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Abstract. The paper starts from the standard relational view linking objects and properties in for-
mal concept analysis, here augmented with four modal-style operators (known as sufficiency, dual
sufficiency, necessity and possibility operators). Formal concept analysis is mainly based on the
first operator, while the others come from qualitative data analysis and can be also related to rough
set theory. A possibility-theoretic reading of formal concept analysis with these four operators is
proposed. First, it is shown that four and only four operators are indeed needed in order to de-
scribe the nine situations that can occur when comparing a statement (or its negation) with a state of
information. The parallel between possibility theory and formal concept analysis suggests the intro-
duction of new notions such as normalization and conditioning in the latter framework, also leading
to point out some meaningful properties. Moreover, the graded setting of possibility theory allows
us to suggest the extension of formal concept analysis to situations with incomplete or uncertain
information.

1. Introduction

In the last three decades, a variety of basic frameworks aiming at processing different aspects of in-
formation, not really considered before, has blossomed in a series of works. Among them, possibility
theory, rough set theory, and lattice-based formal concept analysis are the building blocks of various
recent research trends in knowledge discovery. Indeed, in the late seventies, fuzzy sets have been used
for developing a new theory of uncertainty representation, named possibility theory, which departs from
probability theory by providing a proper setting for modeling incomplete information and which uses
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a disjunctive reading of the notion of set (distinct from the regular conjunctive interpretation used for
ordinary sets and fuzzy sets)[25, 7, 10]. A few years later, the idea of rough sets has been advocated
for acknowledging the fact that pieces of information can be expressed at different levels of granularity
and that depending on this level, a set of objects may be only approximated from below and above in
terms of classes of elements that are indiscernible (with respect to a set of properties used for describing
them) [20, 21]. At about the same time, the duality between objects and properties has been exploited in
a lattice theory setting already investigated before (e.g., [1]). It has led to an original view of the notion
of a formal concept with an algorithmic concern [22, 14, 15].

These three theoretical frameworks have been developed independently until recently, although there
exist works comparing rough sets with fuzzy sets and possibility theory, clarifying the differences and
the possible cross-fertilizations between fuzzy sets and rough sets [8], rough sets with formal concept
analysis [23] and investigating hybrid structures such as fuzzy formal concept analysis [2].

This paper is an attempt at comparing and combining possibility theory with formal concept analysis,
in the same spirit as [8] for possibility theory and rough set theory. Indeed, we provide a unified set-
theoretic view of the basic notions underlying formal concept analysis and possibility theory, starting
with the relation objects/properties and its four modal-style set extensions (recalled in section 2). Section
3 justifies the need for four and only four operators. The main contributions of the paper come from
the parallel that is drawn between the two fields in section 4. This leads to some new notions and
related results described in section 5, and also to some generalizations of formal concept analysis when
information may be incomplete or uncertain in section 6. Indeed, the existence of a link between an
object and a property is usually assumed to be precisely known with complete certainty in rough sets or
in formal concept analysis. Hence, in the last part of this paper we discuss the case where this link is
incompletely known. Moreover, since possibility functions are naturally graded, this leads to a gradual
extension of the four operators that handle the case of uncertain information.

2. Background on formal concept analysis setting

A formal information system is simply viewed here as a binary relation R between a set Obj of objects
and a set Prop of Boolean properties. R is called context in formal concept analysis. If X ⊆ Obj, we
denote by X its complementary set Obj \ X. We use the following notation (x, y) ∈ R which means
that object x has property y. Let R(x) = {y ∈ Prop|(x, y) ∈ R} be the set of properties of object x.
Similarly we can define R−1(y) = {x ∈ Obj|(x, y) ∈ R}, the set of objects that have property y.

Example 2.1. We consider an example of relation R0 described by the table of Figure 1. This rela-
tion defines the links between eight objects Obj = {1, 2, 3, 4, 5, 6, 7, 8} and nine properties Prop =
{a, b, c, d, e, f, g, h, i}. There is a “×” in the case corresponding to an object x and to a property y if the
object x has the property y, in other words the “×”s describe the relation R0 (or context). An empty case
corresponds to the fact that (x, y) �∈ R0, i.e., it is known that object x has not property y.
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objects

properties

1 2 3 4 5 6 7 8

a × × × × × × × ×
b × × × × ×
c × × × × ×
d × × × ×
e ×
f × × ×
g × × × ×
h × × ×
i ×

Figure 1. R0: a relation objects/properties borrowed from [15].

When R(x) is extended to a subset X of Obj, four remarkable sets can be defined:
RN (X) = {y ∈ Prop|R−1(y) ⊆ X}
RΠ(X) = {y ∈ Prop|R−1(y) ∩ X �= ∅}
R∆(X) = {y ∈ Prop|R−1(y) ⊇ X}
R∇(X) = {y ∈ Prop|R−1(y) ∪ X �= Obj}

RN (X) is the set of properties such that any object that satisfies one of them is necessarily in X. In
other words, each property of RN (X) is a sufficient condition for belonging to X.

RΠ(X) can be rewritten as ∪x∈XR(x) and is the set of properties such that every object that satisfies
one of them is possibly in X. In other words, if an object has no property y that is in RΠ(X) then it

cannot belong to X. Indeed RN (X) = RΠ(X) = Prop \ RΠ(X).

