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Abstract

This paper investigates a purely qualitative approach to decision making under uncertainty. Since
the pioneering work of Savage, most models of decision under uncertainty rely on a numerical
representation where utility and uncertainty are commensurate. Giving up this tradition, we relax
this assumption and introduce an axiom of ordinal invariancerequiring that the Decision Maker’'s
preference between two acts only depends on the relative position of their consequences for each
state. Within this qualitative framework, we determine the only possible form of the corresponding
decision rule. Then assuming thetransitivity of the strict preference, the underlying partial confidence
relations are those at work in non-monotonic inference and thus satisfy one of the main properties
of possibility theory. The satisfaction of additional postulates of unanimity and anonymity enforces
the use of a necessity measure, unique up to a monotonic transformation, for encoding the relative
likelihood of events.
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1. Introduction

Inthefield of decision making under uncertainty (DMU), several important results have
been published that justify the use of various criteria for the comparison of alternatives.
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Each decision criterion is justified by a set of axioms putting constraints on the choice
behaviour of the Decision Maker (DM). The most classical results are found in the seminal
works of Von Neumann and Morgenstern [37] and Savage [41]. Such approachesrely on
the use of a quantitative criterion for the comparison of alternatives. The justification of
this criterion requires several strong assumptions. For instance, the axiom system usually
implies that the subjective value attached to each consequence, as well as the degrees of
confidence of the possible events, can be quantified. However, in practical applications,
the elicitation of the information required by a quantitative model is often not an easy
task. This is why some alternative models have been proposed in Al, relying on a more
ordinal representation of preferences and uncertainty, e.g., the qualitative utility function
proposed in [17] among others. In contrast to expected utility, qualitative utility relies on
the use of ordinal information (preference order on consequences, relative confidence of
events). Nevertheless, it shares a common feature with the expected utility criterion: the
commensurability of the preference scale and the uncertainty scale that are used in the
model In other words, both scales are part of abigger one, and degrees of uncertainty can
be compared to degrees of preference (typically viathe notion of certainty equivalent of a
lottery).

Recent worksin Al propose to escape this assumption in two different ways. The first
ideaisto comparetwo acts on the basis of their consequencesin the most plausible states of
the world[5,7,8,45,46], using more or less complex criteria. This class of approachesalso
aimsat providing the user not only with adecision rule, but also with a high-level language
(typically, alogic) for the description of preferences, e.g., abase of conditional preferences
[5] or abase of defaults encoding either desires or beliefs [46]. The criteria used in these
domains are generally qualitative, e.g., the maximin, minimax regret and competitive ratio
criteriaaxiomatized in [7,8]. The second ideaisto rely on adecision rule that comparesthe
plausibility of the sets of states in which one act has a better consequence than the other
asfirst suggested in [13]. A particular case of this rule (the so-called “ Concordancerul€e”)
has been originally proposed in the framework of multiple-criteria decision making in the
early seventies by Roy [40]. It can be easily adapted to DMU using general uncertainty
relations, thus defining new decision models. The aim of the present paper is to provide
a unified axiomatic framework for this kind of decision rule and to study its capability at
describing the DM preferences. So, this paper intendsto assess the potential and drawbacks
of purely ordinal approachesfrom atheoretical point of view.

In the next section, we motivate our approach by discussing various quantitative and
qualitative models for decision making under uncertainty and discuss their limitations
especially with respect to making preference and uncertainty commensurate. In Section 3,
an axiomatic framework for purely ordinal preference modelsisintroduced: the structure of
the resulting decision rulesis characterized and the kind of confidence relation compatible
with such rules is investigated. In Section 4 we characterize the qualitative (ordinal)
decision rules and the uncertainty theory compatible with the transitivity of the strict
preference on acts. Finally, in Section 5, we show that the satisfaction of a postulate of
unanimity enforces the use of necessity measures as the unique way of comparing events.
Adding a postulate of invariance under permutation of equally plausible states ensures
the unicity of the ordering of events induced by the necessity measures. The conclusion
emphasizes the high price in expressivity paid by adopting a purely ordinal approach and
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suggests lines of research that may lead to more realistic decision rules, while preserving
ordinality to alarge extent.

2. Motivationsfor an ordinal approach

This section presents the basic setting and discusses the merits and limitations of
classical decision rules used in DMU, such as expected utility and the minmax Wald
criterion [47] in the face of qualitative information regarding uncertainty and preference.
These decision rules, most of which are based on preferencefunctional's, assume acommon
scalefor representing preference and uncertainty and they lead to aranking of act whichis
sensitive to the encoding of utility and/or plausibility on this scale. In the tradition of social
choice and multicriteria decision making, other decision rules are proposed that are more
robust because they rely on ordinal pairwise comparison of consequences of acts and on
the comparison of events separately.

2.1. Decision models based on a preference functional

Decision making under uncertainty implies a choice among a set of potential acts
(decisions) the consequences of which are not perfectly known. From a formal point of
view, such adecision problemis characterized by aset S of states representing the possible
situations, a set X of possible consequences, and a set of acts viewed as elements of X:
an act isamapping f:S — X where f(s) represents the consequence of act f for any
state s € S. Inthis paper, S and X are supposed to befinite. Thus, if X = {x1, ..., x;} and
S={s1,...,s,},anact f € X5 iscompletely characterized by the vector of consequences
(f(s1), ..., fsn)).

The preference relation =~ on XS is usually built through the use of a decision
rule defining the preference f 77 ¢ as a function of vectors (f(s1),..., f(sy)) and
(g(s1), ..., g(sy)). From = wecan definean indifference relation~, and astrict preference
relation > by:

f~g & fzgadgzf,
f>g ¢ fzgadnot(gz f).

Most of the rules used for decision making under uncertainty involve areal-valued function
u on X encoding the utility or the relative attractiveness of the conseguences and a
numerical set-function . on 25 representing the confidence of the events (seen as sets
of states). Such a confidencefunction on S (originally called acapacity [9], and sometimes
called afuzzy measure [44]) is amapping n defined from 25 to [0, 1] such that:

- u(@®) =0,
- u(8 =1,
— VA,BCS,AC B = u(A) < u(B).

The last property meansthat, if A implies B, then B cannot belesslikely than A, i.e., a
form of monotonicity w.r.t. implication. Important subclasses of confidence functions are:
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o Additive capacities (probabilitiesp, characterized by: VA, BC S, ANB =0 =
P(AUB) = P(A) + P(B).

For any additive capacity, there exists a distribution p: S +— [0, 1] such that VA C
S, P(A) =D ;caP(5).

o Possibility measureH , characterizedby: VA, B C S, [T(AUB) = max(I1(A), I1(B)).
For any possibility measure IT on a finite set, there exists a possibility distribution
7:S+> [0,1] suchthat VA C S, IT(A) = maXse 7 (s).

o Necessity measureé, characterizedby: VA, BC S, N(AN B) =min(N(A), N(B)).
For any necessity measure N on a finite set, there exists a possibility distribution
.S+ [0,1] such that VA C S, N(A) =1 — max _; 7 (s). Thisis due to the fact
that the dual of a possibility measure is a necessity measure (and conversely): VA €
S,N(A) =1—IT(A), where A isthe complement of A.

These representations of uncertainty about the state of the world are simple because
the set-function comparing the relative likelihood of events is completely determined by
the knowledge of the degrees of plausibility of al states (encoded by a probability or
apossibility distribution on S).

Most decision models are characterized by the definition of a preference functional
v: XS — Y where Y is an ordered set and v(f) measures the subjective attractiveness of
f forthe DM. In such models, v( f) isafunction of thevaluesu( f (s1)), ..., u(f(s,)) and
of the set-function representing the Decision Maker’s knowledge about the state of nature.
The decisions are then ranked according to the values v(f).

The most famous proposal in this family is obviously the expected utility model (EU)
axiomatized by Savage [41]. It is based on a real-valued utility function « defined on
X, measuring the subjective attractiveness of the conseguences, and on a probability
distribution p on S. Function u being unique up to a positive affine transformation in
thismodel, we will assume here without loss of generality that u : X — [0, 1]. This defines
acriterion v(f) forany f € X5 by:

fze & v(f)zv@ wherev(f)=) psu(f(s). (1)
sesS

The EU model has become a standard despite early criticisms formulated by Allais [1],
Ellsberg [21] and later by Kahneman and Tversky [30]. However, such comments have
motivated the emergence of non-EU modelsin the last decades. These models differ from
the initial proposition either by adopting a preference functional which is not necessarily
linear with respect to probabilities (see, e.g., the Rank-Dependent Utility model (RDU)
proposed by Quiggin [38]) or by replacing the probabilistic representation of confidence
of events by a non-additive one (see, e.g., the Choquet Expected Utility model (CEU)
proposed by Schmeidler [42]). These two alternatives to the expected utility are based on
a Choquet integral [9]. The Choquet integral is a powerful aggregation operator allowing
positive and negative synergies between events (for instance, the confidence of A U B can
be greater or less than the sum of theindividual confidencesof A and B). When used with

a probability measure, it boils down to expected utility.
Escaping the highly quantitative nature of these rules, more qualitative models have
been proposed, that rely on ordinal evaluation scales. Such models are especially designed
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for preference modelling in the presence of poor, qualitative information. The most famous
decision rule of this kind is the maximin rule of Wald [47], axiomatized by Arrow and
Hurwicz[2]. It only presupposesthat the set X of consequencesis ranked in terms of merit
by means of some utility function u valued on any ordinal scale. The Decision Maker is
not assumed to know anything about the state of the world. Then acts are ranked according
to the merit of their worst consequences, following a pessimistic attitude. The optimistic
counterpart using the best consequences of acts has of course been proposed as well.

Some authors in qualitative decision theory have refined this criterion, assuming a
plausibility ordering on states is available [5,8]. Then acts are ranked according to the
merits of their worst consequences restricted to the most plausible states.

Another refinement of Wald criterion, the possibilistic qualitative criterion [17-19] is
based on a utility function u on X and a possibility distribution = on S representing the
relative plausibility of states, both mapping on the sametotally ordered scale. A pessimistic
criterion v=(f) is proposed of the form:

fzeg & v(H=v(© wherev‘(f)=r;n€igmaX{l—n(s),u(f(s))}. )

The value of v=(f) is small as soon as there exists a highly plausible state with low
utility value. Thiscriterion is actually aweightedextension of the Wald maximin criterion.
The decisions are again made according to the merits of acts in their worst consequences
restricted to the most plausible states. But the set of most plausible states now depends on
the act itself. However, contrary to the other qualitative criteria, the possibilistic qualitative
criterion presupposes that degrees of utility u(f (s)) and possibility 7 (s) share the same
scale and can be compared.
The optimistic counterpart of this criterion (seeagain [17-19]) is.

frmg & vi(H=v (g wherev+<f)=|;nea§<min{n(s),u(f(s))}. ®

Moreover, the optimistic and pessimistic possibilistic criteria are actually particular cases
of amore general criterion based on the Sugeno integral [44], a qualitative counterpart of
the Choquet integral (see [18,35]).

More recently, Giang and Shenoy [26,27] have considered an uncertainty-neutral
possibilistic decision criterion, in the spirit of aconjoint use of Egs. (2) and (3). Namely, the
measurement scale is chosen as the set of possibility distributionson the set {0, 1}, 0 and 1
standing for the worst and the best consequencesin X respectively. Each such possibility
distribution is of the form of a qualitative lottery («, 8) with max(«, 8) = 1, yielding O
with possibility « and 1, with possibility 8. This set is totally ordered in such a way
that (0,1) > (1,1) > (1, 0), decreasingly from the certainty of getting 1 to the certainty
of getting 0. Their criterion subsumes each of the optimistic and pessimistic possibilistic
criteria separately.

Lehmann [33] axiomatizes a refinement of the maximin criterion whereby ties between
equivalent worst states are broken by considering their respectivelikelihoods. Thisdecision
rule takes the form of an expected utility criterion with qualitative (infinitesimal) utility
levels. The axiomatization is carried out in the Von Neumann—Morgenstern style.

Compared to the expected utility model, the above qualitative schemes have some
drawbacks. The pure maximin rule is not realistic, because it is overpessimistic, and has
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been given up accordingly. Itsrestriction to a set of most plausible states (weighted or not)
is more reglistic but till yields a very coarse ranking of acts. This kind of criterion does
not use al the available information. Especialy an act f can be ranked equal to another
act g evenif f isatleast asgood as g in al states and better in some states (including most
plausible ones). This defect cannot be found with the expected utility model. It has actually
been addressed by Cohen and Jaffray [10] who improve the maximin rule by comparing
acts on the basis of their worst consequences of distinct merits. This refined rule always
ratesan act f better than another act g whenever f isat least asgood as g in al states and
better in some states. However, only a partial ordering of acts is then obtained. This last
decision rule is actually no longer based on a preference functional .

2.2. The informational burden of the commensurability hypothesis

L et us now emphasize some difficulties resulting from implicit assumptionsin decision
models based on preference functionals, namely the commensurability (or comparability)
between preference and uncertainty, and, for the EU model, the numerical nature of
utilities. Suppose that the DM’s preferences over X are known and are expressed by the
weak-order =~ x (= x is precisely the preference relation encoded by the utility function).
Suppose also that the subjective confidence of each event for the DM is known and is
described by a binary uncertainty relation >~ 4 on 25 (induced for instance by a probability
distribution or a possibility distribution on S).

Thefirst remark is that, in the expected utility model, the way in which the weak-order
7~x isnumerically encoded will affect the preference relation on acts.

Example 1. Let us consider a decision problem with two states {s1, s2} which are seen
as equally plausibleby the decision maker (i.e., s1 -4 s2 and s2 74 s1) and a set of

consequences X = {x1, x2, x3, x4} such that x1 >y x2 >x x3 >x x4. Let us consider two
different utility functionsu1 and u» that could be used to encode the preference order >~ x:

X1 X2 X3 X4
uy 09 06 04 03
u 07 06 04 01

Consider f such that f(s1) = x1 and f(s2) = x4, and g such that g(s1) = x2 and
g(s2) = x3. If we want to use the expected utility model, the probability distribution on
S must be p(s1) = p(s2) = 0.5. Using function u1 in Eq. (1) we get the expected values
v1(f) = 0.6, v1(g) = 0.5. Performing the same operations with u» leads to vo(f) = 0.4,
v2(g) = 0.5. Thereforewe get f > g withug and g > f with us.

Hence, when using expected utility, the preference over acts depends on the particular
utility function chosen to encode the preference order > x . It showsthat the model exploits
some extra information not contained solely in the relations —x and - 4, namely the
absolute order of magnitude of utility grades as compared with degrees of probabilities.

We now want to comparethe same acts f and g asin the previous example, on the basis

of their pessimistic qualitative utility. In this example, the possibility distribution 7 that
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describesthe equal plausibility of events must be encoded as: 7 (s1) = 7 (s2) = 1. Then, the
pessimistic possibilistic criterion reduces to the maxmin rule and gives: v; (f) = 0.3 and
vy (g) = 0.4 from u; and therefore g > f, and we get exactly the same preference with
function u, since v, (f) = 0.1 and the v, (g) = 0.4. Similarly, the optimistic criterion
gives v (f) = 0.9 and v{ (g) = 0.6 from u1, which yields f > g, and this preference
remains unchanged when substituting u2 to u1. Thus, on this example where the initial
information (represented by relations —x and =~ 4) is purely ordinal, using a qualitative
criterion seems more natural than expected utility. Things are not so simple when the
DM is more informed about the relative plausibilities of events, as shown in the following
example.

Example 2. Suppose now that s2 > 4 s1 in Example 1 and consider the following utility
functions:

X1 X2 X3 X4
uy 04 03 02 01
u 09 08 07 06

L et uschoosean arbitrary possihility distribution on S to represent the confidence weak-
order on =~ 4, 9., w(s1) = 0.5 and 7 (s2) = 1. Now, using function u1 in Eg. (3) we get
the respective valuesfor acts vy (f) = 0.4, v; (g) = 0.3. Performing the same calculations
with function u leadsto v (f) = 0.6, v] (g) = 0.7. Thereforewe get f > g with v and
g > f with v;.

A similar preference inversion could be obtained using v~ in another example. This
showsthat the possibilistic utility criteriaa so exploit some extrainformation not contained
in relations —x and - 4: this is again due to the particular way utility and possibility
degrees are positioned on a common ordina scale that is implicit in such models. Utility
and possibility degrees are thus commensurate and ordered using a relation denoted =~ x 4
defined on S U X and respecting the following constraints:

SiZTxAS] & w(s) = m(s)), Xi ZxaXxj & ulxp)>u(x;),
SiTxAX) & w(s) > u(x;)), Xi ZxaSsj & u(xp) =m(s;).

In the above example, the use of u1 presupposes the following order: s2 >x 4 s1 >x2a
X1 >XAX2>XAX3>XA X4 whereas U2 Presupposes. s2 >xA X1 >XA X2 >XA X3 > XA
x4 >x 4 s1. Thisexplainsthe diverging resultsin the comparison of f and g using criterion
vT. But, in contrast with expected utility, possibilistic criteriaare robust with respect to any
monotonic transformation of the joint utility/uncertainty scale. If the orderingon S U X is
respected, this change will not affect the resulting preference relation between acts.

More generally, all the models based on a preference functional use such a scale >x 4
built from 2Zx and - 4, i.e,, requires additional information relating uncertain events and
their certainty-equivaentswhich must be elicited by questioning the DM. In thefollowing
subsection, we introduce simple models escaping this commensurability assumption and
thus avoiding the use of relation 7-x 4.
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2.3. Decision models based on pairwise comparisons

An aternative approach to decision only assumes that the DM has preferences on
consequences encoded as aweak-order 2~ x on X, and aconfidencerelation - 4 describing
the relative likelihood of events. The basic properties of confidence measures extend to
partia relations:

Definition 1 (Monotonic confidence relatignA relation - 4, on 25 is aconfidencerelation
iff:

— 4 isreflexive,
— S >4 ¥ (non-trividity),
— VA,Sza Aand A -4 0 (consistency).

A relation - 4 on 25 is said to be monotonic if and only if:

—VA,B,CCS,A-aB=AUC 4B,
—VA,B,CQS,A?\:ABUCiA?\:AB.

To each confidence relation corresponds a dual confidence relation using set-com-
plementation:

Definition 2 (Duality, self-duality. Let >~ 4 on 25 be amonotonic confidence relation.
Thedual of 4, denoted | isdefinedby: VA,BC S, Az} B Boa A.

~

The confidencerelation - 4 isself-dual iff: - =2 thatistosayiff YA, BC S, A Za
B& B ZA A.

It is easy to show that the dual of a monotonic confidence relation is a monotonic
confidence relation. Any capacity obvioudy defines a monotonic confidence relation:
A =4 B < u(A) > u(B), and the monotonic confidence relations satisfy the fundamental
property of capacities. Moreover, the monotonicity of >~ 4 implies the monotonicity of its
strict part:

Proposition 1. If -4 on25 is a monotonic confidence relation then
VA,B,CCS, A>,B = AUC>,4B and
A=, BUC = A>4B.

Possibility and necessity measures induce confidence relations that are dua of each
other. Probability measures induce confidence relations that are self-dual and preadditive:
Definition 3. A relation - 4 on 25 is said to be preadditiveif and only if:

VA,B,CCS, ANBUC)=0 = BrzLC & AUBZLAUCQ).
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Note that preadditive confidence relations are self-dual (but the converseis not true).

In the framework of this paper, we also use confidence relations that cannot be
represented by a confidence function (e.g., because some events are not comparable).
It may be so because the relation is not complete, just like the generalized qualitative
probabilities axiomatized in [32].

The decision rule then relies on a comparison, for any pair (£, g) in X5 of the set of
states where f performs as least as well as g, and the set of states where g performs as
least aswell as f. When the preferencesover X are represented by the weak-order - x, the
purpose of the first step is to collect the sets of states [f 7—x gl ={s € S, f(s) ZZx g(s)}
and[g —x fl1={s €S, g(s) Zx f(s)}. These events are then compared by means of the
confidencerelation - 4.

Thisyieldsthe following general decision rule we call Likely Dominance Rute

fze & [fzxelzalezx f1 (4)

Using thisrule, one prefersact f to act g if and only if it is more likely to get a better
consequencewith f than with g. Thisdecision rule has been proposed in [13,22] under the
name Lifting Principle.

It can be seen as the counterpart of majority rules used in socia choice theory (see,
e.g., [4]) or concordance rules used in Electre Methods [39,40] for multicriteria decision
making. In socia choice theory, the set S is the set of voters. In multicriteria decision
making it is the set of criteria, and the confidence relation reflects the relative weights of
groups of votersor criteria.

For instance, the Probability-Based Dominance Rutensistsin preferring f to g when-
ever the probability of getting a better consequence by f is as least as high as the
probability of getting a better consequence by g: it assumes that 4 stems from a
probability function. In socia choice theory, this rule is called pairwise majority when
a uniform probability distribution is used.

More qualitative variants of Eq. (4) can be defined, e.g., the Possibility-Based Domi-
nance Ruldased on arelation - 4 induced by a possibility measure. An alternative isthe
Necessity-Based Dominance Rulet requires that >~ 4 be induced by a necessity mea-
sure.

It can easily be shown that possibility-based and necessity-based dominancerulesyield
arelation 2 whose asymmetric part istransitive but thisis not the case for the probabilistic
likely dominance rule (see Example 3, Section 4). Moreover, these three rules yield a
complete relation -, but thisis not the case for al likely dominance rules. For example,
one can consider a family of necessity measures, and state that f is preferred to g iff,
for each measure in the family, the necessity of [ f Z—x g] is greater than the necessity of
[¢ —x f]. Such aruleisan example of likely dominanceruleyielding a partial preference
structure over the acts.

Finally and most noticeably, remark that preference reversals such as those observed
in Examples 1 and 2 cannot occur with a likely dominance rule because the preference
over the acts only depends on the relations -4 and Z—x and not on their numerical
representation. In this respect, preference models based on a likely dominance rule can
be seen as purely qualitativeapproaches.
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Remark 1. The decision rule proposed by Cohen and Jaffray [10] is akin to the likely
dominance rule because it involves a comparison between the set of states where f
performs better than g, and the set of states where where g performs worse than f.
However these sets are compared on the basis of the states having worst consegquences
in each of them, not in terms of the likelihood relation (which is not available in their
model).

3. A gualitative version of Savage'sframework

This section aims at providing an axiomatic framework for purely qualitative decision
models which do not assume that utilities of consequences can be compared to plausi-
bilities of states. A representation theorem is derived, which ensures that the underlying
decision rule for choosing between acts is a likely dominance rule. Following the work
of Savage, we start from a user-driven preference relation over the acts, and we introduce
natural axioms making it is possible to construct a preference relation =~ p on the conse-
guences and a confidence relation —;, on the events, so asto recover the DMs preferences
by a decision rule—here, precisely, the likely dominance rule. Let us first recall more of
the setting and some of the postul ates proposed by Savage [41] in order to characterize the
expected utility model.

3.1. Savage’s axioms

In the Savage setting, the set of potential acts, X3, isidentified with the set of possible
acts itself since we need a comparison model alowing to decide whether f is at least as
good as g, denoted f - g, or not, whatever(f, g), i.e., a comparison model that is well-
defined on the entire set X 5.

Axiom P1. (X5, ) isaweakly ordered space (> is complete, reflexive, transitive).

Such an axiom in Savage's work is justified by the goal assigned to the theory. If acts
are ranked according to expected utility then the preference is transitive, reflexive, and
complete. In this paper, we do not want to require such a property: the DM Preferences
still make sense without being complete or transitive.

Among actsin X there are constant actsuch that: 3x € X: Vs € S, f(s) = x. It seems
reasonable to identify X with the set of constant acts. Such an act will thus be denoted f,
or simply x whenever it is not ambiguous. A preferencerelation —p on X can be induced
from - by:

Vx,yeX (xzZpy < fiZfy. (5)

Obviously, in Savage'saxiomatics - p inheritsall the propertiesof ~: under P1, it must be
reflexive, complete, transitive, etc. These properties can be lost if we relax P1 as such. So
they may have to be explicitly postulated if P1 is not accepted a priori.

A consequence of working with the set of potential acts is that, for any pair (f, g) of
acts and for any subset of states A C S, we can soundly construct a mixed act fAg the
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components of which are those of f on the elements of A, and those of g on the other
states:

f(s) ifseA,
g(s) ifsé¢A.

More generdly, f1A1f2A>... frAxg is the act the consequences of which are those
of f; on the states of A;, i =1,...,k, and those of g on the other states (not in
A1UA2U...UAg). Thiscongtructionis at work in the following basic Savage postulate,
and in the notion of conditional preference:

VseS§ (fAg)(s)= {

Axiom P2 (Sure-Thing Principle VA C S, Vf, g, h,h' € X5, (fAh = gAh & fAN -
gAN).

Definition 4 (Conditional Preference f is said to be weakly preferred to g, conditioned
onAifandonlyif Vi e X5, fAh =~ gAh. Thisisdenoted by (f = g)a.

The Sure-Thing Principle means that the preference of f over g does not depend on
states where the two acts have the same conseguences. It enables (f - g) 4 to hold as soon
as fAh 77 gAh for some h only. Conditional preference (f - g)4 meansthat f isat least
as good as g when the state space is restricted to A. Notice that, would the Sure-Thing
Principle not hold, conditional preference might no longer be a complete relation. Any
event A C S which is unable to make a difference between any pair of actsis considered
asnull (e.g., irrelevant for the DM).

Definition 5 (Null eventy. An event A is said to be null if and only if: V£, g, h € X5,
fAh ~ gAh.

Note that this definition of null events also makes sense when - is not complete.
Another hypothesisis that the preference order on consequencesis unique and does not
depend on the conditioning events considered. Thisis the third Savage postul ate:

Axiom P3.VAC S, Anotnull, (x = y)a < xZpy.

The following proposition points out obvious consequences of P1 P2 and P3, that may
also fail to hold if P1 isweakened:

Proposition 2. The following properties hold

— Quasi-trangitivity of —: if P1 holds then- is transitive.

— Trangitivity of ~: if P1 holds then~ is transitive.

— Wesak Unanimity: if P1andP2 hold, thenVA, B C S suchthatANB =,V f, g € X5,
(fzgaand(f Z g)p)= (f Z & aus.

— Monotonicity: if P1, P2andP3 hold, thenx >=p yandy Zpz=xZpz
if Vse A, f'(s) =p f(s),thenf - g = f'Af = g—Left Monotonicity (LM),
if VseA,g(s)>pg'(s),thenf = ¢g= f = g Ag—Right Monotonicity (RM).
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An important particular case of weak unanimity is a classical condition which says
that an act is not less preferred than another if the former is not less preferred than the
latter both when event A occurs and when it does not. It is equivalent to the unanimity
postulate Q3 proposed by Lehmann [32] in his axiomatization of generalized qualitative
probabilities. Weak unanimity is a strong version of Grant et a.s Weak Sure Thing
Principle [28] (namely, these authors restrict unanimity when B = A). The monotonicity
condition requires that, if f is preferred to g, then enhancing f or degrading g will
obviously not reverse the preference. This condition obviously makes sense only in the
context of apreference on consequencessatisfyingx >=p y andy = p zimply x =p z, €9,
when - p is complete and quasi-transitive. In Savage's framework, all these very natura
properties follow from P1—again they may have to be explicitly postulated if P1 is not
accepted a priori.

The preference on acts also induces a confidence relation on events: it is sufficient to
consider the set of binary acts, of the form f; Af,, which can be denoted x Ay, where
x >p y. Clearly for fixed x > p y, the set of acts {x, y}’ isisomorphic to the set of events
25. Since the restrictions of (X5, ) to {x, y}5 may be inconsistent with the restriction to
{x’, y'}3 for other choices of consequencesx’, y’ suchthat x” > p y’, Savage hasintroduced
afourth postul ate:

Axiom P4.VA,BC S,Vx,y,x',y e X: x>pyandx'>p y,xAy 7 xBy & x'Ay’ 7
x'By’.

Under P4, the choice of x,y € X with x >p y is not important when defining the
ordering between eventsin terms of binary acts. Hence, the following confidence relation
on events can be derived from —:

A-rB & (@Gx,yeX:x>pyandxAy = xBy). (6)
Lastly, Savage has assumed that the weakly ordered set (X, - p) isnot trivial:

Axiom P5. X contains at least two elementsx, y such that f, > fy (or x >p y).

Under P1-P5, the relation -, on events is a monotonic confidence relation that is
preadditive. Preadditivity is indeed just the speciaization of the Sure Thing Principle for
events. Savage has shown that relation ;. is a comparative probability ordering (S being
finiteor not), i.e., it has properties of confidencerelationsinduced by probability measures:

Definition 6 (Comparative probability A relation -7 on 25 is a comparative probability
iff:

() =4 isaweak order (complete, reflexive, transitive),
(it) S>r 9,
(iii) VA, Az 0,
(iv) itispreadditive.

Not all comparative probabilities can be represented by probability measures. Savage
also introduces two other postulates that enforce the existence (and uniqueness) of a
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numerical probability measure on an infinite set S, that can represent the confidence
relation -z. However, these axioms are omitted here because they are irrelevant in the
case of afinite set of states and for qualitative decision theory.

3.2. The ordinal invariance postulate

We now propose a hew axiom aiming at acknowledging the qualitative nature of
a decision process and the non-commensurability of the confidence of events and the
preference on consequences. We call this axiom Ordinal Invariance

Definition 7. Two pairs of acts (f, g) and (f’, g’) are said to be ordinaly equivalent,
denoted (£, g) = (f/, g) if and only if:

VseS, (f(s)Zpgls) < f')zpg ).

Ordinal equivalence means that, for each state of the nature, the preference pattern
between acts f and g isthe same as the preference between f/ and g/, respectively.

Axiom OI.Vf, f', 8.8 € X5, (f.e)=(f.¢) = (fnge fg).

Axiom Ol expresses that only the relative positions of the consequences of the two
acts are important, but not the consequences themselves, nor the positions of the two acts
relatively to other acts: it means that changing the consequences of f and g on any state
in such away that the preference pattern between their consequencesis preserved does not
change the relative preference between the acts. It does not require any commensurability
or comparability between the relative merit of consegquences (of constant acts) and the
relative likelihood of events (= merit of binary acts). Ordinal invariance can actualy be
seen asthe statement, in the framework of decision under uncertainty, of an “independence
of irrelevant alternatives’ condition used in socia choice theory [43], completed with a
neutrality condition making preferences independent of the labels of the acts considered.
It can also be understood as the counterpart of a non-compensation axiom introduced by
Fishburn in the framework of multicriteria analysis [24]. Note also that Ol is a strong
version of the two key-postulates of Savage theory, P2 and P4 as shown by the following:

Proposition 3. (Ol + = reflexive = P2.
Proposition 4. (Ol + = reflexive = PA4.

To be non-trivial, Proposition 4 presupposes P5 holds. Let us now develop our ax-
iomatization of the likely dominance rule. Following Savage, and starting from a re-
lation -, we can derive the relative attractiveness of the consequences using Eg. (5):
(x Zpy < fx Z fy). Smilarly, we can soundly build a confidence relation Z; from 2z,
using Eq. (6): A= B< (3x,ye X: x =p y and xAy 7~ xBy)), since P4 isimplied by
Ol and the reflexivity of .

At this point, we only need two additional conditions (plus non-triviality) to recover
the likely dominance rule from Ol. The first one is the reflexivity of -, which is not
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guestionable, and the second one is the total comparability of constant acts (i.e., the
completeness of —~p) which is a natura property because there is no conflict between
states, in the comparison of constant acts. These conditionsform asignificant weakening of
P1, since at this point we do not assume the transitivity of >~ nor even its quasi-transitivity
nor its completeness.

Our set of axiomsis consistent. Indeed, these properties, and some other ones, hold for
any likely dominancerule;

Proposition 5. Let —x be a reflexive and complete preference relationXorsuch that
Jx,y e X, x >x y and -4 be a confidence relation a2’. Let us consider the preference
relation’- defined onXS by f — ¢ < [f =x g1 =4 [g 7-x f1and-p its projection onX
defined by Eq(5). We have

— 7 is reflexive.

— 7~ satisfie0l.

— Z is complete on constant adise., — p is completg
—Vx,yeX,(xZpy o xZTxY).

— - also satisfie$2, P4, P5.

— If - 4 is monotonic, thefxr; satisfiesP3.

— If zZx is quasi-transitive and: 4 is monotonic, therr; satisfied M andRM.

Conversely, we have the following representation theorem characterizing the likely
dominance decision rule:

Theorem 1. If 77 is complete on constant acts, reflexive and satifesnd Ol then there
exists a preference relation p on X defined by(5) and a reflexive, preadditive and non-
trivial relation -7 on S defined by(6) such that, forany,g € X5, f =g < [f =p gl =L

g zZp f1

Corollary 1. If the DM preference=; is complete on constant acts, reflexive ¥m and
satisfiesd?5, Ol holds if and only if- is representable by a likely dominance rule.

The previous result provides an operationally testable characterization of the likely
dominancerules. If Ol is accepted as anorm for qualitative models, then the only available
decision rules are likely dominancerules. Thisresult holds even if 7 is not supposed to be
complete, and thus concerns a wider class of decision rules than those given in the paper
of Duboiset a. [12].

Nevertheless, this result does not induces fully well-behaved relations on X and 25. Of
course, therelation - p is obviously reflexive and complete, and, when = isexplicitly built
with alikely dominancerule, - p coincides with 77 x. But it does not necessarily satisfies
Savage's P3, which is not a consequence of Ol. Indeed, consider an act &, two constant
acts x and y such that x > y, and some event A # S. The two pairs of acts (x, y) and
(xAh, yAh) are clearly not order-equivalent. Hence axiom Ol cannot put any constraints
relating the preference pattern between x and and y and the preference pattern relating
xAh and yAh. Besides, our minimal axiomatization implies very little about ., except
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that it is reflexive (due to the reflexivity of =), preadditive (due to P2) and non-trivial (due
to P5). But the confidence relation may fail to be monotonic, since the global relation - is
not supposed to be such.

3.3. The monotonicity condition

The addition of the very natural requirement of monotonicity of - (that is compatible
with the other axioms—see Proposition 5) results in a sounder structure for both - p and
=1

Proposition 6. If = is reflexive, complete on constant acts, and satisfe©Il, LM and
RM, then

— 1 is a monotonic confidence relation,
—VACS, 0= A& Aisnull,
— - satisfiedP3.

Theorem 2. - is complete on constant acts, reflexive, satis#gsOl, LM and RM if
and only if there exists a complete preference relatipn on X and a preadditive and
monotonic confidence relation; on S such that, for anyf, g € X5, f =g < [f =p gl
Zrlgze fl.

It should be emphasized that the necessary preadditivity of ~; does not mean that
the use of a preadditive confidence relation is compulsory in the definition of a likely
dominance rule. Indeed, starting from a relation —x on X, and a non-preadditive
confidence relation - 4, and constructing a relation - on acts with them by the likely
dominance principle, Theorem 1 only proves the existenceof a preadditive 7-;, yielding a
likely dominance rule representing —: everything works as if -, were used, but, unlike
zpand Zx, 7 and 7 4 do not necessarily coincide.

The reason for this apparent paradox isthe following. First notethat [ f =~ x glU[f Zx
g] = § because of the completeness of ~x (the same holdsfor ——p since Zx = —p). SO
only thepairs (A, B) suchthat AU B = § arecomparedin the likely dominancerule. Then,
=1 and - 4 arerelated asfollows:

Proposition7. Ay B<& AUB -4 BUA.
So ~; and - 4 aways coincide for some pairs of sets as per the following proposition:
Proposition8. A ~; B< A4 B wheneverAUB =S.

An immediate consequence of Propositions 7 and 8 is that the two relations actually
coincideif and only if = 4 is preadditive:

Proposition 9. If - 4 reflexive, theri; 4 = 7Z; < = 4 is preadditive.
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Insummary, - 4 and >~ coincideon the useful part of 25 x 25 and the non-preadditivity
of =4 cannot be revealed by observing a decision maker which would use a likely
dominance rule for choosing between acts. These results explain why the preadditivity
of 7~ 4 need not be requested from the start.

4. Ordinal decision rulesand uncertainty theories compatiblewith a
guasi-transitive preference

The trangitivity of preferences between acts resulting from a qualitative decision rule
defined as in the previous section is nhot ensured, not even the transitivity of its strict part.
The failure of transitivity can be simply observed using the following example:

Example 3. Consider three consequencesx, y,z € X suchthatx =p y,y =pzandx >p z
and suppose S = {s1, 52, s3} with probabilities p(s1) = p(s2) = p(s3) = 1/3. Using the
probabilistic likely dominance rule to compare the acts:

f=x{sity{s2}z{sa}, g =ylsi}z{s2}x{ss} and h=z{s1}x{s2}y{s3}

we get [f 2 gl = {s1,52},[g T h] = {s1,s3} and [ T f] = {s2,s3} and therefore f >
g, g>=handh > f,ie,anintrangtivity cycle. On the contrary if probabilities of states
are p'(s1) = 0.6, p’(s2) =0.3and p’(s3) =0.1weget f ~g,g>hand f > h, alinear
order.

This example is actually a case of Condorcet effect as observed in Socia choice (see,
e.g., [43]). From a descriptive point of view, it shows the ability of qualitative decision
rules to explain some cyclic preference structures and this is areally original point when
compared to more classical models based on preference functionals. However, from a
prescriptive point of view, the possibility of getting cyclic preferences is an important
source of difficulty. For this reason, we investigate in this section the possibility for
qualitative decision models to fulfill some minimal transitivity requirements. It turns
out that these requirements have drastic conseguences on the nature of the underlying
confidence relation.

4.1. Confidence relations under quasi-transitive preference in the ordinal approach

Let usjust assume the reflexivity and the quasi-transitivityof -, that is, the transitivity
of its strict part. Namely, we consider the following axiom that can be seen as a useful
weakening of P1.

Axiom Al. - is reflexive and quasi-transitive, and its restriction to constant acts is
complete.

This weak requirement allows a wide class of preference structures to be concerned,
including those with an intransitive indifference (semi-orders, interval orders) and
those allowing incomparability. Allowing incomparability in the two other canonical
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situations (preference, indifference) provides a better description of indecision situations:
indifference between two acts f, ¢ can be dedicated to the case of a strong similarity
between the two vectors of consequences, whereas incomparability reflects the existence
of a conflict in the comparison of f and g (e.g., 3A C S, not null, whose complement is
not null and such that fAg = f, and gAf = f), where x and y represent the best and
the worse consegquences of X respectively). Such conflicts do not exist in the comparison
of constant acts and therefore, we require the total comparability of constant acts only
(i.e., the completeness of =~ p). Axiom Al is weaker than the one used in [12], where the
preference relation - is supposed to be complete on the set of all acts.

The first noticeable consequence of requirement A1l concerns the comparison of
consequences and appearswhen X contains at least 3 distinct consequences:

Axiom AS5. X contains at least three elements x, y, z such that f; > f,, f, > f; and
x> [z

Proposition 10. If A1, OI, LM, RM, A5 hold and’ p is not transitive, thenvA, B C S, if
A and B are not null thenA N B is not null.

Corollary 2. If A1, Ol, LM, RM, A5 hold andz-p is not transitive, then3 a non-null
eventO C S such thatvA:

— Anotnulle O C A.
—0CA= 0~ A.

It means that, when the quasi-transitivity of - is required, the only confidence
relations compatible with a nontransitive =~ p (actualy, a non-transitive ~p, since the
quasi-trangitivity of ~ means the transitivity of >p) are those that encode trivial or
counterintuitive situations. First, the case in which all states are null, except one, namely
when O isasingleton. Thelatter caseiswhen the actual stateis precisely known, and there
is no uncertainty. Then, all acts are equivalent to constant acts, since f - g if and only if
f(s) zZp g(s) where the non-null stateis s. The properties of - p then exactly reflect the
properties of >~ which is not assumed to be transitive. The second case is when there is
a sure (hence non-null) event, all states realizing it being null; this situation is hard to
interpret. To rule out these situations the following non-triviality assumption is made:

Axiom 2NN. There are at |east two non-null states.
Then, the full transitivity of =~ p isaconsequence of Al:
Proposition 11. If A1, Ol, LM, RM, 2NN, andP5 hold then= p is a weak order.

The second important consequence of the requirement of quasi-transitivity directly
affects the confidence relation (from Proposition 6, we already know it is monotonic):

1 Hopefully, A1 and A5 are compatible with Ol, LM and RM (see Proposition 13).



236 D. Dubois et al. / Artificial Intelligence 148 (2003) 219—-260

Proposition 12. If A1, A5 and Ol hold then relation>~; satisfies the property of
negligibility:

VA,B,CC SsuchthatANB=ANC=BNC =40,

AUC>p B and AUB>,C = A>p BUC.

This property, introduced by Friedman and Halpern [25] and Dubois and Prade [20],
is avery drastic one and is the one that enforces the qualitative nature of the confidence
relation. It indeed impliesthat VA, B, C suchthaa ANB=ANC=BNC =40,

A=y B and A= C = A>p BUC.

This property is generally incompatible with a probabilistic representation of uncertainty,
but as shown later on isfully compatible with possibility theory. Theideathat some events
may have negligible plausibility in front of others is aso advocated by Lehmann [32]
in a framework where both probabilities and plausibilities involving negligibility effects
Ccoexist.

4.2. The oligarchic nature of decision rules in the ordinal setting

The role of the set of most plausible states in our ordinal setting for decision making
under uncertainty has a familiar flavor in social choice. In analogy with the latter domain,
one can actually show that there is one and only one set of vetoer states which is aso
decisive, i.e., a predominant event. This can be formalized as follows:

Definition 8 (Vetoers, Decisive set and Predominant eyefor any subset S’ C S, the
state s € §’ issaid to be avetoer inS’ iff:

VigeXS, [f()>pgls) = not(g> fs)]-
O C §' issaid to bedecisive inS’ if and only if:
VigeXS, [(YseO0.(f®)>rgl)y) = (f>os]
O C §' issaid to bepredominantinS’ iff it isdecisivein S’ and contains only vetoer-states

inS’. A predominant eventin S issimply called apredominant event

We can show that any decisive set of states is more likely than its complement in any
context:

Lemma 1. If = satisfiesA1, A5, LM, RM andOl, then, for any predominant eve@tin a
non-null subses’ C §,VA C §’,
OCA & A>pS\A.

Now the main result can be obtained, on the existence and unicity of a decisive set in
any (non-null) context:
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Theorem 3. If = satisfiesA1, A5, LM, RM andOl, then, for any non-nulb’ C S, there
exists one and only one predominant ev@rin 25 . Moreover,0 is such that

—~VA,BC S, (ANB=¢andA>; B)= ONB=0.
—~VA,BC S, (ANB=¢andO C A)= A > B.

The following result, a direct consequence of the above theorem, is more explicit:

Corollary 3. If 7 satisfiesA1, A5, LM, RM andOl, then there exists one and only one
predominant event.

The intersection of all the events A such that A >; A forms the set of most plausible
states. It is the predominant event O, and it is never empty. It is the one on the
basis of which almost every decision is made. The corollary expresses that, when the
DM'’s preferences are quasi-transitive and compatible with Ol, they necessarily rely on a
confidence relation admitting such a predominant event O which makes any other non-
compatible event negligible. When comparing f and g, the states outside this set are
not taken into account (unless each of the most plausible states is indifferent among the
two acts (f (s) ~p g(s))). First, f = g holds as soon as f is preferred to g for al states
belongingto O. However, whenever two states s and s’ are conflictingwithin O concerning
apar f,g (i.e, f(s)>p g(s) and g(s") =p f(s"), no strict preference can be stated
between the two acts. In Social Choice Theory, such a preference structure is said to be
oligarchic (see, e.g., [43]).

The larger O, the less decisive the procedure. In case of total ignorance, i.e., when
no state of the world is more likely than another, we get O = S: the preferencerelation -
reducesto thefunctional dominanceon X3 induced by the monotony condition (i.e., f >~ g
iff f(s) z—p g(s) for al states). In the other extreme case, O containsasingle state and the
DM preferences can be described by a “dictatorial” decision rule due to the existence of
a decisive state s. Such a rule makes sense when the DM is almost certain than the “true
state” is s and neglects the other states: all the other possible states are ignored, except
when comparing acts that are indifferent with respect to the almost certain state, as seen
now. It makes such a framework very close to the approaches that decide on the basis of
the most plausible states only—with the slight differencethat, here, theless plausible states
can be considered for breaking ties.

Making a step further, our Theorem 3 indeed shows that the decision rule does not
reduce to the existence of a mere oligarchy. Indeed, it also proves that the property of
Negligibility of the confidence relation, and thus the existence of a predominant event, is
stable under conditioning. In other words, the above results indeed hold when restricting
to any context S’ C S. In particular, the approach remains valid in a dynamic setting, when
new information about the actual state of the word is acquired by the DM. Decisions are
dynamically consistent.

The reason for this good behavior is that when two acts share the same consequenceson
asubset E of states, these states are neglected as irrelevant in the choice between the two
acts (this is a consequence of the sure thing principle). So, there is a set of predominant
states inE that acts as a local oligarchgnd only this set can discriminate between the
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acts. It implies that there exists not just one oligarchy, but also a hierarchyof oligarchies,
aresult that had never been emphasized before:

Coroallary 4. If - satisfieA 1, A5, LM, RM andOl, there exists a partition of into events
01, ..., O, Ory1suchthawj <k, O; is predominantinS; =S\ Ul./_ll 0;.

So, if f(s) ~p g(s) on the set E of states only, and O; is the highest subset not
contained in E in the hierarchy of oligarchies, then O; is decisive for choosing between f
and g, namely f - g if andonly if f(s) Zp g(s)Vs € O;.

Now, assuming both completeness and transitivity of =~ we obtain a hierarchy of
predominant stateg(see also [12] for a different proof):

Theorem 4. For any preference relation on acts that satisftis A5 andOl, we have
e 5; ~1 5; & s; ands; are nulk

s*is not null
oeVfgeX5 f>g<w3Is*eSsuch that{ f(s™) >pg(s™)
VsesS, [g(s)>=p f(s) = s* > s].

This theorem shows the lexicographic structure of the preference induced by P1. It
demonstrates a phenomenon which was already illustrated in Example 3 and also explains
that comparative probabilities (and not only classical probabilities) are for the most part
incompatible with a qualitative approach of decision. The resulting lexicographic rule
corresponds to a very particular structure of uncertainty in which all the non-impossible
states must be linearly ordered. As a consequence, requiring P1 forbids the description of
total ignorance (where all the states are equally plausible). Moreover, there must exist a
predominant state s*, more plausible than any other state, and even more plausible than
the complementary event S \ {s*}; P1 can be satisfied if and only if oneisin a situation
of quasi-certainty about the actual state. As soon as s™ gives a better consequence for an
act than for another one, the first act is preferred. The other possible states of the world
are so negligible compared to s* that they are not considered, unless the quasi-certain state
does not allow a discrimination between the acts. The likely dominance rule can then be
described in terms of a necessity measure based on a linear possibility distribution of the
formn(s1) > m(s2) > --->m(sp) s f L gifandonly if N([f Zpgl) > N(gzZr fD.

4.3. Related literature

In some sense, the results of this paper revisit Savage’s approach to decision making un-
der uncertainty using the tools of social choice theory [43]. In socia choice, the traditional
approachisordina. Given aset of voters and a set of candidates, each voter defines a pref-
erence relation on the set of candidates, thus indicating which candidates are preferred to
others, according to this voter’s opinion. The problem is then to merge these local prefer-
encerelationsinto aglobal one representing the collective preference, using an appropriate
voting rule. In our framework, states of nature stand for voters, consequences stand for can-
didates. Assaid above, the likely dominance rule accountsfor several well-known schemes
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in socia choice: unanimity (it is obtained in the quasitransitive framework, when the pre-
dominant set is S itself—total ignorance about the state); dictatorship (when one state is
more likely than all othersin the quasi-transitive framework); pairwise majority (counting
how many states favor f against ¢ and g against ) when the confidence relation derives
from a uniform probability distribution as in Example 3. One difference between social
choice and decision making under uncertainty is that in the case of voting proceduresit is
expected that voters be equally important while stateswon’t be equally plausible, generaly.

Results similar to the ones of the previous subsection can be found in the social choice
literature. A weak form of Theorem 3 (for S’ = §) is proved by Weymark [48], where the
obtained collective preference structures are called oligarchic. However this author does
not lay bare the hierarchy of oligarchies. In the case of a fully transitive preference on
acts, Theorem 4 is closely related to Arrow’s Theorem [3]. Arrow finds the existence of
a dictator state but does not lay bare the underlying lexicographic structure exhibited by
Theorem 4. This theorem is in fact a counterpart of Fishburn’s theorem obtained in the
context of multicriteria analysis [23], where criteria play the role of states. See [11] for a
detailed comparison between multicriteria analysis and decision under uncertainty in the
scope of qualitative decision theory, and the corresponding representation results.

The decision rule obtained from the postulates of ordinal decision under uncertainty is
somewhat similar to the one proposed by Maynard-Reid and Lehmann [36] for aggregating
so-called belief states coming from sources of various reliability (sources play the role
of states and the aim is to build a relation on events rather than on acts). In their work,
belief states are represented by transitive and “modular” relations between states of nature,
capturing the idea that a state is strictly more believed than another. The modularity of this
relation is equivalent to the transitivity of its complement, that is, the weak belief relation
istransitive. Thisis an assumption that is not made here. Moreover, they do not assume the
irreflexivity of the strict belief relation, for the sake of capturing ideas of conflicts between
states, and not only indifference: a conflict arises when two states are strictly preferred
to each other (so, by transitivity, the strict relation cannot be irreflexive). Thisis aso a
major difference between their framework and ours. In the framework of decision under
uncertainty, giving up the irreflexivity of the strict preference between acts looks hard to
defend. When the set of sourcesisalinear order, the fusion rule of [36] yielding the global
relation on states is the same as the lexicographic scheme obtained here from the likely
dominance rule proposed. However when sources have equal reliability, their combination
rule concludes that one state is more believed than another whenever at least one source
does. It may lead to a very conflicting belief state. On the contrary, in the absence of
dominating state, the likely dominance rule concludes that an act is better than another
only when the former is better than the latter for al states.

The proposed ordinal framework for decision under uncertainty also comes close
to knowledge representation and reasoning, especially non-monotonic reasoning. The
property of Negligibility of the monotonic confidence relation obtained from Proposition
12 in the quasi-transitive setting has been previously identified in [20] as capturing theidea
of “Acceptance” and by Friedman and Halpern [25,29] under the name “Qualitativeness’.
It is characteristic of conditional likelihood relations that are compatible with deductive
closure. Namely, the set of accepted beliefs A in context C suchthat ANC >, ANC,
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induced by the relation >, is deductively closed if and only if the strict part of the
confidence relation obeys Negligibility and Monotonicity.

To see the close link with non-monotonic reasoning, one has to recall that the
nonmonotonic inference of B from A under a strict confidence relation can be modelled
by the property AN B >, A N B. It can be shown, following [13,15], that any monotonic
set-relation that satisfies Negligibility underliesaconsequencerelationship that satisfiesthe
propertieslaid bare by Kraus, L ehmann and Magidor (KLM) for their so-called preferential
entailment [31], but for the reflexivity (whereby A follows from itself). The latter must be
restricted to non empty events: here, nothing can be deduced from contradictory contexts.
The connection between Savage axioms and the KLM postulates for non-monotonic
reasoning is explored in greater details in a companion paper [12]. In that paper, the
primitive relation on acts is the strict preference = whose negation provides the weak
preference relation. The corresponding framework is more restrictive than here, since this
weak preferencerelation is then necessarily complete.

In some sense, our system of decision postulates is an operationally testable axioma-
tization of preferential entailment in terms of choices between acts, like Savage's axioms
are an act-driven justification of Probability Theory.

Preferential entailment can also be described using a partial ordering of events
induced by a family of possibility relations [16]. The high compatibility of preferential
entailment with possibility theory suggests apossibilistic behavior of quasi-transitivelikely
dominancerules. Inthe context of acompleteweak order, negligibility isindeed equivalent
to the characteristic axiom of possibility relations, thatisA =~y B=AUC zZy BUC. It
suggests the search for a Savage-like justification of possibility theory in the purely ordinal
setting as a legitimate purpose. Thisis the topic of the next section.

5. Characterization of possibilistic likely dominance rules

Theorem 4 can be understood as a negative result that shows the conflict between
the postulate of ordinal invariance and axiom P1. On the other hand, we know that, if
we relax P1, very important and desirable properties of the preference relation on acts
are lost, especially unanimity and monotonicity properties pointed out in Proposition 2.
Insofar as they are not controversial, they should be postulated explicitly if they are to
be taken advantage of. Requiring the monotonicity of - or its quasi-transitivity leads to
an uncertainty structure that is very close to possibility theory. Making a step further, we
conclude here our axiomatization by adding a principle of extended unanimity and we
show that the family of rational likely dominance rules then reduces to those based on
necessity measures. The unicity of the underlying necessity relation is then enforced by
adding a postulate of anonymity.

5.1. The necessity-based weak dominance rule

The necessity-based weak dominance rule [13] builds the preference on acts from a
weak-ordered preference relation on consequences, a possibility distribution 7= on states,
and anecessity measure N on events:

fzg & N(fzxgl)=N(gzx f)
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It can equivalently be rewritten in terms of the possibility measure on digoint events
induced by strict preference between consequences as

fzeg <& HO(f>xgl)=M0(g>x fl).

Thisrule provides awell-behaved preferencerelation -, on acts (see also [12]):

Proposition 13. Let >~ x be a weak order orX and N be a necessity measure @8h. The
relation’, definedbyf - ¢ & N([f Zx g]) = N([g Zx f]) has the following properties

— - isreflexive, complete and quasi-transitive.
— - satisfiesP2, P3, P4.

— - satisfieg0l, LM, RM.

— If Z—x satisfied5 (respectivelyA5), so does:.

Notice that this proposition shows the consistency of the set of postulates A1, P2, P3,
P4, Ol, A5, LM, RM used in the previous section.

When considering the negative theorem of Section 4 (Theorem 4), the only postulate
that has been relaxed is the transitivity of indifference.

Example 4. Consider a set S involving only two totally possible states s1,s2 (such
that 7(s;) =1, for i = 1,2 and 7 (s;) < 1 otherwise) and a weak order ~x. We may
have: g(s1) >x f(s1) >x h(s1), f(s2) »x h(s2) =x g(s2). So: f ~ g (since [I([f >x
g =I(g>x f) =1 g~h (I1(g »x hl) = [1([h »x g]) = 1), but f >~ h (since
H(h>x f1<1=IH([f >x h])). Thus ~ isnot transitive.

From a descriptive point of view, this lack of transitivity is rather satisfactory. Indeed,
recall that indifference may appear in two cases: when the states are indifferent, or when
they are conflicting. As shown in the previous example, two states of equal confidence can
bein conflict for the comparison of (£, g), and the same two (and possibly others) equally
likely states can bein conflict with respect to (g, #) without implying the indifference nor
the conflict of these states for the comparison of f and 4.

This example also shows the crucia role played by the most possible states: they
form the first oligarchy. More generally, there exists a hierarchy of predominant events
corresponding to the level sets of the possibility distribution.

Proposition 14. Let -y be a weak order orX, N be a necessity measure @ derived
from a possibility distributiomr on a scalel. = {r(s), s € S} and’ the preference relation
defined byf 2 g & N([f Zx gD = N(lg Zx f]). Then,

Vaj €L, O;={s,m(s)=0a;}is predominantins; = S\ {s, 7 (s) > a; }.
Another property of the necessity-based ruleisthat null eventsform aclass closed under

union and intersection. In other words, thereisamaximal null subset Z of S whose subsets
areall null. Itis easy to provethat null states are those which have zero possibility:
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Proposition 15. Under the necessity-based weak dominance wiles null if and only if
IT(A) =0, and the set of null states 6= {s, 7 (s) = 0}.

When there are two non-null states, the necessity and the possibility measures are said
to be non-trivial.

5.2. Axiomatization of the necessity-based weak dominance rule with respect to a family
of possibility distributions

Section 4 suggests the properties of confidence relations compatible with quasi-
transitivity have a highly possibilistic flavor, since they are forced to satisfy the property
of negligibility (see[16]). To recover the necessity-based dominancerule, we first need an
additional postulate, namely a postulate of unanimity involving conditional preference:

Axiom EUN (Extended UnanimilyVA, B C S,Vf,ge XS: (f - gaand (f = g)p =
(f Z8aus.

EUN states that, if f is preferred to ¢ when one is sure that A occurs, or when one
is sure that B occurs, then it is preferred to ¢ when one is sure that either A or B, or
both occur. Thisis exactly the postulate of “Closure under Union” proposed by Brafman
and Tennenholtz [7,8] in their axiomatization of the maximin criterion. It is also a strong
version of Lehmann’s axiom of unanimity that only applies to complementary events (see
Axiom Q3 in [32]). Projected to the set of events, and in the setting of other postulates,
EUN implies the following property of the confidence relation -1 :

IfAzy BandC =y D thenAUC = BU D, whenever (AUC)N (BU D) =40.
Let usfirst check that EUN is satisfied by the necessity-based dominance principle:

Proposition 16. Let ~y be a weak order oiX and N be a necessity measure 2fi. The
relation —~ defined byf - ¢ & N([f Z—x g]) > N([g Z—x f]) satisfiesEUN.

Notice that EUN does not hold if necessity measures are changed into possibility
measuresin Proposition 16. Axiom EUN isthus useful to tell likely dominance rules based
on necessity measures from those based on possibility measures. This axiom is crucial in
getting the proper structure for null events.

Proposition 17. If - satisfiesA1, A5, LM, RM, Ol andEUN, then3Z C § such thatA is
null if and only ifA C Z.

Thefollowing result, avariant of whichisin [12], then providesan axiomatization of the
strict preference between acts in terms of alikely dominance rule for confidence relations
represented by families of necessity measures:

Theorem 5. If - satisfiesAl, A5, LM, RM, Ol andEUN then there exists a relationy p
on X and a family\V of necessity measures such that for ghy € X5, f =~ g & VN €
N,N(fzZpgh>NUgzr fD.
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The proof only uses weak unanimity (EUN with digoint sets A and B). It comes
down to exploiting the fact that the confidence relation satisfies the negligibility property
(Proposition 12), and since it is monotonic and the union of two null eventsis null (from
EUN), theresults of Friedman and Halpern [25] (and also [12,14]) show that the confidence
relation generates a non-monotonic consequence relation in the style of Kraus Lehmann
and Magidor [31]. Such relations can be represented in turn by families of possibility
distributions[16].

Notethat in [12], a strong form of A1l is used, assuming the completeness of =~ which
can thus be fully represented. In the above theorem, only the strict part of the preference
relation can be represented because of alack of completeness of —. Moreover, axioms LM
and RM are not explicitly used in that paper. The Savage axiom P3 instead is employed.
Moreover the so-called unanimity postulate of Lehmann [32] (which is EUN restricted
to B = A) is used instead of EUN. P3 and unanimity are instrumental in proving the
monotonicity of 7.

5.3. Axiomatization of possibility theory under the likely dominance rule: the anonymity
postulate

Wearenow in aposition to provide adirect proof that, under assumptions of Theorem 5,
if the confidence relation is transitive on states, then the only possible decision rule is
the necessity-based weak dominance rule with respect to a unique (up to a monotonic
transformation) possibility distribution. Let us assume the transitivity of the confidence
relation, when restricted to singletons of the state space.

Axiom TS (Transitivity of ~; with respect to singletosV({s, s’,s”} € S, [{s} ~L {5}
and {s"} ~ {s"}] = {s} ~L {s"}.

Lemma 2. If 7 is complete and satisfig3l, A1, A5, LM, RM, EUN and TS then there
exists a relation- » on X and a necessity measure 2f such that

ViigeXS (fzg & N(fzrgl)=N(lgze 1)

TSisobviously acondition satisfied in Savage’s framework. It is one more property lost
with the relaxation of P1. From a descriptive point of view, not assuming the transitivity
of ~ for acts is desirable since the lack of comparability between acts due to conflicting
states is generally not transitive—but this general lack of transitivity is not incompatible
with axiom TS. Namely, thelikely dominance ruleinduced by asingle necessity measureis
not transitive, the corresponding likelihood relation is not transitive, but it is on singletons.

We have seen in the previous example that there may be a conflict between f and g, a
conflict between g and &, aong with a functional dominance of f on k. This situation
can still occur when comparing binary acts, e.g., the acts f = x{s1, s3}y, g = x{s2}y,
h = x{s3}y: thereis a conflict between s> and s3 in the comparison of f vs. g andasoin
the comparison of g vs. &, but f dominates /. So, the entire ~;, relation is not transitive.
Nevertheless, this situation of intransitivity cannot occur when comparing binary acts that
represent disjoint eventsTherefore, there is no reason to dispense with the transitivity of
~, On states.
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There is also a prescriptive argument in favor of TS: ceteris paribusequally possible
states should have an equal influencein the decision. Thiscan be modelled by thefollowing
anonymity axiom requiring that the exchange of two equally possible states does not
modify the preference:

Axiom ANO. If 51 ~p so then: Vf, g, f 7 8 € fuos 5 8os, Where fo o, =
f s {s2} f(s2){s1}f and g5, 5, = g(s1) {52} g(s2) {51} 8-

fs1os, ISthesame asact f except that the consequences of s1 and s, are exchanged.

Proposition 18. If (= is complete on constant acts, reflexive, satisbesP5, EUN, LM
andRM), then(ANO = TS).

Again, one can verify that this new axiom is encompassed by Savage's framework and
is compatible with our set of axioms:

Proposition 19. (P1 + P2+ P3+ P4) = ANO.

The merit of ANO as opposed to TSis to be expressed in terms of acts. The necessity-
based weak dominance rule fulfills al the above introduced properties: Proposition 16
has shown that EUN is respected and TS is obviously satisfied for a single possibility
distribution.

Proposition 20. Let - x be a weak order oiX and N be a necessity measure 2fi. The
relation - defined byf - ¢ < N([f ZZx g]) = N([g Zx f]) satisfiesANO.

Putting together the above results, and especially Lemma 2, we are now in position to
wrap up an ordinal possibilistic counterpart of Savage’s axiomatics, assuming two non-null
states:

Theorem 6. - is complete and satisfi€®I, A1, A5, LM, RM, EUN, ANO, 2NN) if and
only if there exists a weak orderp on X and a non-trivial necessity measure such that

forany f,g e X5, f mg & N(f zpgh) = Ndg Zp f.

The possibility distribution laid bare in this representation theorem is qualitative in the
sense that it is unique only up to a monotonic transformation. If there is only one non-null
state, the trangitivity of - p isno longer ensured. But, since no state of possibility 1 isnull
when using the previousrule, the only case that escapes Theorem 6 is the deterministic one
(aunique s* exists such that 7 (s*) > 0, where 7 is the possibility distribution associated
to N). Then, the comparison of acts f and g exactly reflects the preferences between
the consequences f(s*) and g(s*). Conversely, if N is deterministic, 2NN is obviously
not satisfied. In this degenerate case, any complete and quasi-transitive comparison of
consequences can be used.

Theorem 6 isalso an ordinal Savage-likejustification of possibility theory. Interestingly,
it is not the only available one: [19] also provides a Savagian axiomatization of possibility



D. Dubois et al. / Artificial Intelligence 148 (2003) 219-260 245

theory, namely using afinite and totally ordered scale, where both possibility and necessity,
as well as utility degrees lie. On the contrary, a unique comparative necessity relation
is obtained here as representing the decision maker uncertainty, without assuming the
existence of such acommon value scale.

5.4. The possibility-based weak dominance rule

At this point, one should wonder whether the likely dominance rules based on the dual
of anecessity relation, i.e., the possibility-based weak dominancerules, of the form:

fzeg & O(fzxel)=0(gzx f)

are as interesting as those based on necessity relations. First, note that they satisfy the
following property:

VA,BCS (fzgoaand(fZgs = (fZ8ans

that looks like EUN (replacing U by N) but that is much more difficult to justify. It is
actually sufficient to replace EUN by this condition in the previous theoremsto have afull
characterization of the Possibility-based dominance rule. Nevertheless, this result is not
really interesting, since the decision rule based on a possibility measure turns out to be
highly drastic.

The relation on events induced by this rule is defined by A =, B < N(AN B) >
N (B N A). It can be checked that the negligibility property holdsfor this relation. To see it
notethat if A, B, C aredigoint sets, N(AU B) > N(C) and N(AU C) > N(B), then both
AU B and AU C containthe set O = {5, w(s) = 1} (acharacteristic property for having
N(AUB)>0and N(AUC) > 0). So A contains O aswell,and N(A) > N(BUC) =0.
But assoonas(s1) = m(s2) = 1for s1 # so, al statesarenull, because N(s) =0, Vs € S.
However, not all eventsare null, but they only contain null states, which sounds strange. If
thereis only one maximally plausible state, only this stateis not null.

It turns out that this decision rule only considers the states that receive a possibility
degree of 1, and never takes the less plausible ones into account, even if they are
not impossible (i.e., even if some graded plausibility is assumed, some states having
intermediary possibility degrees). More precisely:

Proposition 21. If - is defined from a complete relationy on X and a possibility
measurel by f —g < I ([f =x g]) > 1([g —x f]) then3s € S such thatlT({s}) =1
and

VigeXs, frng & f(&)Ixgl).

Due to completeness, f > g < Vs € S suchthat IT({s}) =1, f(s) >=x g(s). Thisis
a unanimity rule on the set O = {s, 7 (s) = 1}. By Proposition 21, the possibility-based
dominance rule is very undecisive in general, since whenever an act f does not strongly
dominate an act g for each of the most plausible states, f and g will be indifferent. In other
words, the hierarchy of dominant setslaid barein Corollary 4 reducesto two levels. O and
its complement which, being null, never brings any further discrimination between acts.
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Contrary to the necessity-based weak dominance rule, that may resort to states of lower
plausibility when the act cannot be discriminated on the set of most plausible states, the
possibility-based weak dominance rule makes it useless to introduce shades of plausibility
in the representation of the decision maker knowledge. This decision rule coincides with
the fusion rule in Maynard-Reid and Lehmann [36] when al states are equally plausible,
but these authors do break ties using lower level coalitions of states (sources in their
terminology). From the above discussion it is also patent that the possibility-based weak
dominance rule induced by the possibility distribution 7 is the same as the (trivial)
necessity-based weak dominance rule with respect to the possibility distribution 7, such
that 7. (s) = 7w (s) if w(s) = 1, and 74 (s) = 0, otherwise, that is with one decisive set
O={s,m(s)=1}andanull set Z= S\ O.

6. Conclusion

Regarding the question “Is it possible to make decisions on the basis of arational and
pure qualitative model that does not presuppose any commensurability assumption?’, the
results presented in this paper are at the same time positive and negative:

e On the one hand, our axiomatic study showsthat yes, if ordinal invarianceis accepted
as anorm for qualitative models, then the likely dominance rules (and only them) are
obtained and the postulate of quasi-transitivity identifies possibilistic structures as the
only uncertainty structures compatiblewith such rules. The presence of atop oligarchy
makes this approach close to those that decide on the basis of the most plausible states
only [5,7,8,45,46].

Moregenerally, our system of postul ates defines aunderlying uncertainty theory which
is the one precisely at work in non-monotonic logic. Our work can be understood as
providing a Savage-like foundation of the KLM preferential entailment [12].

e On the other hand, the identification of hierarchies of oligarchies show that, no, such
a model is not decisive enough, unless one is in a situation of quasi-certainty: as
soon as for two equally plausible states the consequences of two actsyield conflicting
preference profiles, the two acts are incomparable—so, the larger the oligarchies, the
less decisive the rule. In other terms, acts cannot be completely ranked using a weak
order, unless oneisin a situation of quasi-certainty where the states of the world can
be linearly ranked in terms of plausibility. In the latter case, basing almost al choices
between acts on their consequence on the unique most plausible state may sound very
adventurous.

Therefore, if pure qualitative decison making cannot be efficient except in very
particular situations, is it possible to weaken our initial framework in order to get more
useful decision rules? A first idea would be to partially relax the quasi-transitivity of
> on X5. In practical applications, most of the acts in X° are purely imaginary and
perhaps not even feasible. Hence, one can be tempted to require quasi-transitivity only
on feasible acts. However, using Example 3, we could show that this does not provide new
interesting decision rulesaslong asthere exists afeasible subset of acts X' where X’ € X
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contains at least three distinct elements and S’ C S contains at least 3 non-null states. We
could also consider a relaxation of quasi-transitivity into acyclicity, i.e., Vfo, ..., fi € X5
(Vi =1,...,k, fi—1> fi) = not(fr > fo)). Nevertheless, borrowing results obtained
in Socia Choice Theory [43], it can easily be shown that qualitative decision models
compatible with acyclicity also have very specia features. For example, they necessarily
provide some state with an absolute veto, thus limiting the role of other states.

Thelast option isto relax axiom Ol, which turns out to be a very demanding condition.
This axiom includes a “qualitative” requirement (f =~ g only depends on the preference
order for each state, and not on the values of the consequences i.e., preference is
ordinal) but alsoan “independence-of -irrel evant-alternativesidea’ (f - g only dependson
consequences of type f(s), g(s), s € S, i.e., = is context-independent). The most natural
weakening of Ol isto cancel the “independence” side of the condition. For instance, the
decision rules proposed by [8] cancel this condition without making any commensurablity
hypothesis, since they compare acts on the basis of the consequences provided by the
most plausible states only—using for instance a maximin criterion. Further research along
this line may consider the use of less plausible states when the most plausible ones are
indifferent.

Cancelling of the independence side of Ol has also been proposed in the framework of
multicriteriadecision making in order to overcome difficulties due to Arrow-like theorems
(see, e.g., [6]). It should be useful to follow the same path. As afirst set of examples, one
could consider the following relations:

fAfe & [fzhlzilgzhl
fAye & [hzglzolhz f1,

where h € X is a reference point within XS used to specify the aspiration levels of the
DM, for each state of the nature. The idea underlying these rules is to compare acts by
evaluating their relative capabilities in satisfying or missing the DM aspirations. Another
interesting set of examplesis given by:

fATg & VxeX, [froxlzolgzxl,
fA"g & VxeX, [xZglzrlxz fl

Such rules can be seen as qualitative counterparts of the so-called stochastic dominance
relation (see, e.g., [34]) used in decision under probabilistic uncertainty. A more systematic
investigation of such decision rules, which determine the relative merits of acts by
comparing them to prescribed reference profiles of consequences, seems to be of major
interest.
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Appendix A

Proof of Proposition 1. Suppose A, B suchas A € B. From thereflexivity of - 4, we get
A >4 A. So, by monotonicity: (ANB)UA =4 A,i.e,sinceAC B, B, A.

A =4 BimpliesAUC =4 B by monotonicity. Since AUC ~ 4 B impliesB =4 A by
monotonicity, and thus contradicts A = 4 B,weget AUC >4 B.

Similarly, A =4 B U C implies A =~ B by monotonicity. Since A ~4 B implies
B U C -4 A by monotonicity, and thus contradicts A =4 BUC,weget A >4 B. O

Proof of Proposition 2. The transitivity of- (respectively~) is an obvious consequence
of the trangitivity of - and the definition of >~ (respectively ~).

Weak Unanimity (f = g)4 and (f - g)p means that, for any h: fAh -, gAh and
fBh = gBh.Sinceitisassumedthat AN B =@, P2 allowsustowrite fAf Bh - gAf Bh
and gAf Bh - gAgBh. By trangitivity, thisimplies: fAfBh - gAgBh for any 4, i.e,
(f Z8)aus.

Left and Right MonotonicityP1 ensures that = p is transitive, SO0 monotonicity can
be soundly defined. Consider A C S, f, f/ € X5 such that Vs € Af'(s) >=p f(s). By
P3, we get Vs € A,Vh, f'{s}h = f{s}h. Since weak unanimity holds, it holds that
f'Ah = fAh,Vh.So, by P2, f'Af = f.When f = g, weget f'Af - g by transitivity.
Similarly, consider g, g’ € X5 suchthat Vs € A, (g > &' isy- Since weak unanimity holds,
we get gAh = g'Ah,Vh. S0, by P2, ¢ = ¢’Ag. When f = g, weget f =g g by
trangitivity. O

Proof of Proposition 3. P2 writes: YA C S, Vf, g, h,h' € X5, (fAh = gAh < fAR -
gAh'). Consider arbitrary A C S, f,g,h,h’ € X5. Let usfirst provethat (fAh, gAh) =
(fAR', gAR'). Indeed:

e Foranys c A: fAh(s) = fAR (s)(= f(s)) and gAh = gAh' (= g(s)). Hence, for any
s € Al fAh(s) =p gAh(s) < fAR (s) =p gAR (s).

e Forany s € A: fAh(s) = gAh(s)(= h(s)) and fAh'(s) = gAh'(=}(s)). Since =
isreflexive: both fAh(s) —p gAh(s) and fAR'(s) 7o p gAR (s) hold. Hence, for any
s € A,itholdsthat: fAh(s) =p gAh(s) & fAR' (s) = p gAN (s).

We get symmetrically Vs € S, gAh(s) =—p fAh(s) & gAh'(s) =—p fAW (s). Hence,
(fAh,gAh) = (fAh', gAR’) and Ol can be applied—it implies that (fAh = gAh <
fAW = gAR'): werecognize the expression of P2. O

Proof of Proposition 4. P4 writes. VA, B € S,Vx,y,x’,y’ € X such that x =p y
and x’ =p y/, xAy =~ xBy & x'Ay’ = x'By’. Let us choose arbitrary A, B € § and
x,y,x',y' € X such that x =p y and x’ >p y’. It presupposes that P5 holds, otherwise
Proposition 4 istrivial.

First, noticethat, (xAy, x By) = (x’Ay’, x'By’). Indeed:

e Forany s € AN B: xAy(s) = xBy(s) = x and x’Ay’(s) = x'By’(s) = x’. Since =
isreflexive, soisalso z—p: x —p x and x’ = p x’. That isto say xAy(s) Zp xBy(s)
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and x’Ay’(s) 7—p x'By'(s). Forany s e AN B: xAy(s) =xBy(s) = y and x’Ay/(s) =
x'By’(s) = y’. The same condition results.

e Forany s € AN B: xAy(s) = x, xBy(s) = y, x’Ay'(s) = x’, x'By’(s) = y’. Since
x>=pyandx’ >py,weget xAy(s) = p xBy(s) and x’ Ay'(s) > p x'By'(s).

e Forany s e AN B: xAy(s) =y, xBy(s) = x, x’Ay'(s) = ¥/, x'By’(s) = x’. Since
x>=pyandx’ >py,weget xBy(s) =p xAy(s) and x' By’ (s) >=p x'Ay'(s).

So, whatever s, [xAy(s) 7-p x By(s) <& x’Ay'(s) ZZp x'By’(s)) and (x By (s) ZZp xAy(s) &
x'By’(s) = p x' Ay'(s))] holds. So, (x Ay, x By) = (x’Ay’, x’By’). We can apply Ol and get
P4: (xAy = xBy & x'Ay' = x’By’). O

Proof of Proposition 5. Since - 4 isaconfidencerelation, it is reflexive and it holds that
S> @ andthat VA C S, S — 4 A (Definition 1 and Proposition 1).

Proof of the reflexivity of: the likely dominancerule gives (f = f < [f =x f1Za
[f =x f1. Hence, the reflexivity of > 4 impliesthe reflexivity of -.

Proof of the equivalence ¢f p and~—x: let f,, f, betwo constant acts, corresponding
to consequences a and b respectively. The likely dominance rule gives f, =~ fp < [a ZTx
bl A [b ox a]. Suppose first that a —x b: it follows that [a —x b] = S. So for the
confidencerelation = 4, it holdsthat [a —x b] 74 [b 7-x a]. Hence we get: f, 7~ f5, i.€,
a 7 p b. Now, suppose that a 7—x b does not hold. Since —x is assumed to be complete,
thismeansthat b ~x a,i.e, [b Zx a]l = S and [a ZZx b] = . Since, by definition, S > 4 @,
it followsthat f, > f,,i.e,b>pa

The completeness of: for constant acts directly derives from (i) the equivalence of
= p and Zx, and (i) of the completeness of = x.

Proof of Ol: consider four acts f, g, f', g’ € X5 such that (f,g) = (f', g). It holds
that [f —x gl=[f"z=x gland[g Zx f1=1[g Zx f']. Then, using the likely dominance
rue, (f Ze e [f ZxglZalgZx fHad(f' Ze & [f Zx 8l Zalg Zx f1). Thus
(f =g < f' = g) which provesthat Ol is satisfied by the likely dominancerule.

Proof of LM: consider A, f, f', g suchthat Vs € A, f'(s) =p f(s) and f = g. Since
= p and = x coincide, weget Vs € A, f'(s) =x f(s)

(i) Forany s € A, f'Af(s) = f(5). S0, [f'Af Zx glNA=[f Zx gl NA.

(i) Forany s € A, f'(s) =x f(s), S0, assuming the quasi-transitivity of ~x, for any
s € A such that f(s) Zx g(s), f'(s) Zx g(s) holds. Hence, [f Zx g1NA S [f'Af Zx
gINA.

From (ii) and (i), we get: [ f Zx gl S [f'Af Zx gl which alsoreads [f’Af ZZx g] €
[f Z=x g]. Since Zx is complete, the latter inclusion writes [g >=x f'Af]1 C [g >x f1,
which implies that [¢ 7—x f'Af] € [¢g Z-x f1. On the other hand, using the likely
dominancerule, f =~ ¢ < [f —x gl =4 [g ZZx f1. By monotonicity of - 4, we get first
[f Zx gl ZalgZx fPAf](sincelg Zx f'Af1 < [g Zx f1), and by monotonicity again,
weget [f'Af Zx gl Zalg Zx ffAfl(since[f Zx gl S [f'Af Zx gl). Since the likely
dominanceruleis used, thismeansthat f'Af = g, which provesLM.

The proof of RM isvery similar: oneshowsthat [ f ~—x g’ AglNA=[f x g]NA and,
by quasi-transitivity of = x, [f =x glNA C[f =x g AglN A. Thisimplies[f = x g] C
[f —x g’ Ag] and by completenessof = x [¢g'Ag Z—x f1< [g Zx f1. So, by monotonicity
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of Za, [f Zx gl Za [g Zx f1implies [f Zx g'Agl ZZa [¢'Ag ZZx f1, which by the
likely dominance principle, meansthat f - g'Ag.

Proof of P2 andP4. the likely dominance rule builds areflexive preference that satisfies
Ol. So, by Propositions 3 and 4 P2 and P4 hold.

Proof of P3: consider two consequencesa and b, and anon-null subset A of S. Assume
that a Z—p b, i.e., by coincidence of —x and = p, a —x b. The likely dominance rule
implies that, whatever , aAh >, bAh < S -4 B for some B 2 A. S -, B obviously
holds (- 4 is a confidence relation). So, aAh = bAh whatever h, i.e., (a 2Z b)a. Thus,
azpb=(azb)a.

Conversely, suppose that aAh =~ bAh for any h and that b > p a, i.e., by coincidence,
b >x a. Using the likely dominance rule, aAh > bAh and b >x a imply that A -4 S.
Consider now two acts f and g and let us apply as follows the monotonicity of = 4:
A=, Simpliesthat (AUAN[f Zp gl) Za S, and thusthat (AU (ANT[f Zp g) Za
(AU(AN[gzp f1). Hence, using the likely dominance rule (f Ah - gAh) whatever
h,i.e, (f Z g 4. Since we did not make any restriction on f and g, this means that A
is null, which contradicts our hypothesis. Hence, when A is not null, (a 77 b)4 implies
not(b > p a). Since 7~ p iscomplete, thisimpliesa = p b.

Proof of P5: P5 is a direct consequence of the non-triviality of =~ x (3x,y € X, x >=x y
and of the equivalence of 7~ x and 77 p: we deduce x > p y, whichimpliesP5. O

Proof of Theorem 1. Main Result:First, notice that the definition of - p from - (Eq. (5))
is self-sufficient. - can also be soundly defined from - using Eq. (6) since P4 holds due
to Proposition 4.

Suppose first that P5 holds and consider two consequences x and y such that x >p y.
To get the main result, it is sufficient to show that, whatever s, f(s) Z—p g(s) < (x[f Zp
g1y)(s) Zp (x[g Zp F1y)(s). Indeed, if it is s0, (f.8) = (x[f Zp 1y).x[g Zp f1y
(recall that ~—p is complete) and Ol enables the deduction of f - ¢ < x[f Zp gly I
x[g Zp fly. By deéfinitionof -, [f Zp el Zr g Zp f1e xLf Zp gly Zxlg Zp fly.
Hence, wewould get f = ¢ < [f Zr gl Ze [g Zp f1-

Let usshow that ¥s, f(s) Zp g(s) & (x[f Zp g1V)(s) Zp (x[g Zp F19)().

— Any s such that f(s) ~p g(s) belongsto [f Z—p gl andto [¢g ZZp f]. Hence x[f = p
gly(s) = x[g Zp fly(s) = x. So, by reflexivity of ~ and thus of ~p we have:
x[f Zp gly(s) ~px[g Zp fly(s).

— Any s such that f(s) =p g(s) belongsto [f = p g] and does not belong to [¢g 7~ p
f1. Hence x[f Zp gly(s) =x and x[g Zp fly(s) = y. