53], is to compare membership degrees to the midpoint 1/2

which is considered to be the “least clear” situation. Of course, this measure

could be replaced by any other measure of fuzziness or fuzzy entropy [63]

which aims at quantifying a lack of distinction between a fuzzy set and its

complement (e.g. [91]). In our example, the clarity degree (25) is 1 for the

first case in our example whereas it is only ≈ 0.5 for the third case. Using

such an additional measure for fuzzy associations seems to be natural: Since

fuzzy rules are more complex resp. flexible objects than non-fuzzy rules, it is

hardly surprising that their proper evaluation requires taking further criteria

into account. Elaborating on these ideas in more detail is a topic of ongoing

work.

A Additive Generator of a T-Norm

An additive generator of a t-norm ⊗ is a mapping f : [0, 1] → [0,∞] such

that

• f is continuous and monotone decreasing,
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• f(1) = 0,

• α ⊗ β = f (−1)(f(α) + f(β)) for all 0 ≤ α, β ≤ 1,

where f (−1)(·) denotes the pseudo-inverse of f(·), i.e.,

f (−1)(x) =

{
y if 0 ≤ x ≤ f(0) and y = f(x)

0 if f(0) < x ≤ ∞
for all x ≥ 0. It can be shown that an additive generator does exist for

each Archimedian t-norm, and that this generator is unique up to a positive

multiplicative constant [62]. (A t-norm ⊗ is Archimedian if α ⊗ α < α for

all 0 < α < 1.)

B Ordinal Sums

Suppose n t-norms ⊗1 . . .⊗n to be given. Moreover, let u1 . . . un and v1 . . . vn

be numbers such that 0 ≤ u1 < v1 < u2 < v2 < . . . < un < vn ≤ 1. The

ordinal sum ⊗ of ⊗1 . . .⊗n is given by

α ⊗ β
df
=

⎧⎨
⎩

uı + (vı − uı)
(

α−uı

vı−uı
⊗ı β−uı

vı−uı

)
if uı < α, β < vı

min(α, β) otherwise
,

for all 0 ≤ α, β ≤ 1.

As an example, the t-norm (15) is obtained for n = 1, ⊗1 = product, u1 = 0,

v1 = γ.
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[50] E. Hüllermeier. Fuzzy association rules: Semantic issues and quality

measures. In Proc. International Conference on Computational Intelli-

gence – 7th Fuzzy Days, number 2206 in LNCS, pages 380–391, Dort-

mund, Germany, 2001. Springer-Verlag.
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