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Abstract. The aim of the paper is to extend the Savage like axiomatiza-
tion of possibilistic preference functionals in qualitative decision theory
to conditional acts, so as to make a step towards the dynamic decision
setting. To this end, the de Finetti style approach to conditional possi-
bility recently advocated by Coletti and Vantaggi is exploited, extending
to conditional acts the basic axioms pertaining to conditional events.

1 Introduction

The natural counterparts to the expected utility criterion is the pair of pos-
sibilistic optimistic and pessimistic criteria, originally introduced by Yager [?]
and Whalen [?] respectively. These criteria were axiomatized in the setting of
Von-Neuman and Morgenstern theory, based on the comparison of possibilistic
lotteries by Dubois et al. [?] and in the Savagean setting of acts under uncertainty
by Dubois Prade and Sabbadin [?]. Later on, Giang and Shenoy [?] introduced
a possibilistic criterion without pessimism nor optimism assumptions, using a
bipolar qualitative scale concatenating the possibility and necessity scales. In
this setting, each act is evaluated by a pair of qualitative values. The criterion
is like the pessimistic one when all potential consequences are bad, and like the
optimistic ones where all consequences are good. More recently Paul Weng [?]
showed how to axiomatize this criterion in the Savage setting. All the above
works propose a foundation to qualitative decision making in a static world. But
the important issue of a qualitative decision theory when new input information
can be received was left open.

In classical decision theory, this question turns out to be an easy one because
of the sure thing principle. When the input information is obtained under the
form of a true event A, the expected utility of acts comes down to restricting
the acts to states of nature where this event is true, making the consequences
outside A of all acts identical, regardless of what these common consequences
are. Namely, if the preference relation indexed by the sure event is representable
by an expected utility, then the same holds for the preference relation indexed
by the event A, whenever the conditioning event A is not null. It comes down to
changing the subjective probability into a conditional probability. This method



can fail when the possible event A is null, that is, indifferent to the constant
zero.

The issue of conditional qualitative criteria is more difficult, because in possi-
bility theory the sure thing principle fails. As a consequence, the axiomatization
of conditional possibilistic criteria must be reconsidered from scratch. It can be
done either using a set of conditional preference relations on acts, or using a
single preference relation on conditional acts. In the first approach, preference
relations are indexed by an event that represents the information context in
which the decision takes place. Additional axioms must be found in order to
explain how preference relations indexed by different events can interplay. In the
second approach one considers any act that takes place in a given information
context. From an uncertainty-theoretic point of view it comes down to studying
conditional set-functions not as a derived notion built from the unconditional
ones, but as a primitive notion. This approach to uncertainty measures is the
one adopted by de Finetti for probability theory, in order to allow for condi-
tioning on hypothetical events with probability zero. This is the path followed
in this paper. Recently Coletti and Vantaggi [?,?] introduced this approach in
qualitative possibility theory, thus extending to the conditional setting the com-
parative possibility relation first proposed by Lewis [?], and retrieved by Dubois
[?] as an ordinal account of Zadeh’s possibility theory [?] in the spirit of compar-
ative probability also originally proposed by de Finetti. The merit of qualitative
conditional possibility after Coletti and Vantaggi is to provide an answer to
conditioning on non-empty events of possibility zero, thus capturing a more gen-
eral concept of conditioning (including some other proposals already studied in
literature).

The aim of this paper is to bridge the gap between qualitative conditional
possibility and the axiomatization of possibilistic preference functionals, thus
paving the way toward possibilistic decision under uncertainty in a dynamic
epistemic environment.

2 Decision-theoretic approach to possibility theory

A decision problem under uncertainty will be cast in the usual framework: we
consider set S of states and a set X of potential consequences of decisions. States
encode possible situations, states of affairs, etc. An act is viewed as a mapping
f from the state space to the consequence set, namely, in each state s ∈ S, an
act f produces a well-defined result f(s) ∈ X . The decision maker must rank
acts without knowing what is the current state of the world in a precise way.
In qualitative decision theory, S is finite, and so is generally X . n will denote
the number of states in S. The consequences of an act can often be ranked in
terms of their relative appeal: some consequences are judged better than others.
This is often modeled by means of a numerical utility function u which assigns
to each consequence x ∈ X a utility value u(x) ∈ IR.

The most widely found assumption is that there is a probability distribution
p on S, and the most usual decision rule is based on the expected utility criterion.