R∆(X) can be rewritten as ∩x∈XR(x) and is the set of properties in Prop shared by all objects in
X. In other words, satisfying all properties in R∆(X) is a necessary condition for an object to belong
to X. R∆(X) is a partial conceptual characterization of objects in X: objects in X should have all the
properties of R∆(X) and may have some others (that are not shared by all objects in X). It is worth
noticing that RΠ(X) provides a negative conceptual characterization of objects in X since it gathers all
the properties that are never satisfied by any object in X.

Note that R∇(X) = R∆(X) = Prop \ R∆(X). Thus R∇ is the set of properties in Prop that are
not satisfied by at least one object in X.

Example 2.2. (continued)
If we consider the following subset of objects, here is the set of properties we obtain for the four defini-
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tions:

X RN
0 (X) RΠ

0 (X) R∆
0 (X) R∇

0 (X)

{1, 2, 3, 4, 5} {g, h, i} {a, b, c, d, f, g, h, i} {a} {b, e, f, g, h, i}
{1, 5} ∅ {a, b, c, f, g} {a, b} {b, c, d, e, f, g, h, i}
{2, 3, 4} {h, i} {a, b, c, g, h, i} {a, g, h} {b, c, d, e, f, g, h, i}
{4} {i} {a, c, g, h, i} {a, c, g, h, i} {b, c, d, e, f, g, h, i}

{1, 4, 5, 6, 7, 8} {d, e, f, i} {a, b, c, d, e, f, g, h, i} {a} {c, d, e, f, i}

Figure 2 shows the four subsets of properties associated to the subset of objects X = {1, 2, 3, 4, 5}. As
suggested in this figure, R∆(X) and RΠ(X) respectively provide a lower bound and an upper bound of
the set of properties that objects in X may have: all objects in {1, 2, 3, 4, 5} have property a and none
has property e. R∆(X) and RΠ(X) provide similar information for the complementary set X.

Note that the definitions giving a set of properties corresponding to a set of objects can be also easily
modified for defining the set of objects relatively to a set of properties Y ∈ Prop: R−1N (Y ), R−1Π(Y ),
R−1∆(Y ), R−1∇(Y ). Definitions and properties are similar for the dual side, and can be easily obtained
by inverting R and R−1 and exchanging the role of the sets Obj and Prop. However, in the following
sections, we are going to consider only one side of the relation object/property.

In formal concept analysis, the pair of set valued functions R∆ and R−1∆ induces a Galois connec-
tion [4, 19] between 2Obj and 2Prop. Then, a formal concept is a pair (X,Y ) where X = R−1∆(Y ) and
Y = R∆(X), X is called its extent and Y its intent. For instance, in our example, ({2, 3, 4}, {a, g, h})
is a concept.

Besides, the four subsets RN (X), RΠ(X), R∆(X), and R∇(X) have been considered in qualitative
data analysis by Gediga and Düntsch [16, 11], where R∆ is called sufficiency operator. Düntsch and
Orlowska [12, 13] have studied the representation capabilities of sufficiency operators in the theory of
Boolean algebras. In a rough set perspective, Yao [24, 23] has also considered the same four subsets
(using the notations X�, X�, X∗, X# respectively for RN (X), RΠ(X), R∆(X), and R∇(X)).

The definitions of RN and RΠ look a bit like lower and upper approximation in rough set the-
ory. However, in Pawlak’s proposal1 [20, 21], relation R (defined here on Obj × Prop) is replaced
by an equivalence relation in Obj among objects that are indiscernible because they satisfy the same
set of properties. In [23], Yao shows how a rough set structure can be induced by reprojecting in the
set of objects the result obtained by the application of RΠ or RN namely, R−1Π(RN (X)) ⊆ X ⊆
R−1N (RΠ(X)).

The reasons for our change of notations of the four operators will be made clear in the following when
we shall establish a parallel of this framework with possibility theory and then extend it to incomplete
information represented in this setting.

1If E is an equivalence relation defined on Obj × Obj by (x, x′) ∈ E iff R(x) = R(x′), then the lower and the upper rough
approximations of a subset X ⊆ Obj are defined by X∗ = {x|E(x) ⊆ X} and X∗ = {x|E(x) ∩ X �= ∅} (clearly here
E = E−1). Note that the equivalence classes of E, which are supposed to gather the objects that are indiscernible w.r.t. a set
of potential properties, are the largest subsets X of Obj such that R∆(X) = RΠ(X) in the framework discussed in this paper.
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Figure 2. The four subsets of Prop associated to X = {1, 2, 3, 4, 5} w.r.t. the relation R0.
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 A A
E = ∅

2
E

 

A A 
E �= ∅, E �= U,A ⊂ E

3
E

 

A A 
E �= ∅, E �= U,A = E

4
E 

A A 
E �= ∅, E �= U,A ⊂ E

5
A

E

 

 

A
E �= ∅, E �= U,A ∩ E �= ∅, A ∩ E �= ∅

6
A

E

 

 

A
E �= ∅, E �= U,E ⊂ A

7
E

 

A A 
E �= ∅, E �= U,A = E

8
E

 

A A 
E �= ∅, E �= U,A ⊂ E

9
E=U

 

A A 
E is equal to U and A is not equal to U

Figure 3. The nine situations of a set A or its complement w.r.t. a given set E

3. Why four operators are needed?

By inspection of the formulas defining the four subsets RN (X), RΠ(X), R∆(X), and R∇(X) we can
see that their expressions involve Boolean relations (overlapping and inclusion) between the two sets
R−1(y) and X. More generally, it can be checked (see Figure 3) that there are only nine mutually
exclusive ways for describing the topological relations between a non-trivial set A (i.e., A �= ∅ and
A �= U ) or its complement A (that implicitly refer to a request to evaluate) with respect to another given
set E (representing available information). Figure 3 enumerates all the possible situations starting from
the case where E is empty to the case where E is the universe U itself. Indeed this representation is
faithful since it is possible to separate the elements of A and A and to reorder U in such a way that
the elements of E appear as a whole in the picture of Figure 3. The first four cases correspond to the
situation where E is empty, E is strictly included in A, E is equal to A and E contains A and overlaps
on A without including it. The fifth case is when E both overlaps A and A without including any of
them. The last four cases correspond to the first four changing E into E.

We need four Boolean variables in order to represent these nine situations (three Boolean variables
can cover only eight cases!). Let us consider the four following variables:

Π(A) = 1 if A ∩ E �= ∅, Π(A) = 0 otherwise

∆(A) = 1 if A ⊆ E, ∆(A) = 0 otherwise

Π(A) = 1 if A ∩ E �= ∅, Π(A) = 0 otherwise

∆(A) = 1 if A ⊆ ∅, ∆(A) = 0 otherwise
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Situation A ∩ E �= ∅ A ⊆ E A ∩ E �= ∅ A ⊆ E

Π(A) ∆(A) Π(A) ∆(A)

1. E = ∅ 0 0 0 0
2. E �= ∅, E �= U,A ⊂ E 0 0 1 0
3. E �= ∅, E �= U,E = A 0 0 1 1
6. E �= ∅, E �= U,E ⊂ A 1 0 0 0
4. E �= ∅, E �= U,A ⊂ E 1 0 1 1
5. E �= ∅, E �= U,E ∩ A �= ∅, E ∩ A �= ∅ 1 0 1 0
7. E �= ∅, E �= U,E = A 1 1 0 0
8. E �= ∅, E �= U,A ⊂ E 1 1 1 0
9. E = U,A �= U 1 1 1 1

Figure 4. The nine possible tuples of values of Π(A), ∆(A), Π(A), ∆(A)

Note that this definition implies the following constraints:

∆(A) ≤ Π(A) ∆(A) ≤ Π(A)

Moreover, we can see in the table of Figure 4 that there are only nine possible tuples of values of
Π(A),∆(A),Π(A),∆(A) that are allowed by the two previous constraints. They correspond to the
nine situations described above. These four Boolean variables are associated with four measures that
have been proposed in possibility theory (see Annex), namely Π, N , ∆ and ∇ where N(A) = 1−Π(A)
and ∇(A) = 1 − ∆(A). They allow to characterize these nine cases.

4. Possibility-theoretic reading of formal concept analysis

In this section, we develop the parallel between possibility theory and the formal information systems
framework, which has just been suggested in the previous section.

4.1. Relation-based possibility theory

Let the available information E be the set of objects having property y, i.e., E = R−1(y), and let the set
A to evaluate be the set X of objects. Then given a property y ∈ Prop, we can rewrite the four subsets
introduced in formal concept analysis in a possibilistic manner as follows:

Ny(X) =

{
1 if R−1(y) ⊆ X

0 otherwise

Πy(X) =

{
1 if R−1(y) ∩ X �= ∅
0 otherwise
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∆y(X) =

{
1 if R−1(y) ⊇ X

0 otherwise

∇y(X) =

{
1 if R−1(y) ∪ X �= Obj

0 otherwise

We recognize the respective characteristic functions of the four sets RN (X), RΠ(X), R∆(X) and
R∇(X) (e.g., y ∈ RN (X) iff Ny(X) = 1 and similarly for the three other expressions). Note that
Ny(X) = 1 − Πy(X) and ∇y(X) = 1 − ∆y(X). They are also two-valued necessity, possibility, guar-
anteed possibility and potential necessity measures respectively, in the sense of possibility theory (see
Annex).

As it is the case in possibility theory for finite settings, these four measures can be defined from a
possibility distribution (which is the starting building block in this theory). Formally speaking, given a
property y ∈ Prop, R induces a two-valued possibility distribution πy, such that:

∀x ∈ Obj, πy(x) =

{
1 if (x, y) ∈ R

0 otherwise,

which is the characteristic function of R−1(y) = {x ∈ Obj|(x, y) ∈ R}. Intuitively speaking, if all we
know about an unknown object is that it has property y then this object may be any x such that πy(x) = 1.
Thus, the object/property relation R (instantiated for a particular property y) in formal concept analysis
plays the role of the possibility distribution π encoding a standard granule of information “V is E” in
possibility theory (see Annex).

As it can be checked, Ny(X), Πy(X), ∆y(X) and ∇y(X) are respectively the necessity measure,
the possibility measure, the guaranteed possibility measure and the potential certainty measure based on
πy in the sense of possibility theory (see Annex for a refresher on these notions). Namely,

Πy(X) = maxx∈X πy(x)
Ny(X) = minx �∈X(1 − πy(x))
∆y(X) = minx∈X πy(x)
∇y(X) = maxx �∈X(1 − πy(x))

4.2. Object/property normalizations and noticeable inclusions

In the possibility framework theory (recalled in Annex) the normalization of a possibility distribution
is required if we want to guarantee that for any event A, Π(A) ≥ N(A). Moreover, the normalization
condition impossibility expresses the natural requirement that at least one value u in the universe of
discourse U is completely possible. The counterpart to this condition now reads that any property is held
by at least one object (otherwise this property is useless).

Definition 4.1. (nn-normalization)

R−1 is not-none-normalized (nn-normalized for short) if ∀y ∈ Prop,R−1(y) �= ∅
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As said before, this definition can be dually stated for enforcing that any object holds at least one
property (R is nn-normalized if ∀x ∈ Obj, R(x) �= ∅).

Proposition 4.1. If R is nn-normalized then ∀X ⊆ Obj, X �= ∅ ⇒ RΠ(X) �= ∅
This proposition comes from the fact that RΠ(X) = ∪x∈XR(x). Note that R maybe nn-normalized
without having R−1 nn-normalized and conversely. Under the R−1 nn-normalization condition we have
the following inclusion:

Proposition 4.2. If R−1 is nn-normalized then ∀X ⊆ Obj, RN (X) ⊆ RΠ(X)

Note that the property may not hold when R−1 is not nn-normalized. For instance if we consider a
property y0 such that R−1(y0) = ∅ then ∀X ⊆ Obj, y0 ∈ RN (X) and y0 �∈ RΠ(X). On example 2.1,
we can see that R0 and R−1

0 are nn-normalized, indeed there is no empty line nor empty column. We can
also check that the property is verified on all the subsets of objects given in example 2.2.

Similarly, the counterpart of the normalization of 1−π expresses that any property should not be held
by every object (otherwise this property is not very interesting in order to discriminate between subsets
of objects).

Definition 4.2. (na-normalization)

R−1 is not-all-normalized (na-normalized for short) if ∀y ∈ Prop, R−1(y) �= Obj

Under this condition we have the following inclusion:

Proposition 4.3. If R−1 is na-normalized then ∀X ⊆ Obj, R∆(X) ⊆ R∇(X)

The reader can check that this inclusion does not hold in the example 2.1 due to the failure of the
na-normalization of R−1

0 since property a is possessed by all objects (there is a full line of × in the
matrix). Note that if we remove the property a then the proposition holds (it can be checked for the five
subsets given in the table of example 2.2 (forgetting a)).

Besides, without any normalization condition we always have:

Proposition 4.4. R∆(X) ⊆ RΠ(X) and RN (X) ⊆ R∇(X)

Then putting all these inclusion relations together, we obtain

Proposition 4.5. If R−1 is na-normalized and nn-normalized then

∀X ⊆ Obj, RN (X) ∪ R∆(X) ⊆ RΠ(X) ∩ R∇(X)

This is the counterpart of proposition 7.1 in possibility theory (see Annex).

Remark 4.1. If X is a singleton then RΠ(X) = R∆(X). Lastly, if ∀y ∈ Prop,∃!x ∈ Obj such that
(x, y) ∈ R then RN (X) = RΠ(X).
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5. Decomposability, conditioning and orthogonality

If we consider two subsets of objects X1 and X2, it is worth saying what holds for the four subsets of
properties associated with X1 ∪ X2 and with X1 ∩ X2. This is done in the following proposition.

Proposition 5.1. (decomposability) ∀X1,X2 ∈ Obj,
RN (X1 ∪ X2) ⊇ RN (X1) ∪ RN (X2) RN (X1 ∩ X2) = RN (X1) ∩ RN (X2)
RΠ(X1 ∪ X2) = RΠ(X1) ∪ RΠ(X2) RΠ(X1 ∩ X2) ⊆ RΠ(X1) ∩ RΠ(X2)
R∆(X1 ∪ X2) = R∆(X1) ∩ R∆(X2) R∆(X1 ∩ X2) ⊇ R∆(X1) ∪ R∆(X2)
R∇(X1 ∪ X2) ⊆ R∇(X1) ∩ R∇(X2) R∇(X1 ∩ X2) = R∇(X1) ∪ R∇(X2)

On the example 2.2, it can be checked for instance that RN
0 ({1, 2, 3, 4, 5}) = {g, h, i} is indeed

only a superset of the union of RN
0 ({2, 3, 4}) = {h, i} with RN

0 ({1, 4, 5}) = {i}, while R∇
0 ({4}) =

{b, c, d, e, f, g, h, i} is indeed equal to the union of R∇
0 ({1, 2, 3, 4, 5}) = {g, h, i} with R∇

0 ({2, 3, 4}) =
{b, c, d, e, f, g, h, i}.

Conditioning is an important notion in possibility theory as recalled in the Annex. Its counterpart
in the relational setting of formal concept analysis is defined by looking for the greatest solution of the
equation below when RΠ(X1) �= ∅:

RΠ(X1 ∩ X2) = RΠ(X2|X1) ∩ RΠ(X1)

with

RΠ(X2|X1) =

{
Prop if RΠ(X1 ∩ X2) = RΠ(X1) �= ∅
RΠ(X1 ∩ X2) if RΠ(X1 ∩ X2) ⊂ RΠ(X1)

RΠ(X2|X1) is indeed the largest set of properties such that the above equation holds. Thus, the Π-
conditioning here sanctions the fact that in the context of the set of objects in X1, focusing on the subset
X1 ∩ X2 may reduce the set of possible properties for the considered objects. In case RΠ(X1 ∩ X2) ⊂
RΠ(X1), there are less properties that are possible for objects in X1 ∩ X2 than for objects in X1. This
means that the objects of X2 in the context X1 are not fully representative (typical) of the variety of

properties of objects in X1. We can define RN (X2|X1) by: RN (X2|X1) = RΠ(X2|X1). We have

RN (X2|X1) �= ∅ ⇔ RΠ(X1 ∩ X2) ⊃ RΠ(X1 ∩ X2),

RN (X2|X1) �= ∅ expresses that more properties become possible when going from X2 to X2 in the
“context” X1.

Similarly, by analogy with the situation in standard possibility theory (see Annex)

R∆(X1 ∩ X2) = R∆(X2|X1) ∪ R∆(X1)

with

R∆(X2|X1) =

{
∅ if R∆(X1 ∩ X2) = R∆(X1) �= Prop

R∆(X1 ∩ X2) if R∆(X1 ∩ X2) ⊃ R∆(X1)
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R∆(X2|X1) is the smallest set of properties such that the above equation holds. We have

R∆(X2|X1) �= ∅ ⇔ R∆(X1 ∩ X2) ⊃ R∆(X1 ∩ X2)

i.e., going from X2 to X2 in the context X1, more properties become certain.

Only the inclusion RΠ(X1 ∩ X2) ⊆ RΠ(X1) ∩ RΠ(X2) holds in general. Indeed, there may exist
properties that are both in RΠ(X1) and in RΠ(X2), without being possible for those objects in X1 ∩X2

(because they are only possible in X1 ∩ X2 and in X1 ∩ X2). The equality

RΠ(X1 ∩ X2) = RΠ(X1) ∩ RΠ(X2)

holds in situations, called “unrelatedness” by Nahmias [18] in standard possibility theory. Note that

RΠ(X1 ∩ X2) = RΠ(X1) ∩ RΠ(X2) ⇔




RΠ(X1 ∩ X2) ⊆ RΠ(X1 ∩ X2)
or

RΠ(X1 ∩ X2) ⊆ RΠ(X1 ∩ X2)

It means that possible properties for objects in X1 ∩ X2 are equal to the possible properties for objects
in X1 that are possible for objects in X2 if and only if
- either objects in X1 that are not in X2 do not have more possible properties than objects belonging both
to X1 and X2

- or objects in X2 that are not in X1 do not have more possible properties than objects belonging both to
X1 and X2.

Similarly, when the equality R∆(X1∩X2) = R∆(X1)∩R∆(X2) holds, it means that the properties
that for sure are possessed by the objects in X1 ∩ X2 (or if we prefer that are common to all objects in
X1∩X2 are only the properties that are common to all objects in X1 and the properties that are common
to all objects in X2.

Π-unrelatedness and ∆-unrelatedness are forms of independence between subsets of objects. Inde-
pendence is a key concept in artificial intelligence, having well defined notions may allow to parallelize
the handling of independent objects, to avoid combinatorial explosion when modeling a system (like in
the frame problem [17]) etc. Other possible definitions of independence exist. Standard possibility the-
ory distinguishes between weak (Π(A∩B) = min(Π(A),Π(B))) and strong (N(A|B) = N(A)) forms
of independence (see [6]). Strong independence implies weak independence in standard possibility the-
ory. A question beyond this introductory paper is the study of all the counterparts of these notions in the
setting of formal concept analysis. In particular, it would be interesting to check if the implication be-
tween strong and weak independence still holds, and to study the links between the strong independence,
and the notion of reduct in rough set theory [21].

The related notion of orthogonality between sets of objects or sets of properties is also worth of
interest. Intuitively we mean that two subsets of objects X1 and X2 are orthogonal if they have no
common properties. This writes RΠ(X1) ∩ RΠ(X2) = ∅ if we mean “no common possible properties”,
or R∆(X1) ∩ R∆(X2) = ∅ if we restrict to the properties shared in each subset of objects. This leads
finally to four possible definitions of orthogonality:
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Definition 5.1. (orthogonality)

X1 is Π-orthogonal to X2 iff RΠ(X1) ∩ RΠ(X2) = ∅

The definitions of N , ∆ and ∇-orthogonality are identical except that RΠ is replaced respectively by
RN , R∆ and R∇.

Proposition 5.2. RΠ(X1) ∩ RΠ(X2) = ∅ ⇒ X1 ∩ X2 = ∅ in case of nn-normalization of R

This proposition follows from proposition 5.1 and from proposition 4.1, indeed, when R is nn-
normalized, any object has at least one property.

∆-orthogonality is weaker and can equivalently be written R∆(X1∪X2) = ∅ expressing that objects
in X1 ∪ X2 have nothing in common.

Proposition 5.3. Π-orthogonality implies ∆-orthogonality, ∇-orthogonality implies N -orthogonality
If R−1 is nn-normalized, then Π-orthogonality implies N -orthogonality
If R−1 is na-normalized, then ∇-orthogonality implies ∆-orthogonality

This proposition comes from propositions 4.2, 4.3, 4.4.

6. Further research: incompleteness and gradual uncertainty

In the previous framework, two important assumptions were made:

• we have complete information about the stated links between properties in Prop and objects in
Obj. Namely, (x, y) ∈ R means that object x satisfies property y and (x, y) �∈ R means that
object x does not satisfy property y, rather than “we do not know if (x, y) ∈ R”. Moreover, all the
existing links are stated.

• the properties are supposed to be Boolean. Hence, when an object satisfies a property, it fully
satisfies it: there is no intermediary degree of satisfaction since the property is not gradual.

Clearly each of the above assumptions may be relaxed. Namely, one may consider that there are pairs
(x, y) for which it is not known at all if x has property y or not. We may also have uncertain information
such that we are certain at level α that x satisfies y, or at level β that x does not satisfy y.

When relaxing the second assumption, we may still assume that we have complete information, but
now about the satisfaction of non-Boolean properties. Namely, given a gradual property y, µR−1(y)(x) =
α would then denote the fact that object x satisfies property y at degree α where µR−1(y) is the member-
ship function of the fuzzy set of objects that constitutes the extension of R−1(y). Such an extension has
been considered by Belohlavek [2], see also [5].

In the following, we are only considering the first extension, where there are pairs (x, y) such that
one is uncertain if property y applies or not to object x. Combining the two extensions would also make
sense (when one may not be sure that some property y is possessed by an object x at least at some degree
α). However, it can not be developed here.
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In the classical setting there are only two possible situations for any pair (x, y): either (x, y) ∈ R or
(x, y) �∈ R. In case of incomplete or uncertain information, we may distinguish between the same five
typical situations as done in Annex w.r.t. the information (x, y) ∈ R, namely,

1. we are fully certain that (x, y) ∈ R

2. we are α-certain that (x, y) ∈ R (with 0 < α < 1) and thus it is 1 − α-possible that (x, y) �∈ R

3. we are in a situation of complete ignorance, both (x, y) ∈ R and (x, y) �∈ R are fully possible

4. we are β-certain that (x, y) �∈ R (with 0 < α < 1) and thus it is 1 − β-possible that (x, y) ∈ R (it
means that it is all the less possible that (x, y) ∈ R as β is larger)

5. we are fully certain that (x, y) �∈ R.

In case information is just incomplete, which means that in the cells (x, y) of the table, we have ’+’ if
(x, y) ∈ R, ’-’ if (x, y) �∈ R, and nothing if we do not know, only situations 1, 3 and 5 exist, or if we
prefer α = 1 = β.

Then the set R−1(y) of objects that have property y is now approximated from above by the fuzzy
set R−1Π(y) of objects that have possibly property y and by the fuzzy set R−1N (y) of objects that have
certainly the property y, with the respective membership functions µR−1Π(y) and µR−1N (y). In case
information is incomplete but certain, R−1Π(y) = {x| it is not known that (x, y) �∈ R} and R−1N (y) =
{x| it is known that (x, y) ∈ R}. Clearly, R−1N (y) ⊆ R−1Π(y). Let (γ, β)(x,y) be the pair of necessity
(certainty) degrees that are now given in each cell (x, y) of the object/property table in the general case.
As already said, there are five situations (1, 0), (γ, 0), (0, 0), (0, β) and (0, 1) corresponding respectively
to full certainty and γ-certainty that (x, y) ∈ R, complete ignorance, 1 − β possibility that (x, y) ∈ R
and impossibility of (x, y) ∈ R. Assume min(γ, δ) = 0, or equivalently max(1 − γ, 1 − δ) = 1, which
expresses normalization (at least (x, y) ∈ R or (x, y) �∈ R is completely possible), then

µR−1Π(y)(x) = 1 − δ and µR−1N (y)(x) = γ

Note that
µR−1N (y)(x) = γ > 0 ⇒ µR−1Π(y)(x) = 1

and
µR−1Π(y)(x) = 1 − δ < 1 ⇒ µR−1N (y)(x) = 0

Thus ∀y ∈ Prop, the fuzzy set inclusion R−1(y) ⊆ R−1Π(y) holds. Moreover, the membership
functions of the fuzzy sets of properties that are possibly (resp. necessarily) possessed by some objects
in X is given by:

Ny(X) = minx �∈X 1 − µR−1Π(y)(x)
Πy(X) = maxx∈X µR−1Π(y)(x)

∆y(X) is the membership degree of y to the set of properties certainly shared by the objects in X.

∆y(X) = minx∈X µR−1N (y)(x)
∇y(X) = maxx �∈X 1 − µR−1N (y)(x)
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The reason why R−1N (y) is used instead of R−1Π(y) in ∆ (and ∇), is due to the fact that ∆y(X) should
remain the set of properties that any object in X more or less certainly has. It can be checked that decom-
posability properties described in proposition5.1 are preserved. In case of complete and certain informa-
tion, R−1Π(y) = R−1N (y) = R−1(y), and the setting of section 4 is retrieved. In case information is just
incomplete but not uncertain, the four modal-style operators of the formal concept analysis setting, are
defined respectively by RΠ(X) = {y ∈ Prop|R−1Π(y) ∩ X �= ∅},RN (X) = {y ∈ Prop|R−1Π(y) ⊆
X}, R∆(X) = {y ∈ Prop|R−1N (y) ⊇ X} and R∇(X) = {y ∈ Prop|R−1N (y) ∪ X �= Obj}.

7. Conclusion

This paper has only outlined the parallel between possibility theory and formal concept analysis and the
associated modal-style operators. Clearly, much has still to be done for completely taking advantage of
the parallel for discussing notions such as independency, Galois connection, orthogonality or redundancy.

Besides this parallel may be also fruitful for extending algorithms of formal concept analysis and
rough set literature to the cases where information is incomplete or uncertain, or when properties may be
graded. Moreover, possibility theory has a logical counterpart - possibilistic logic - where the four modal
operators can be handled, while modal logics have been developed between the two settings in the rough
set and formal concept analysis settings. This suggests a systematic study of the parallel at the logical
and inference levels.

Annex: Background on possibility theory

Zadeh [25] introduced possibility theory as a new framework for representing imprecise information,
especially the one provided in linguistic terms. Thus, a piece of information of the form “V is E”,
understood as “the possible values of the (single-valued) variable V (supposed to range on a universe U )
are restricted by a subset E of U (which may be fuzzy)”. In other words, given the granule of information
“V is E”, we know that the value of V must/should be in E”. Since E may be fuzzy, this is understood
as a graded possibility assignment, namely

∀u ∈ U, π(u) = µE(u)

where π is a possibility distribution, defined as a function from U to [0, 1]. It is important here to have
in mind that the set E should be understood disjunctively, in the sense that the variable V is single-
valued, and that the values restricted by E (that belongs to E with a non-zero degree) are mutually
exclusive as possible values of V . The following conventions are assumed : i) π(u) = 0 means that
V = u is impossible, totally excluded ; ii) π(u) = 1 means that V = u is fully possible, but several
distinct u and u′ are allowed to be simultaneously such that π(u) = 1 and π(u′) = 1 ; iii) the larger
π(u), the more possible, i.e., plausible or feasible u is. Thus, a possibility distribution encodes a flexible
restriction (constraint). The above equality π(u) = µE(u) states that V = u is possible, inasmuch as
u is compatible with E, given the piece of information “V is E”. The compatibility of u with E is
estimated as the degree of membership function µE(u) of u to E. Two more remarks are of importance
here. First, the range [0, 1] of π may be replaced by any linearly ordered scale, possibly finite. Second,
although in the examples originally used by Zadeh, and many authors after him, U is a continuum (U is
a subset of the real line), U may be finite and is not necessarily ordered. Thus, U may be a set of possible



D. Dubois, F. Dupin de Saint-Cyr, H. Prade / A possibility-theoretic view of formal concept analysis 15

states of the world that are encoded by the interpretations associated with a classical propositional logic
language, and then π rank-orders the possible states by their level of possibility according to the available
information. In the following, we only consider the case where the universe U is finite.

Possibility theory is a framework for modeling incomplete information about the (unique) value of
some variable of interest. Since incomplete information is characterized by the fact that several values
may remain more or less possible for the variable, the possibility distribution restricts a set of mutually
exclusive values for the variables, leading to a disjunctive view of (fuzzy) sets.

Possibility and necessity measures

Two set functions, also called “measures”, are associated with a possibility distribution π, namely

• a possibility measure Π (or “potential possibility”) defined by

Π(A) = max
u∈A

π(u),

which estimates to what extent the classical event A is consistent with the information “V is E”
represented by π (note that by definition Π(∅) = 0);

• a dual measure of necessity N , expressing that an event is all the more necessarily (certainly) true
as the opposite event is more impossible. N is defined by

N(A) = 1 − Π(A) = 1 − max
u �∈A

π(u),

where A = U\A, is the complement of A. N(A) estimates to what extent event A is implied by the
information “V is E” represented by π (inasmuch as this information entails that any realization
of A is more or less impossible). Note that N(U) = 1 (since Π(∅) = 0).

These two measures extend to fuzzy events. Then the degree of consistency of A and E, is defined
by

Π(A) = max
u∈U

min(µA(u), π(u)),

where µA is the membership function of A.
As a consequence, the possibility and necessity measures Π and N satisfy the characteristic proper-

ties (for classical or fuzzy events)

Π(A ∪ B) = max(Π(A),Π(B)) and N(A ∩ B) = min(N(A), N(B)).

Note that we only have the inequalities:

Π(A ∩ B) ≤ min(Π(A),Π(B)) and N(A ∪ B) ≥ max(N(A), N(B)).

Indeed, when B is equal to A the left-hand side of the inequalities are respectively to Π(∅) = 0 and
N(U) = 1 while the right-hand side may take non extreme values. In case of total ignorance (∀u ∈
U, π(u) = 1) we have Π(A) = Π(A) = 1. The last inequality expresses that we may be somewhat
certain that the true state of the world is in A ∪ B without being sure if it is in A or if it is in B.
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Assuming that the possibility distribution π is normalized (∃u ∈ U, π(u) = 1) amounts to expressing
that there is no underlying contradiction pervading the available information (at least one value of U is
completely possible). The normalization of π ensures that ∀A,Π(A) ≥ N(A), i.e., any event A should
be possible before being certain. When A is a classical event, the above inequality strengthens into
N(A) > 0 ⇒ Π(A) = 1. Thus, when A is a classical event and when π is normalized, one can
distinguish between the five following epistemic states of knowledge:

1. N(A) = 1 = Π(A) : Given that “V is E”, A is certain (“V is A” is true in all non-impossible
situations, knowing that “V is E”) ;

2. 0 < N(A) < 1 and Π(A) = 1 : Given that “V is E”, A is normally true (“V is A” is true in all
the most plausible situations)

3. N(A) = 0 and Π(A) = 1 : this is a state of complete ignorance about A, since both A and A
are completely possible (Π(A) = 1 = Π(A)). Note that we should have here A �= U , since
N(U) = 1 and Π(∅) = 0.

4. N(A) = 0 and 0 < Π(A) < 1 : Given that “V is E”, A is normally false (all situations u where
“V is A” is true are somewhat impossible, i.e. π(u) < 1)

5. N(A) = 0 and Π(A) = 0 : Given that “V is E”, A is certainly false (”∀u ∈ A,π(u) = 0, and
then “V is A” is false and equivalently, “V is A” is true in all non-impossible situations u, that is
in all situations somewhat compatible with “V is E”)

Besides, complete ignorance about any non-trivial event A �= ∅ is represented by ∀u ∈ U, π(u) = 1.

Guaranteed possibility and potential certainty measures

Apart from Π and N , two other set-functions can be defined using “max” or “min”, namely (see e.g.[10]):

• a measure of “guaranteed possibility”

∆(A) = min
u∈A

π(u),

which estimates to what extent all elements in A are possible. Clearly ∆ is a stronger measure
than Π, i.e., ∆ ≤ Π, since Π only estimates the existence of at least one value in A compatible
with the available knowledge, while the evaluation provided by ∆ concerns all the values in A.
Note also that ∆(A) and N(A) are unrelated.

• a dual measure of “potential certainty”

∇(A) = 1 − ∆(A) = 1 − min
u �∈A

(π(u))

which estimates to what extent there exists at least one value in the complement of A that has a
low degree of possibility; this is a necessary condition for having “u ∈ A” somewhat certain (but
in general far from being sufficient, except if A has only one element).
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Figure 5. The four values associated to an event A w.r.t. a possibility distribution π.

The figure 5 shows the four values Π, N , ∆ and ∇ associated to an event A given a possibility distribution
π. Obviously we have N ≤ ∇. Moreover, if there exists at least one value in U which is impossible
w.r.t. π, (i.e., ∃u ∈ U, π(u) = 0) the constraint min(∆(A),∆(A)) = 0 holds and then ∆(A) > 0 entails
∇(A) = 1 (at the technical level, it is always possible to add an element u0 to U such that π(u0) = 0).

∆ and ∇ are monotonically decreasing set functions (in the wide sense) with respect to set inclu-
sion, it contrasts with Π and N which are monotonically increasing. Indeed, they satisfy the following
equalities:

∆(A ∪ B) = min(∆(A),∆(B)) and ∇(A ∩ B) = max(∇(A),∇(B)).

Like for the possibility and necessity measures, we only have the inequalities:

∆(A ∩ B) ≥ max(∆(A),∆(B)) and ∇(A ∪ B) ≤ min(∇(A),∇(B)).

The characteristic property of ∆ may be interpreted as ”A or B” is allowed, permitted if and only if A
is permitted and B is permitted. So ∆ functions may model explicit permission in a deontic framework.

Note that the four quantities Π(A), N(A), ∆(A) and ∇(A) are only weakly related since they are
only constrained by

max(Π(A), 1 − N(A)) = maxu∈U π(u) (= 1 if π is normalized)
min(∆(A), 1 −∇(A)) = minu∈U π(u) (= 0 if 1 − π is normalized)

together with the duality relations between N and Π, and between ∆ and ∇. Moreover we have the
following inequality (proved in [9]) when both π and 1 − π are normalized:

Proposition 7.1. If π and 1 − π are normalized then

max(N(A),∆(A)) ≤ min(Π(A),∇(A)).

Note that this inequality agrees with the intuition: i) the higher the certainty of A, the higher the
possibility of A, i.e., the consistency of A with what is known, and the higher its potential certainty; ii)
the higher the feasibility of all the values in A in the sense of ∆, the higher the possibility of A, and the
higher the potential certainty of A.
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Conditioning in possibility theory

In the qualitative possibility theory setting, conditioning is defined from the following relation

Π(A ∩ B) = min(Π(B|A),Π(A))

in order to express in a qualitative way that having “A and B true” is as possible as having “A true”
possible and having “B true” possible in the context where “A is true”. When Π(A) > 0, Π(B|A)
is defined from the above equation by looking for its greatest solution and by applying the minimal
specificity principle. Namely, since Π(A∩B) ≤ Π(A) always holds by monotony of the set function Π,
we have

Π(B|A) =

{
1 if Π(A ∩ B) = Π(A) > 0
Π(A ∩ B) if Π(A ∩ B) < Π(A)

Then, the conditional necessity is defined by duality

N(B|A) = 1 − Π(B|A)

Then it can be checked that

N(B|A) > 0 ⇔ Π(A ∩ B) > Π(A ∩ B),

which expresses that B is somewhat certain when knowing that A is true if and only if having A ∩ B
true is strictly more possible than having A ∩ B true. This is the basis for representing default rules of
the form “if A is true then generally B is true” by the above inequality [3].

Similarly,
∆(A ∩ B) = max(∆(B|A),∆(A))

and applying the maximal specificity principle (it works in a reverse way with respect to the Π-situation),
we obtain if ∆(A) < 1

∆(B|A) =

{
0 if ∆(A ∩ B) = ∆(A) < 1
∆(A ∩ B) if ∆(A ∩ B) > ∆(A)

It can be checked that
∆(B|A) > 0 ⇔ ∆(A ∩ B) > ∆(A ∩ B)
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