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Abstract The issue of understanding and modeling vagueness was

already addressed by many authors, especially in the second half of the

XXieth century. In this paper, we try to provide an organized discussion of

different categories of vagueness, pointing out circumstances where

they appear. They all lead to a trichotomy of the universe of discourse,

which seems to be the common feature of the different forms of

vagueness. Basic representations frameworks are proposed for each

case. The paper does not advocate a particular view against others but

rather identify the characteristic features of each situation.

Keywords: vagueness; non-classical˚logics; likelihood; fuzzy set;

rough set; similarity, possibility theory.

                                                

1 This paper is a fully revised and expanded version of a conference  paper with the same title, presented at

the 10th IEEE Inter. Conf. on Fuzzy Systems, Melbourne, Australia, December 2-5, 2001.



1. Introduction

Vagueness has been discussed for a long time by philosophers and logicians

(Peirce, 1878; 1931; Russell, 1923; Hempel, 1939; K. Fine, 1975; Machina, 1976;

Williamson, 1994; Haack, 1996; Keefe, 2000; Sorensen, 2001). It is generally

considered in relation to the Òsorites paradoxÓ, and the failure of the principle of

bivalence in logic. As pointed out in Sanford(1995), there are two drastically

opposite approaches to vagueness: supervaluations (preserving a form of

bivalence but admitting truth-value gaps), and degrees of truth (rejecting the

bivalence principle). In the first view (Van Fraassen, 1969), predicates are Boolean,

but their extension may be unknown. In the second view, some predicates are

intrinsically non-Boolean. The idea that truth is a matter of degree is already

advocated in the philosophical works of Bradley (1914) ("All truths and all errors in

my view may be called relative, and the difference in the end between them is a

matter of degree").

Vagueness is usually viewed as a defect. However, Black (1937) did not see

vagueness necessarily as a defect, and distinguished it from both generality (or

nonspecificity) and ambiguity (e.g. a word with several interpretations). He first

proposed so-called "consistency profiles" in order to "characterize vague symbols",

and his view is a premonition of the idea of fuzzy set in the sense of Zadeh (1965).

Fuzzy sets embody the notion of gradual predicates for which the idea of a precise

boundary between situations where this predicate applies and situations where it

does not is meaningless. However Zadeh (1978) considered that vagueness

covers both fuzziness and non-specificity. He wrote (foot note on p. 396) "Although

the terms fuzzy and vague are frequently used interchangeably in the literature,



there is, in fact, a significant difference between them. Specifically, a proposition, p,

is fuzzy if it contains words which are labels of fuzzy sets; and p is vague if it is

both fuzzy and insufficiently specific for a particular purpose." The introduction of

fuzzy sets by Zadeh was not meant to be a contribution to the philosophy of

vagueness. It was motivated by the need of a computational representation for

linguistic terms appearing in statements which often aim at providing synthetic

information about complex situations.

In this paper, we also put the discussion of vagueness in an information

processing perspective, by focusing on knowledge representation aspects in the

sense of Artificial Intelligence. The paper systematically investigates information

scenarios where forms of what could be called ˙˚vagueness˚¨ appear. We shall

refer to the idea of a vague concept (or category) as soon as this concept partitions

the universe of discourse (sometimes implicitly) into more than two regions. In the

following, we investigate six basic scenarios that we identified as giving birth to

situations of this kind. Beforehand, in Section 2, we first introduce the information

framework common to all these scenarios, and the corresponding notations.

Sections 3 to 8 are devoted to the presentation and discussion of these six

scenarios. However, as emphasized in the conclusion, hybrid situations can be

encountered where several features of basic situations are found together.

2. The information framework

We use a general information-based framework where objects are described by

an agent in terms of attribute values and can be put in categories according to the

properties they enjoy. Such properties refer to subsets of attribute domains.

Namely, let O be a finite set of objects or entities, and be a finite set of attributes



applicable to these objects. The possible values of an attribute a in for the

objects in O belong to the attribute domain Da. Therefore we shall understand

each attribute a in  as a mapping a: O → Da. A property A regarding an attribute a

will refer to the relationship between the objects and some classification of the

attribute values in Da, as explained now.

For a two-valued (or equivalently Boolean) attribute a, Da contains two elements

only, say {y, n}. Then one can only speak of a property A and of its opposite ´A with

respect to attribute a. The property A is true or not for an object o in O according to

whether a(o) = y or a(o) = n, respectively. Then each object either satisfies A or ´A.

If the information is complete about all objects in O regarding attribute a, then A is

not perceived as a vague category. Let Ext(A) be the extension of A in O, as

perceived by the agent, i.e.:

Ext(A) = {o ∈ O | a(o) = y}; Ext(´A) = {o ∈ O | a(o) = n}.

More generally, if the attribute domain contains more than two elements, the

property A and its negation ´A respectively refer to a pair of non-empty subsets YA

and NA of Da. For a classical property,YA and NA form a partition of Da . The

extensions Ext(A) = {o ∈ O | a(o) ∈ YA}, and Ext(´A) = {o ∈ O | a(o) ∈ NA}, also form

a partition of the set of objects. From now on, we shall identify properties A and ´A

with the subsets YA and NA of Da, respectively when no confusion is possible

from the context.



N.B. In daily practice, a property is associated with a label in a natural language.

There is a context-dependent use of labels that is important for natural language

understanding, but it will not be considered further in the rest of this paper.

In the following, we study several variants of the above information framework˚:

First A and ´A may no longer make a partition of Da, because they are gradual

properties˚; in the next variant the agent may fail to know the extension of a property

precisely even if it exists˚; another case is when the attribute domain Da is

equipped with a distance, and a notion of conceptual centrality can be introduced

accordingly˚; in yet another setting, several agents may partially disagree on the

extension of the property A, resulting in global uncertainty˚; the fifth scenario is

when some attribute values may be ill-known for some objects˚; finally, the

considered attributes may not provide a sufficiently expressive language for

characterizing some subsets of objects precisely.

3. Classical vs. gradual properties

A property A referring to an attribute a is said to be classical if YA and NA make an

ordinary partition of Da. Then the following properties hold:

Excluded-Middle Law : YA ∪ NA = Da (EM)

Non-Contradiction Law : YA ∩  NA = ∅ . (NC)

However, (EM) or (NC) may fail in more general settings. For instance, if only (NC)

(resp. (EM)) holds, A is said to be an intuitionistic (resp. paraconsistent) property.

When both fail, attribute values may be simultaneously somewhat A and

somewhat ´A. This situation is encountered with properties that are inherently



gradual. Examples of gradual properties are numerous in natural languages.

Clearly, properties such as ÒyoungÓ, ÒsmallÓ, ÒheavyÓ, É do not lead to a clear-cut

binary partition of the domain. A clear sufficiency test for checking whether a

property A is gradual or not is to try to prefix it with the hedge ˙˚very˚¨. If ˙˚very A˚¨

makes sense, then there are natural situations where the property A is gradual.

The above examples are gradual properties according to this test˚; while for

instance, ˙˚single˚¨ is not.

Graduality and partial pre-orderings. Gradual properties naturally induce a

preordering A on the set of objects O in the sense that, for any o1, o2 ∈ O, o1 A

o2 means " o1 is at least as A as o2". A first example is the case of general

categories like ˙˚bird˚¨, ˙˚chair˚¨, and the like. The preordering then reflects an

idea of typicality so that there are preferred instances in the class. For instance,

robin A penguin because penguins do not fly. In this sense, ˙˚bird˚¨ is not a

classical category because when the agent claims some animal is a bird, this

animal is more likely a robin than a penguin. As for ´A, one can reasonably admit

o1 ´A o2 if and only if o2 A o1. When dealing with categories described by

multiple attributes or features, as in the ÔbirdÕ example, it is more meaningful to

have a small number of intermediary classes of relative membership. This

succession of classes may for instance reflect the progressive failure of more and

more key features. It makes little sense to try and build a numerical scale of

membership in this case (a scale of ÔbirdinessÕ in our example). See, e.g. Oden

(1979) for a psycho-linguistic discussion of the use of fuzzy sets for modeling

cognitive categories.



Another example is the case of predicates referring to a numerical scale. Then A

is now defined on Da, and it induces a partial order on the set of objects O. For

instance, for a = height, A = tall, and Da = [1.20, 2.20] meters, A is nothing but the

natural order in the real interval [1.20, 2.20], since the greater is the height of a

person, the taller he/she is; similarly with for a = age, A = young and Da = [0, 150]

years. This is not always the case. For a = age, take A = middle-aged, then the

ordering on Da is not in agreement with the natural order of ages. This view of a

gradual property A just as an ordered structure (Da, A), advocated in (Finch,

1981; Basu, Deb and Pattanaik, 1992; Trillas and Alsina, 1999; Lee et al., 2002;

Lee, 2003), is very elegant, however very difficult to exploit for operational purposes

when it comes to building a logic, due to the lack of commensurateness between

two such preorderings pertaining to distinct properties.

Membership functions as total pre-orders. A richer representation scheme is to

model the extensions of gradual properties by means of fuzzy sets (Zadeh, 1965).

In that case, to a structure (Da, A) we attach a membership function µA: Da → [0,

1] preserving the ordering A, that is, verifying µA(u) ‡ µA(v) whenever u A v, and

mapping to 1 (resp. 0) the maximal (resp. the minimal) elements of (Da, A).

Notice that when doing this, we are in fact enriching the knowledge representation

setting. Namely we are extending the possibly partial ordering A to a linear (and

thus total) pre-order. See (Keefe, 1998) for a negative view on the adequacy for

arbitrary vague concepts of the assumption of such a linear extension, and its

measurement in a continuous scale like [0, 1]. In the above example, the

membership function for middle-aged enables every age to be compared with any



other, just by comparing their membership values. Moreover, we are also

assuming that maximal (resp. minimal) elements of (Da, A) are fully compatible

with (resp. incompatible) with A, thus providing landmarks for full (resp. complete

lack of) membership. These landmarks or anchor values cannot be expressed by

means of a partial ordering alone. The pre-order induced by a fuzzy set on the

domain Da partitions it into (possibly) infinitely-many subsets {u ∈ Da | µA(u) =

α}α∈[0, 1], in contrast with the binary partitions of classical properties. In fact here,

we could replace [0, 1] by any other linear, bounded, sufficiently discriminating

scale. Observe that there is some relation between the nature of the attribute

domain Da and the possible number of levels in the membership scale. For

modeling gradual properties, the membership scale needs to be (and naturally

becomes) a continuum only if Da is a continuum. Indeed vagueness (in fact

fuzziness) naturally arises when trying to represent a gradual property in a

continuous referential Da. In particular, any classical partition-based

representation of such a property leads to a Sorites paradox. See Goguen (1969),

Gaines (1977) and Copeland (1997) for fuzzy set-based discussions of this

paradox.

Focusing only on the boundaries of the membership scale, fuzzy sets naturally

induce a tri-partition on the attribute domain. Indeed, let YA = A¡ be the core of A

which gathers the elements which undisputedly belong to A, i.e., A¡ = {u, µA(u) = 1}.

Similarly, NA = (¬A)¡ = {u, µA(u) = 0}, assuming that fuzzy set complementation

agrees with classical complementation for the extreme values in the scale. Then,

for a genuine fuzzy set, we have the strict inclusion YA ∪ NA ⊂ Da. Thus, we can



define a set of borderline elements as BA = Da − (YA ∪ NA). Also note that the

supports of A and ¬A, namely As = {u, µA(u) > 0} and (¬A)s = {u, µA(u) < 1} are not

disjoint. Fuzzy sets violate the excluded-middle and contradiction laws (EM) and

(NC): the support of a fuzzy set and the support of its complement overlap on the

one hand, while the union of their cores does not cover the referential domain. This

violation emphasizes the fact that with genuine fuzzy sets, a clear-cut boundary

between A and its complement does not exist. This view of vagueness is quite

similar to the one introduced by Black (1937), and is close to Alston (1964)’s

definition of degree of vagueness. The pair (YA, YA ∪ BA), was called Òensemble

flouÓ by Gentilhomme (1968), who viewed YA as as the set of central elements of A

and BA as the set of peripheral elements. See Lakoff (1987) and Smithson (1987)

for more discussions about gradations in categories.

Fuzzy sets and similarity to prototypes. When the agent is able to measure how

close or similar is one element of the domain Da to another with respect to the

attribute a, one can propose the following computation of membership degrees

(Ruspini, 1991). Assume the agent is provided with a closeness relation S: Da ×

Da → [0, 1], verifying at least S(u, u) = 1 for all u ∈ Da, where S(u, v) = 1 means that

u and v are indistinguishable, S(u, v) = 0 means that u and v have nothing in

common, and if S(u, v) > S(u, vÕ) means that u is more similar to v than to vÕ. Then

given A¡ and (´A)¡, which can be seen as (proto)typical values defining A and ´A

respectively, one can define the degree µA(u) in which a value u belongs to A, as

the extent to which u is close or similar to some typical value of A¡. In some sense

we are identifying A with those values which are close to (or within) A¡. We proceed

similarly for µ´A(u). According to this view, we can define for all u in Da:



µA(u) = sup{S(u, v) | v ∈ A¡};  µ´A(u) = sup{S(u, v) | v ∈(´A)¡}.

Notice that µA(u) = 1 for all u ∈ A¡ and µ´A(u) = 1 for all u ∈ (´A)¡, but in principle

nothing prevents from having µA(u) > 0 for some u ∈ (´A)¡, or µ´A(u) > 0 for some u

∈ A¡. See Osherson and Smith (1981) for a critical discussion of a fuzzy set-based

approach to prototype theory, and ZadehÕs (1982) reply. This view may be related to

Weston (1987)’s idea of approximate truth as reflecting a distance between a

statement and the ideal truth. This view is also related to the notion of truth-

likeness of Niiniluoto (1987) and of similarity-based reasoning as developed in

(Dubois et al., 1997).

Set-theoretic operations. Fuzzy set theory has developed an algebraic framework

for defining truth-functional set-theoretic operations extending classical set

operations. Intersection and unions are then point-wisely defined2. Depending on

the operations used for defining the fuzzy set intersection, equalities (EM) and (NC)

may fail or hold. However, the excluded-middle and contradiction laws, and

idempotence (A ∩ A = A = A ∪ A) cannot be satisfied at the same time:

idempotence holds only with min and max-based intersection and union, while

(EM) and (NC) are preserved for non-idempotent operations such as the

                                                

2 That is, µA∩B(u) = µA(u)∗ µB(u) and µA∪B(u) = µA(u) ⊥ µB(u), where the two-place operations

∗ and ⊥ on [0, 1] are commutative, associative, monotonically non-decreasing, with appropriate

boundary conditions (for intersection 1∗ x = x;  for union 0 ⊥ x = x). They are named triangular

norms and co-norms respectively (e.g., Alsina, Trillas and Valverde, 1983). Moreover µ´A(u) = 1 −

µA(u) for complementation.



Lukasiewicz connectives3 (although the supports of A and ¬A overlap!). This

necessarily leads to structures weaker than Boolean algebras for fuzzy sets.

Clearly, truth-functionality of connectives is a nice property to have, when possible,

for computation. This simplicity can be obtained when we assume a unique

membership scale for all concepts on Da. However, it is not easy, even if not

impossible, to define (binary) connectives for concepts described only with two pre-

orders (Da, A) and (Da, B) on the same domain. See (Lee, 2003) for an

investigation of intersection and union connectives in this setting from the

perspective of decomposability and ordinal conjoint structure in measurement

theory. In any case, the most natural definitions are:

u A∩B v if and only if u A v  and  u B v (Pareto-ordering)

u A∪B v if and only if u A v or u B v .

However the intersection will be very poorly discriminant as for only few pairs (u, v)

will it be true that u  A∩B v. Besides, A∪B is generally not transitive (its strict

part will neither be transitive nor acyclic) and its transitive closure may very well be

trivial. This is clearly related to the impossibility theorem of Arrow (1963) in social

sciences.

 The truth-functionality assumption of membership functions is not without

controversies. For instance, the above similarity-based model will be truth-

functional for disjunction only. Moreover, this assumption may be found too

                                                

3 x ∗ y = max(0, x + y — 1) and x ⊥ y = min(1, x + y).



simplistic for an accurate account of vagueness-originated phenomena; see

Sanford (1975) for critical discussions.

In the discussion above, we have referred to fuzzy set operations on a unique

attribute domain. Although properties whose definition involves several attribute

domains make the discussion of vagueness more complicated, it does not bring

any new important feature to the discussion of vagueness in relation with the idea

of gradual properties.

Graduality is a useful form of vagueness. When caused by the use of gradual

properties, vagueness should not be felt as a defect to remedy, but rather as a

desirable capability of the language to capture the idea of typicality, and to interface

linguistic categories with a continuum of attribute values (usually numerical),

without introducing arbitrary discontinuities. This capability is accounted for by the

fuzzy set representation. Mind that the other vagueness scenarios, in the next

sections, assume classical (non-gradual) properties.

Some philosophers and logicians e. g. Haack, Parikh, Tyle (cited by Copeland

(1997)) have pointed out the problem of Òinappropriate precisionÓ inherent to fuzzy

set membership functions, which they find paradoxical when dealing with

vagueness. However, the scenario considered in this section deals with the

modeling of graduality, or partiality, which is mainly based on the idea of ordering,

and which has nothing to do with imprecision. The notion of partial truth, as put

forward by Lukasiewicz (1930), leads to changing the very notion of a proposition.

The definition of a proposition is a matter of convention, as stressed by De Finetti

(1936, our translation):



ÒPropositions are assigned two values, true or false, and no other, not

because there "exists" an a priori truth called "excluded middle law", but

because we call "propositions" logical entities built in such a way that only a

yes/no answer is possibleÓ.

Fuzzy sets deal with many-valuedness in a logical format, they are not primarily

concerned with uncertainty or belief. Contrary to what the terminology (vague, fuzzy)

may suggest, gradual predicates allow for a refined model of categories, more

expressive than the Boolean setting, and reflecting the common usage of some

words as underlying preferred meanings or default typicality orderings of situations

they refer to. Membership functions are just convenient context-dependent

numerical representations of this ordering. Gradual propositions contain more

information than all-or-nothing ones. But the problem of the measurement of

membership functions makes sense, and is discussed in the fuzzy set literature;

see, e.g., (Turksen and Bilgic, 2000; Marchant 2004).

4. Precisely-defined vs. ill-defined properties

An agent may not be able to precisely delimit the extension of a clear-cut property

A. By an imprecisely delimited extension, we mean the existence of a borderline

region in Da where there exist elements for which the agent cannot say whether

they can be classified as A or to ´A. This is also called semantic ambiguity. Here,

vagueness results from a lack of knowledge of the precise extension of property A,

rather than from the lack of complete information regarding some attributes values

of objects (for the latter scenario, see Section 7). Thus the most elementary



representation of this situation, for properties which are not a matter of degree, is

the partition of Da into the three subsets

YA, NA and BA = Da — (YA ∪ NA)

where YA (resp. NA) is the set of attribute values that the agent can classify in A

(resp.´A) without any hesitation. BA is the borderline (uncertainty) area containing

the real boundary of A. It is the set of attribute values that the agent can neither

classify in A, nor in ´A.

Some scholars, denying the existence of intrinsic graduality, model predicates like

ÔyoungÕ in this way. Indeed the set YA of elements with sure membership sounds

like the set A¡ of prototypical elements of a fuzzy set. However, we insist that in this

section, we consider the hypothetical situation of a classical property whose

precise meaning (i.e., the extension of the property) is not known by the agent who

is unsure about the satisfaction of the property for some value or element.

The idea of sub-definite sets suggested by Narin’yani (1980) also acknowledges

the fact that an agent may only have partial knowledge on the extensions of A and

´A. Then the non-membership of an element to a set does not determine its

membership to the complement. Thus a sub-definite set S is a pair (A+, A—) of

disjoint subsets of elements which definitely belong or definitely do not belong to

S, together with some piece(s) of information on the cardinality of these subsets.

Classification ambiguity. When asked whether a certain value u in the domain Da

satisfies the property A or not, an agent may express his beliefs in the membership

or nonmembership in A of values in Da, by means of an uncertainty measure gA
u:



2{y, n} → [0, 1] for each u in Da, where y and n stand for Òbelonging to AÓ and for

Ònot belonging to AÓ respectively. In such a case, gA
u induces two fuzzy sets on Da

with membership functions defined by µA(u) = gA
u(y) and µ´A(u) = gA

u(n). A

reasonable condition is that gA
u(n) = g´A

u(y), and conversely. The sets YA and NA

correspond to cases when gA
u(y) = 1 and gA

u(n) = 1 respectively. Other elements,

with uncertain membership, belong to the boundary BA of A. Obviously, if the

measures gA
u are probabilities verifying the above condition then µA(u) = 1 —

µ´A(u), and µA is similar to a likelihood function P(A|u). The interpretation of

membership functions as conditional probabilities P(A|u) was stressed by

Cheeseman (1986) and Hisdal (1988). Coletti and Scozzafava (2004) show that

membership functions can be then cast in the theory of coherent conditional

probability, that goes back to De Finetti. The work of Giles (1988) can be viewed as

pertaining to the same subjective probability trend, whereby a membership grade

is interpreted in terms of betting rates pertaining to (Boolean) membership.

Vagueness as limited perception. Parikh (1983)’s view can be related to the above

representations. For him, the idea of vagueness stems from a perception problem,

namely the difficulty of defining (crisp) predicates on "observationally connected

spaces" (e.g., colors) having insufficiently separated elements. Then, rather than

advocating a fuzzy set modeling in such a case (as, e.g. Kay and Mc Daniel (1975)),

Parikh considers that the difficulty to assign borderline elements or values to A (or

to ´A), is due to a lack of capability to discern or distinguish between them, since

they are too close. So the boundary between the extensions of A and ´A is ill-

known, even if there are elements that can be considered as clearly in A. More

formally suppose two elements u and v in Da are indiscernible as soon as d(u, v) †

e, where d is a distance function on Da and e is an indiscernibility threshold. Then,



each element u in Da is perceived as the subset [u] = {v, d(u, v) † e}. So YA = {u, [u]

⊆ A}, and NA = {u, [u] ⊆ ´A}. Any elements u in A and v in ´A such that d(u, v) † e will

be perceived as lying in the borderline area BA .

Another case of the same kind, where a borderline area may occur, is when the

attribute range Da is replaced by clusters forming a partition of similar elements.

This is the case when considering a coarsening (or granulation) of the attribute

range (e.g., measuring heights in centimeters instead of millimeters). There is a

classical equivalence relation on Da and each element u in Da is perceived as the

equivalence class [u]. The partition (A, ´A) of Da is again perceived as a trichotomy,

as previously, here due to a coarse scale.

Supervaluations. In all the above settings, although the agent is not able to locate

the boundary between A and ´A, he still assumes that the excluded-middle and

contradiction laws (EM), (NC) hold. Indeed, K. Fine (1975), when advocating the

idea of Òsuper-truthÓ, proposes that statements about a vague predicate be

ÒsupertrueÒ if and only if they hold for all possible ways of making the predicate

precise; see also (van Fraassen, 1969; Keefe, 2000). It enables all classical

logical relationships between a vague predicate A and its negation not-A to be

preserved. See Sanford (1976, 1979) for various points of view about the idea of

super-truth. This view looks close to Williamson (1994)Õs view of vagueness. For

him, YA corresponds to those elements which are Òclearly AÓ.

Ill-known partial membership. Semantic ambiguity may also take place with

gradual properties. The imprecision of µA can be captured by a type-2 fuzzy set

(Mizumoto and Tanaka, 1976), where µA(u) is itself a fuzzy set of [0, 1]. A particular



case called "interval-valued fuzzy set" is when µA(u) is an ordinary sub-interval of

[0, 1] (Grattan-Guiness, 1975), also called vague sets by Gau and Buehrer (1993).

Atanassov (1986; 1999) extends Narin’yani sub-definite sets by defining a so-

called "intuitionistic fuzzy set (IFS)" iA as a pair of membership functions (µA+, µA—),

where µA+(u) is the degree of membership of u in iA and µA—(u) is its degree of

non-membership. The two membership functions are supposed to verify the

constraint µA+(u) + µA—(u) † 1. The name "intuitionistic" stems from this inequality

that is supposed to express a rejection of the excluded middle law but, the

negation being involutive in this theory (it amounts to swapping µA+ and µA—), the

name is misleading. In fact AtanassovÕs construct is isomorphic to interval-valued

fuzzy sets. See Bustince and Burillo (1996), Deschrijver and Kerre (2003) for

instance.

5. Refining precisely-defined properties using closeness relations

The situation considered in the previous section can be viewed as a case where

the information for deciding between A and ´A is poor or incomplete. Under rich

information, precisely delimited extensions may also lead to a trichotomy of Da if it

is possible to measure how close any two attribute values are from each other.

Here, we do not assume any perception deficiency: the agent can always

distinguish between any two distinct attribute values u and v, no matter how close,

so that A and ´A are well-known and form a partition of Da. Consider there is a

graded closeness or similarity relation S: Da u Da → [0, 1] which is

- reflexive˚: S(u, u) = 1

- symmetric˚: S(u, v) = S(v, u)



- separating˚: S(u, v) < 1 whenever u › v

S(u, v) is all the greater as u and v are close to each other. It is a monotonically

decreasing function of a distance. The separating property is essential here to

indicate perfect perception of the boundary of A by the agent. Then we can define

the fuzzy set of central elements of A and ´A by means of the membership

functions

µYA(u) = 1 - sup{S(u, v) | v ∈ ´A}, and µNA(u) = 1 - sup{S(u, v) | v ∈ A}.

Here, the Boolean representation is refined by making YA and NA gradual.

Elements not in A, but outside the core of NA lie in the vicinity of A, and can be used

for interpolation reasoning (Ruspini, 1991). If µYA(u) > 0 then necessarily u ∈ A, so

YA is indeed included in A. Moreover, u is a fully central element for A (i.e. µYA(u) =

1) as soon as u is totally dissimilar from some element v of ´A (i.e. S(u, v) = 0).

In some sense this situation is opposite to the one in the previous section. There,

assuming A is a binary property, we could explain the lack of knowledge about its

boundary using an indiscernibility relation induced by a perception threshold, or

some uncertainty measure. Making this indiscernibility gradual, we get formally the

same expressions as above for computing valued (fuzzy) counterparts to YA and

NA, but the meaning is very different: In the previous section, the boundary region

contained elements of uncertain membership. Here on the contrary A is well

defined but we are interested in describing central elements of A, that lie far away

from elements of ´A. The similarity relation enables a membership function for the

fuzzy set of central elements of A to be derived.



For instance, consider marks, in the range [0, 20], of exams for pupils. It is perfectly

known that those having mark 10 or more succeed, while the other fail. Yet, the

really successful pupils are those whose marks are really higher than 10, while the

really unsuccessful ones are those whose marks are really lower than 10. Here

the graduality of YA and NA makes the representation more expressive, and does

not convey any idea of uncertainty.

6. Single agent vs. multiple agents

Another source of vagueness is when different extensions of a property A (and ´A)

are provided by a set of agents, even if each agent perceives A as a classical

property. Indeed, let YAi and NAi = ´YAi be the dichotomic (agent-dependent)

representations of A for agent i (i = 1,É,n). Assume for simplicity that they are

classical extensions. This situation implicitly generates a partition of Da in 3

regions:

YA = ∩i YAi, NA = ∩i NAi, BA = Da — (∩i YAi ∪ ∩i NAi ).

In extreme cases we may have ∩i YAi = ∅ or ∩i NAi = ∅ if the agents are fully

inconsistent altogether.

In the case of multiple agents, it is natural to try to summarize the different points of

view. One way to do it is to attach to each (YAi, NAi) the weight m(YAi) given by the

proportion of agents who consider that the correct extension of A is YAi. Then      

Σi m(YAi) = 1.



From the proportion of individuals thinking that Ai properly expresses A, we can

define the grade of membership

µA(u) = ΣYAj: u∈YAj m(YAi). (1)

of u to the (agent-dependent) concept A. µA(u) estimates the extent to which the

value u is globally compatible with the meaning of A. This is formally expressed

under the form of a random set or equivalently of a body of evidence in the sense of

Shafer. It becomes Zadeh’s definition of a fuzzy set exactly, as soon as the family

{YAi, m(YAi) > 0} is a nested family so that the knowledge of the membership

function µA is equivalent to that of the probabilities m(YAi) (see Dubois and Prade,

1989, 1990). Of course this nested property is seldom observed in practice, since

the YAi’s come from different agents. However consonant (nested) approximations

of dissonant bodies of evidence exist (Dubois and Prade, 1989) which are

especially very good when ∩i YAi ≠ ∅, a usually satisfied consistency requirement

which expresses that they exists at least one value in Da totally compatible with the

concept for everybody in a given context. Hence a fuzzy set, with membership

function µA: Da → [0, 1], can always be used as an approximation of a random set.

Such a construct can be used for measuring the membership function µA of˚a fuzzy

set A (e.g., ’young’) in a given context. Then A is a fuzzy set and YAi is a crisp

realization of the idea of fuzzy set A for an individual i.

A simpler, but related experiment consists in asking each agent i, for each value u,

if u is or is not in the extension of A. Then µA(u) would just reflect the proportion of

individuals who answer that u is in the extension of A; psychologists have used this



for getting fuzzy set membership functions (e.g., Hersch and Caramazza, 1974).

Then µA is obtained via a likelihood function P(’A’|u). This view is also a translation

of Cheeseman (1986)Ôs definition of vagueness.

These two probability-oriented views (random sets and likelihood functions) of

fuzzy sets are not antagonistic and can be reconciled. The random set view

corresponds to an experiment whereby individuals are asked to point out a single

crisp subset YAi ⊆ U that best represents some fuzzy concept A. The weight

m(YAi) represents the proportion of individuals for which A is best described by

YAi. It makes sense to relate this experiment with the likelihood Yes-No

experiment provided that, when each individual chooses Ai as representing A, it

means that, in the other experiment, he would answer Yes to the question "is u an

’A’ ?" if and only if u ∈ Ai. Then, as pointed out in Dubois and Prade (1990), the

likelihood function and the random set view are in agreement, i.e.,

P(’A’|u) = •u ∈ YAi m(YAi).

When performing logical operations, on the representations of A and B, there are

then two possibilities: i) perform the operation for each agent i on YAi and YBi and

then compute the resulting membership functions, or ii) perform the operation on

the membership functions (the summarized views) of A and B. Clearly the first

option is most respectful of the agents.

Another approach defines multiple-agent vagueness directly on the set of objects

O without making the attribute scale explicit (Lawry, 2004). More precisely, it starts

with a term set T of predicate symbols {Ak, k = 1,É,n} which describe linguistic



values of some attribute. For a given object o ∈ O, each agent points out a subset

Si(o) of terms, each of which is considered compatible with the object. Let m(Si) be

the proportion of agents who consider that the set Si(o) of terms is compatible with

object o. The fuzzy extension of a predicate A on the set of objects is defined as

µExt(A)(o) = ΣSj: A∈Sj m(Si(o)).

The advantage of this approach is the possibility to apply it to abstract predicates

whose underlying measurement scales are not obvious to lay bare.

The idea of agent-dependent concept applied to a gradual property gives birth to

the notion of probabilistic set (Hirota, 1981; Czogala and Hirota, 1986) where

membership degrees are known only through probability distributions. Lastly,

Halpern (2004) envisages an approach to vagueness combining both the idea of

variability of the meaning across several agents and limited perception within each

agent, modelled by non-transitive indiscernibility relations.

7. Ill-known attribute values and twofold sets

In most of the previous situations, vagueness stemmed from peculiarities of the

way an agent perceived an attribute scale. In each case the vagueness of

extension of A on the set of objects was a direct reflection of the vagueness of the

representation of the property A on the attribute scale. Here we assume A is

perceived as classical, so that YA and NA partition the attribute domain Da in the

classical sense. However, the agent knowledge about the values of attribute a for

objects is uncertain, or just incomplete. The set of objects which are A is then ill-



known. For instance, if for each object o, pa(o) denotes the subjective probability

distribution of the possible values for a(o) according to the agent, we note that

Prob(a(o) ∈ A) = Σu∈ _A 
pa(o)(u);

and then define the fuzzy set of objects satisfying A as having membership function

µExt(A)(o) = Prob(a(o) ∈ A).

Clearly, the boundary between objects that satisfy A and those that do not is

blurred. Only for well-known objects do we have that o ∈ Εxt(A) or not. The excluded

middle and contradiction laws on Da imply µExt(A)(o) + µExt(´A)(o) = 1.

When the information is poorer, we can still define the extensions. Suppose all the

agent knows about o is that a(o) ∈ I(o), a subset of Da. Then the agent knows for

sure that ˙˚o is A˚¨ if and only if I(o) ⊆ YA and that ˙˚o is not A˚¨ if and only if I(o) ⊆

NA. If neither condition holds, o is borderline, it is neither in Ext(A) = {o, I(o) ⊆ YA },

not in Ext(´A) = {o, I(o) ⊆ NA}, which are disjoint and no longer form a partition of O.

More generally, for each object there is a possibility distribution πa(o) describing

the more or less possible values of a(o) for each object. Then one may compute

(Dubois and Prade, 1987):

- to what extent it is possible that object o has property A:

∀ o ∈ Ο,  Π(a(o) ∈ A) = supu∈A πa(o)(u) = 1 − µExt(´A)(o);

- to what extent it is certain that object o has property A:

∀ o ∈ Ο, N(a(o) ∈ A) = 1 − Π(a(o) ∈ ´A) = µExt(A)(o)

Since N(a(o) ∈ A) > 0 implies Π(a(o) ∈ A) = 1, the (fuzzy) set of objects Ext(A) which

are more or less certainly A is disjoint from the (fuzzy) set of objects Ext(´A) which



are more or less certainly ´A. In this situation, the set of objects having property A

is ill-known because of imprecise descriptions of these objects. It gives birth to a

trichotomic structure, not in the attribute domain Da but on the set of objects O.

Namely the set of objects A* which are certainly A (such that µExt(A)(o) = 1), the set

(´A)* of those which are certainly ´A (such that µExt(´A)(o) = 1), and the boundary

set O − {A* ∪ (´A)*}.

8. Approximately described sets

Yet another situation where a notion of vagueness appears in the set of objects O,

rather than in the attribute scale, is when the language induced by the set of

attributes  does not allow to accurately describe some subsets E of O. This is

because there may be several objects sharing the same description. In such a

case, we can only define a lower and an upper approximation of a given set E of

objects, since objects having the same attribute values for an attribute a are

indiscernible from the point of view of this attribute. This is actually the starting

point of rough set theory (Pawlak, 1991).

Consider first an attribute a and define, for each u ∈ Da, the equivalence classes

 [O]u = a-1(u) = {o ∈ O | a(o) = u}.

Νote that for u › v, [O]u ∩ [O]v = ∅. This can be generalized to a subset B = {a1,

a2, ..., ar} of attributes, taking [O]u= {o ∈ O | B(o) = u} for defining an equivalence

class for each r-tuple u = (u1, ..., ur) ∈ Da1 × ... × Dar where B(o) = u stands for

a1(o) = u1, ..., ar(o) = ur. We can then define the lower and upper approximations of

E in O respectively as:



E* = {o ∈ O | [O]B(o) ⊆ E },  E* = {o ∈ O | [O]B(o) ∩ E › ∅}.

And then clearly E* ⊆ E ⊆ E*. This again leads to a trichotomic structure: (E*, E
* −

E*, ´(E
*)).

The rough set model can be enriched by dealing with fuzzy indiscernibility relations

or fuzzy partitions instead of equivalence classes, or by approximating fuzzy

subsets in O (rather than classical subsets only). See (Dubois and Prade, 1992).

The latter is a combination between the rough set scenario and gradual

predicates. Boixader et al. (2000) discuss the approximation of fuzzy sets using

similarity relations.

9. Concluding remarks

Overall, there are basically three types of approaches to vagueness (see Table 1):

- Approaches admitting from the start that propositions or predicates may

fail to be Boolean. It corresponds essentially to the first scenario underlying the

fuzzy set paradigm and many-valued logics. The intended meaning of propositions

is richer than what the use of Boolean variables to represent them might suggest.

This situation is precisely what Zadeh calls fuzzy (and not vague). Scenario 3 (in

table 1) can be viewed as belonging to the same family of thought, since after

defining properties as essentially Boolean, some refinement separating central

from peripheral elements is introduced by means of the underlying distance on the

attribute scale. Again it is an enrichment of the Boolean representation. All other

approaches preserve the Boolean representation convention, and consider

vagueness (and graduality) as stemming from a deficiency of the information.



- Approaches which claim that the boundary between values satisfying a

proposition exist but is ill-known due to the limited perception of an agent or the

conflicting views of several agents. It corresponds to scenarios 2 and 4

respectively. Ill-defined properties induce a vague classification of objects.

Moreover, since properties are still Boolean even if their boundaries are ill-known,

the basic laws of classical logic are retained such as the laws of excluded middle

and contradiction. This is a natural view of vagueness understood as semantic

ambiguity.

Features

Scenarios

Boolean

notion

Boundary on the

attribute scale

Ill-known

extensions

Cause of

vagueness

1 Gradual

predicates

No no boundary No Typicality

Continuity

2 Uncertain

boundaries

Yes Yes, but ill-known Yes Limited

perception

3 Closeness Yes, but

refined

Yes No Metric space

4 Multiagent Yes Yes, but ill-known Yes Conflict

5 Ill-known objects Yes Yes Yes Incomplete

information

6 Ill-described

objects

Yes Yes Yes Lack of

attributes



Table 1: Overview of scenarios for vagueness

- Approaches where the information defect lies in the difficulty to describe

objects by means of suitable attributes, either because attribute values of objects

are ill-known (like in scenario 5) or because there are not enough attributes to

ensure a bijection between the set of objects and the set of descriptions (scenario

6). In that case, vagueness is only reflected in a limited capability of classifying

objects, but it does not affect the representation of properties on attribute ranges.

Clearly these basic scenarios can be combined into more complex ones where

several key vagueness-generating features are present at the same time. A natural

follow-up of the above investigation is the study of set-theoretic connectives that

may be used to logically combine vague properties in the light of the above

scenarios. This issue is the major cause for controversies in the philosophical

literature and computer science journals (see Elkan, 1994). We believe that part of

these controversies stem from misunderstandings due to a failure to acknowledge

the existence of several types of vagueness phenomena and the temptation to

comment proposals made within a certain scenario in the context of another

scenario. A typical confusion is between degrees of truth (underlying scenario 1)

and degrees of uncertainty (underlying scenarios 2 and 4).
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