When no information about the current state is available, the maximin criterion
ranks acts according to its worst consequence:

W−
u (f) = min

s∈S
u(f(s)). (1)

Clearly this criterion has the major defect of being extremely pessimistic. Abso-
lute qualitative approaches rely on extensions of Wald’s criterion. The possibilis-
tic qualitative criterion is based on a utility function u on X and a possibility
distribution π on S [?], both mapping on the same totally ordered scale L. The or-
dinal value π(s) represents the relative plausibility of state s. Here, L is equipped
with its involutive order-reversing map n; in particular n(1L) = 0L,n(0L) = 1L.
So, n(π(s)) represents the degree of potential surprise in case the state of the
world is s [?]. In particular, n(π(s)) = 1L for impossible states. A pessimistic
criterion W−

π,u(f) is proposed [?,?] of the form :

W−
π,u(f) = min

s∈S
max(n(π(s)), u(f(s))) (2)

The value of W−
π,u(f) is small as soon as there exists a highly plausible state

(n(π(s)) = 0L) with low utility value. This criterion is actually a prioritized
extension of the Wald maximin criterion W−

u (f). The latter is recovered in case
of total ignorance, ie. when π(s) = 1L for all s ∈ S. The decisions are again
made according to the merits of acts in their worst consequences, now restricted
to the most plausible states defined by a compromise between belief and utility
expressed in the min-max expression.

The optimistic counterpart to this criterion [?,?] is:

W+
π,u(f) = max

s∈S
min(π(s), u(f(s))). (3)

The optimistic and pessimistic possibilistic criteria are particular cases of a
more general criterion based on the Sugeno integral (see [?]):

Sγ,u(f) = max
λ∈L

min(λ, γ(Fλ)) (4)

where Fλ = {s ∈ S, u(f(s)) ≥ λ}, γ is a monotonic set function that reflects the
decision-maker’s attitude in front of uncertainty: γ(A) is the degree of confidence
in event A. The possibilistic criterion W+

π,u is obtained when γ is the possibility
measure based on π (γ(A) = maxs∈A π(s)), and W−

π,u is obtained when γ is the
corresponding necessity measure (γ(A) = mins/∈A n(π(s))) 3).

We consider Sugeno integral and possibilistic criteria in the scope of Savage
theory. Let us denote � a complete and transitive preference relation among acts
of XS : � will denote its strict part (f � g ⇐⇒ f � g and ¬(g � f)) and '
will denote its symmetric part (f ' g ⇐⇒ f � g and g � f).

We denote fAh the act identical to f on a subset A and to h on its com-
plementary: ∀s, fAh(s) = f(s) if s ∈ A, h(s) if s /∈ A. The possibilistic criteria
W+

π,u and W−
π,u satisfy a weak version of the sure-thing principle:

3 Indeed, it is easy to show that Sγ,u(f) = maxs∈S min(u(f(s)), γ(Fu(f(s)))) is equal
to mins∈S max(u(f(s)), γ(Fu(f(s)))), where Fλ = {s ∈ S, u(f(s)) > λ} [?].



Axiom WP2: ∀A,∀f, g, h, h′, fAh � gAh ⇒ fAh′ � gAh′.

Let us denote by �P the utility ordering of consequences that derives from
�: x �P y ⇐⇒ fx � fy. where fx (resp. fy) is the constant act that concludes
to consequence x (resp. y) for any state.

The rankings of acts obtained by a Sugeno integral satisfy the following weak
version of Savage postulate P3:

Axiom WP3: ∀A ⊆ S,∀x, y ∈ X ,∀f, x �P y implies xAf � yAf.

But the converse may be false for events the plausibility of which is lower
than the utility degree of x and y (the plausibility degree of A is in this case so
negligible with respect to the utility of x and y that A is considered as null in
this context).

The basic properties of Sugeno integrals exploit disjunctive and conjunctive
combinations of acts. Let act f ∧ g be the one always producing the worst con-
sequences of f and g in each state, while f ∨ g always makes the best of them:

f ∧ g(s) = f(s) if g(s) �P f(s) and g(s) otherwise (5)

f ∨ g(s) = f(s) if f(s) �P g(s) and g(s) otherwise (6)

They are union and intersection of fuzzy sets viewed as acts. Obviously, Sγ,u(f∧ g)
≤ min(Sγ,u(f), Sγ,u(g)) and Sγ,u(f ∨ g) ≥ max(Sγ,u(f), Sγ,u(g)) from weak
Pareto monotonicity. These properties hold with equality whenever f or g is a
constant act and are then characteristic of Sugeno integrals for monotonic ag-
gregation operators [?]. Actually, these properties can be expressed by means
of axioms, called restricted conjunctive and disjunctive dominance (RCD and
RDD) on the preference structure (XS ,�):

– Axiom RCD: if f is a constant act, f � h and g � h imply f ∧ g � h
– Axiom RDD: if f is a constant act, h � f and h � g imply h � f ∨ g.

For instance, RCD means that limiting from above the potential utility values of
an act g, that is better than another one h, to a constant value that is better than
the utility of act h, still yields an act better than h. This is in contradiction with
expected utility theory and strongly counterintuitive in the context of economic
theory, with a continuous consequence set X . However the range of validity of
qualitative decision theory is precisely when both X and S are finite and steps
in the finite value scale are far from each other.

This setting enables the axiomatization of Sugeno integrals in the style of
Savage to be carried out. The following representation theorem holds:

Theorem 1 [?]: A preference structure (XS ,�) is a non-trivial weak order that
satisfies WP3, RCD and RDD if and only if there exists a finite chain of pref-
erence levels L, an L-valued monotonic set-function γ, and an L-valued utility
function u on X , such that f � g if and only if Sγ,u(f) ≥ Sγ,u(g).

The pessimistic criterion W−
π,u(f) can be axiomatized by strengthening axiom

RCD into conjunctive dominance as follows [?]:



Axiom CD : ∀f, g, h, f � h and g � h imply f ∧ g � h.

Changing RDD into CD implies that the set-function γ is a necessity mea-
sure [?] and so, Sγ,u(f) = W−

π,u(f) for some possibility distribution π. Similarly,
the criterion W+

π,u(f) can be axiomatized by strengthening axiom RDD into dis-
junctive dominance as follows:

Axiom DD : ∀f, g, h, h � f and h � g imply h � f ∨ g.

Changing RCD into DD implies that the set-function γ is a possibility mea-
sure and so, Sγ,u(f) = W+

π,u(f) for some possibility distribution π. In order to
figure out why axiom CD leads to a pessimistic criterion, let us notice here that
CD can be equivalently replaced by the following property:

(PESS )∀A ⊆ S,∀f, g, fAg � g implies g � gAf. (7)

Similarly, the following optimistic counterpart to (??) can serve as a substitute
to axiom DD for the representation of criterion W+

π,u:

(OPT )∀A ⊆ S,∀f, g, g � fAg implies gAf � g. (8)

3 Qualitative conditional possibility

The notion of conditioning in possibility theory is a problem of long-standing
interest. Starting from a triangular norm (t-norm) T various definitions of T -
conditional possibility have been given [?]. In the following we use the axiomatic
definition proposed in [?], restricted to the t-norm minimum:

Definition 1. Let S = {s1, ..., sn} be a state space and E = B ×H where B
is a finite algebra of subsets of S, H ⊆ B \ {∅} an additive class of non-empty
subsets of S (closed with respect to finite unions). A function Π : E → [0, 1] is
a qualitative conditional possibility if it satisfies the following properties:
1. Π(E|H) = Π(E ∧H|H), for every E ∈ B and H ∈ H;
2. Π(·|H) is a possibility measure, for every H ∈ H;
3. ∀H,E ∧H ∈ H, and E,F ∈ B,Π(E ∧ F |H) = min (Π(E|H),Π(F |E ∧H)) .

Condition 2 requires that, for every conditioning event H ∈ H, the function
Π(·|H) is a possibility, so it is normalized. A characterization of qualitative
conditional possibilities in terms of a class of unconditional possibilities on the
algebra B was given in [?]. An analogous result for T-conditional possibility,
with T a strictly increasing t-norm, is in [?] and it is in the same line as the
characterization theorem of conditional probabilities in de Finetti approach [?].
In both cases the conditional possibility Π(·|H) is not singled-out by the possi-
bility of its conditioning event H, but its value is ruled by the values of other
possibilities Π(·|E ∧ H), for suitable events E. It turns out that a conditional
possibility cannot always be derived from just one “unconditional” possibility.
The value Π(E|H) follows directly from Π(E ∧H) and Π(H) just in the case
Π(E ∧ H) < Π(H). Note that in such a case Definition ?? coincides with the



one given by Dubois and Prade in [?], which is based on the minimum specificity
principle and consists in taking for Π(E|H) the greatest solution to the equation
Π(E ∧H) = min{x, Π(H)}, that is Π(E ∧H) when Π(E ∧H) < Π(H) and 1L

otherwise. Definition ?? is more general than the latter.
For example, consider the following conditional possibility on E = B ×

{H,Ω}, with S = {s1, s2, s3} and H = s1 ∨ s2 :

Π({s1}) = Π({s2}) = 0.2;Π({s1}|H) = 0.6. (9)

Note that the rules of possibility theory imply Π(s1 ∨ s2) = 0.2 and π(s3) =
Π(F ) = 1, where s3 ∈ F ∈ B. Similarly, the conditional constraint implies
π(s2|H) = Π(H|H) = 1. Let Π0 = Π|Ω . It is a solution to both constraints in
(??) but the equation Π0(s1) = min(x,Π0(s1 ∨ s2)) does not define a unique
conditional possibility. The solution to system (??) is a pair of unconditional pos-
sibilities (i.e. {Π0,Π1}, where π1(s1) = 0.6;π1(s2) = 1; π1(s3) = 0). Moreover,
Π1 is the unique solution to Π({s1}|H) = 0.6 on referential H.

Characterizations of ordinal relations � on a set of conditional events E =
B × H representable by qualitative conditional possibilities Π (i.e. for any
A|H,B|K ∈ E, A|H � B|K ↔ Π(A|H) ≤ Π(B|K)) have been provided in
[?,?]. In the sequel we recall the main results.

Definition 2. A binary relation � on conditional events A|H ∈ E is called
comparative conditional possibility iff the following conditions hold:
1. � is a weak order;
2. for any H,K ∈ H, ∅|H ∼ ∅|K ≺ H|H ∼ K|K;
3. for any A,B ∈ B and H,B ∧H ∈ H, A ∧B|H � A|B ∧H and moreover if

either A ∧B|H ≺ B|H or B|H ∼ H|H, then A ∧B|H ∼ A|B ∧H;
4. for any H ∈ H and any A,B, C ∈ B, A|H � B|H ⇒ (A∨C)|H � (B∨C)|H.

Condition (3) requires that in the context of the new information “B” the degree
of belief in an event A cannot be less than the degree of belief in A ∧ B before
supposing that B occurs. Moreover, if the new information B is less surprising
than A ∧ B in the context H, or even totally unsurprising, the occurrence of
B cannot change the degree of belief in A in the context H. Condition (4) is
essentially the one proposed by Dubois [?], just rewritten conditioned on the
hypothesis H. Moreover, condition (4) is equivalent (see [?]), under transitivity,
to A|H � B|K and C|H � D|K ⇒ (A ∨ C)|H � (B ∨D)|K.

Theorem 1. [?]: For a binary relation � on E = B×H the following statements
are equivalent:
i. � is a comparative conditional possibility;
ii. there exists a qualitative conditional possibility Π on E representing �.

Obviously, among the comparative conditional possibilities there are also the or-
dinal relations representable by conditional possibilities satisfying the minimum
specificity principle, more precisely those satisfying a reinforcement of condition
3 of Definition ??, that is

(sc) for every A,B ∈ B and H,B ∧ H ∈ H, (A ∧ B)|H � A|(B ∧ H) and
moreover if A ∧B ∧H 6= ∅ and (A ∧B)|H ∼ B|H, then A|(B ∧H) ∼ H|H.



4 Qualitative conditional possibilistic preference
functional: optimistic case

Let S be a finite set of states, B be the power set of S and H ⊆ B \ {∅} be an
additive class containing S.4

Given a set of consequences X , a conditional act f |H is formed by a pair:
an act f and an event H ∈ H. The event H in f |H is not just representing a
given fact, but it is an uncertain hypothetical event whose truth value may be
unknown. It expresses the idea of choosing decision f in case H were true, not
actually doing it when H occurs. It differs from an unconditional act of the form
fHg even if the value of f |H and fHg is equal to f(s) ∈ X for any state s ∈ H.
Indeed, for s 6∈ H, the value of f |H is undetermined (following the terminology
of de Finetti).

Let x∗ and x∗ be the best and the worst consequences (according to a given
preference) in X . Moreover the event E ∈ B is in bijection with the binary act
taking the best value x∗ when E is true and the worst value x∗ when E is false.

A qualitative conditional decision model consists of a conditional possibility
Π : B×H → L, a utility function u on the consequences in X with u(x∗) = 1L

and u(x∗) = 0L. A conditional possibilistic optimistic criterion takes the form:

v∗(f |H) = max
s∈H

{min{u(f(s)),Π(s|H)}} .

Note that the above model is such that, for any H ∈ H,

v∗(x∗|H) = max
s∈H

min{u(x∗),Π(s|H)} = max
s∈H

Π(s|H) = Π(H|H) = 1 = u(x∗)

and v∗(x∗|H) = maxs∈H min{u(x∗),Π(s|H)} = u(x∗) = 0 = Π(∅|H).

4.1 Axioms for the qualitative conditional model: optimistic case

Given a preference on the set of conditional acts f |H with consequences on X ,
we consider the following conditions:
1. � is a non-trivial weak order on F = XS ×H;
2. for any consequences x, y ∈ X such that x >p y and for any H,K ∈ H one

has

y|H ∼ y|K and y|H ≺ x|H;

3. (WP3) if x, y are consequences in X such that x ≥p y, then (yAh)|H �
(xAh)|H for any act h and any A ∈ B and H ∈ H;

4. (OPT) for any f |H, g|H and for any A ∈ H

(fAg)|H ≺ f |H ⇒ f |H � (gAf)|H

5. (RCD) for any constant act fx

f |H ≺ g|H and f |H ≺ fx|H ⇒ f |H ≺ (g ∧ fx)|H;
4 this assumption could be dropped



6. for any x, y ∈ X such that x >p y and for any A,B ∈ B and H,B ∧H ∈ H,
(x(A ∧B)y)|H � (xAy)|B ∧H

and moreover if (x(A ∧B)y)|H ≺ (xBy)|H or (xBy)|H ∼ x|H, then

(xA ∧By)|H ∼ (xAy)|B ∧H.

Conditions 1,3,4,5 are trivial generalizations of axioms proposed in qualitative
possibilistic decision theory. Conditions 2 and 6 compare conditional acts with
different conditioning events and are generalizations of those proposed in Defini-
tion 2 [?] for comparative conditional possibility. Note that the approach reduces
to axioms of qualitative possibilistic decision theory when fixing the conditioning
event. Condition 2 is useful to compare constant acts with different conditioning
events, stating that the merit of a constant act is not affected by the conditioning
event. Note that condition 6 is actually a reinforcement of the axiom proposed
in [?], by requiring its validity for all the conditional binary acts, i.e. conditional
acts of the form (xAy)|H having, when H is true, two consequences x >p y ∈ X ,
more precisely x when A is true and y when A is false. Actually, condition 6
involves all the pairs of constant acts x >p y. The first part of the condition
suggests the decision-maker always prefers a more precise context (B ∧ H) for
the act involving event A. Indeed, conditional act (x(A∧B)y)|H is risky since a
bad consequence obtains when A ∧Bc occurs, while this possibility is ruled out
by act (xAy)|B ∧H, in the context B ∧H. The second part of condition 6 can
be explained as follows: if improving consequence y into x on A ∧Bc makes the
act (x(A ∧B)y)|H more attractive, assuming B is true in the context H makes
act x(A ∧ B)y indifferent to xAy. Moreover, the same conclusion is reached if,
in context H, event B is considered so likely that act xBy is like the constant
act fx.

It is easy to see that the conditional possibilistic optimistic criterion satisfies
these properties:

Proposition 1. A conditional optimistic criterion induces a preference relation
satisfying conditions 1 to 6.

Proof. Condition 1 holds since v∗ is valued on a totally ordered scale. The va-
lidity of conditions 3, 4, 5 follows from [?]. Conditions 2, 6 follow from [?].

Since � is a total preorder on F , its restriction to constant acts induces
the same type of relation ≥p on X . Thus, among the consequences we can find
the best and the worst acts, denoted by x∗ and x∗, respectively. Now we can
reconstruct the conditional possibilistic optimistic criterion using the following
steps:

Lemma 1. Let � be a preference relation on F satisfying conditions 1, 3, 4.
Then, (fAg)|H ≺ f |H ⇒ f |H � (hAf)|H for any h.

Proof. If (fAg)|H ≺ f |H, then (fAx∗)|H ≺ f |H.
Suppose there exists an act h such that (hAf)|H ≺ f |H. Then (x∗Af)|H �
(hAf)|H ≺ f |H, so a contradiction for condition 4 (OPT) arises.



The two results in the sequel are trivial generalizations of the ones given for the
unconditional case in [?]

Lemma 2. Let � be a preference relation on F satisfying conditions 1, 3, 4. If
h = f ∨ g, then h|H ∼ f |H or h|H ∼ g|H.

Lemma 3. Let � be a preference relation on F satisfying conditions 1, 3, 4, 5.
If h = f ∧ fx, where fx is a constant act with value x, then h|H ∼ f |H or
h|H ∼ fx|H.

The next step retrieves a comparative conditional possibility on events:

Theorem 2. Let � be a preference relation on F satisfying conditions 1 to 6.
Then the restriction of � on the acts of the form x∗Ex∗|H with E ∈ B and
H ∈ H is a comparative conditional possibility.

Proof. We consider the bijection introduced in [?] between acts of the form
x∗Ex∗ and events E, where x∗ and x∗ are the best and the worst consequences
(according to a given preference) in X . It follows from condition 2 that, for any
H,K ∈ H, ∅|H ∼ ∅|K ≺ H|H ∼ K|K. Condition 1 implies that the restriction
of � is a non-trivial weak order on the set of conditional events E|H ∈ B×H.
From condition 6 it follows that A ∧ B|H � A|B ∧ H, for any A,B ∈ B and
H,B ∧ H ∈ H. Moreover, when A ∧ B|H ≺ B|H or B|H ∼ H|H, it follows
A ∧B|H ∼ A|B ∧H.
Taking condition 4 into play, and letting f = x∗Bx∗, g = x∗Ax∗ and h =
x∗Acx∗ one has fAg = x∗(A ∧ B)x∗, and hAf = x∗(Ac ∧ B)x∗, then condition
4 implies that if (A∧B)|H ≺ B|H, then by Lemma 1 Ac ∧B|H ∼ B|H. Hence,
A ∧ B|H ∼ B|H or Ac ∧ B|H ∼ B|H, which is equivalent under monotonicity
to A|H � B|H ⇒ A ∨ C|H � B ∨ C|H (see [?]).

Corollary 1. Let � be a preference relation on F satisfying conditions 1 to 6.
Then the restriction of � on the acts of the form x∗Ex∗|H with E ∈ B and
H ∈ H is representable by a qualitative conditional possibility.

Proof. From Theorem ?? it follows that the restriction of a preference relation
on the conditional events, which satisfies condition 1 to 6, is a comparative
conditional possibility, then the main result in [?] implies that it is representable
by a qualitative conditional possibility.

Theorem 3. Let S be a finite set of states, B be the power set of S and H ⊆
B \ {∅} an additive class of events such that S ∈ H. Let � be a preference over
F = XS ×H, which satisfies conditions 1 to 6. Then, there exists a finite totally
ordered scale L, a utility function u : X → L, a qualitative conditional possibility
Π : B×H→ L, and a function V : F → L, which represents �. Moreover V is
of the form

V (f |H) = max
s∈S

{min{u(f(s)),Π(s|H)}} .



Proof. 1. Building a utility scale Since F is finite, from condition 1 it follows
that there exists a function V that represents �, taking values in a finite lin-
ear ordered scale L with smallest and the greatest values 0L and 1L, respec-
tively. The value associated to the conditional act f |H (and to its equivalent
acts) is V (f |H). Since S ∈ H, take a constant act fx and let u(x) = V (fx).
Moreover, due to point-wise preference u(x∗) = 0L and u(x∗) = 1L. By con-
dition 2, since fx|H ∼ fx|K, for any H,K ∈ H (and so fx ∼ fx|S), it follows
that, for any H ∈ H, V (fx|H) = u(x) 5.

2. Building a qualitative conditional possibility The construction of a qualitative
conditional possibility Π(·|·) on (x∗Ax∗)|H follows from Theorem ?? and
Corollary ??.

3. Computation of the utilities of acts of the form xEy|H Consider a conditional
act of the form (xEx∗)|H = (x∗Ex∗) ∧ fx|H, from Lemma ?? one has
(xEx∗)|H ∼ (x∗Ex∗)|H or (xEx∗)|H ∼ fx|H, then, (see point 1 of the
proof)

V (xEx∗|H) = V (x∗Ex∗|H) = Π(E|H) or V (xEx∗|H) = V (fx|H) = u(x).

Since (xEx∗)|H � (x∗Ex∗)|H and (xEx∗)|H � fx|H, then

V (xEx∗|H) = min{u(x),Π(E|H)}.

A conditional binary act (xEy)|H, with x ≥p y (without loss of generality),
can be written as ((xEx∗) ∨ fy|H and by Lemma ?? it follows (xEy)|H ∼
(xEx∗)|H or (xEy)|H ∼ fy|H, moreover (xEx∗)|H � (xEy)|H and y|H �
(xEy)|H, hence

V (xEy|H) = max{V (xEx∗|H), V (fy|H)} = max{V (xEx∗|H), u(y)}.

More generally, by decomposing any act through its value on states s, we
get f |H =

∨
s∈H f(s){s}x∗|H, then it follows

V (f |H) = max
s∈H

{V (f(s){s}x∗|H)} = max
s∈S

min{Π(s|H), u(f(s))}}.

Note that we can also write V (f |H) = maxs∈H min{Π(s|H), u(f(s))}} since
Π(s|H) = 0 if s 6∈ H.

4.2 Conditional possibilistic preference functional: the pessimistic
case

A pessimistic qualitative possibilistic criterion presupposes a conditional ne-
cessity function N : B × H → L, a utility u on the consequences in X with
u(x∗) = 1L and u(x∗) = 0L. A conditional pessimistic criterion is of the form:

v∗(f |H) = min
s∈H

max(u(f(s)), N({s}c|H)).

5 If S 6∈ H, consider Ho =
W

H∈H H and put, for any constant act fx, u(x) = V (fx|Ho).
Thus, as in the previous case, u(x∗) = 0L and u(x∗) = 1L and again from condition
2 it follows V (fx|H) = u(x).



Note that the above functional is such that, for any H ∈ H,

v∗(x∗|H) = min
s∈H

max{u(x∗), N({s}c|H)} = u(x∗) = 1 = N(H|H)

and v∗(x∗|H) = mins∈H max{u(x∗), N({s}c|H)} = mins∈H N({s}c|H) = 0.
Directly axiomatizing the pessimistic qualitative possibilistic criterion would

require a drastic modification of condition 6 since the latter extends proper-
ties of conditional possibility orderings, not necessity orderings. It cannot be
done here for lack of space. However, the necessity function can be expressed as
N({s}c|H) = n(π(s|H)) where n(·) is the order reversing map in L. Then the
pessimistic criterion can be expressed in terms of an expression close to the one
of the optimistic criterion, since

n(v∗(f |H)) = max
s∈H

min(n(u(f(s))), π(s|H))

which lays bare its meaning: v∗(f |H) is all the higher as there is no plausible
state with high disutility n(u(f(s)). So it maybe axiomatized by directly from
pessimism axioms, preserving condition 6, and constructing a max-min disutility
preferential D(f | H) = n(v∗(f |H)) from a disutility function δ = n(u) on X
such that δ(x∗) = 0L and δ(x∗) = 1L. The connection between a generalization
of the specific condition introduced in [?] for comparative conditional necessities
and the above model needs to be analyzed.

5 Conclusion

This paper takes a first step toward extending the scope of qualitative deci-
sion theory to conditional events, thus making it possible to update qualitative
optimistic and pessimistic preference functionals. The rescaling function for the
representation of uncertainty is rather simple since only the most plausible states
allowed by the context induced by the new information are mapped to the top
value of the scale. However conditioning on a null event may end up with a
different possibiity distribution. Our results are only a first step, and several
improvements could be envisaged

– Condition 6 is expressed in terms of binary acts, and is formally a copy of
conditional possibility ordering axioms. It would be much more convincing
to derive this condition from an axiom involving general acts.

– As the meaning of conditional acts f |H may look difficult to grasp, it may
sound more natural to axiomatize the conditional criteria in the setting of
a preference relation indexed by the context, like ≺H (H not empty). For
instance, f ≺H g may be another way of denoting f |H ≺ g|H [?]. But
clearly, encoding the statement f |A ≺ g|B using relations of the form ≺H is
not obvious, and the language of conditional acts is likely to be richer.

Among more advanced lines of further research that can be considered, the
extension of the framework to more general set-functions, the application of
these criteria to qualitative Markov decision processes and the study of dynamic
consistency can be envisaged.
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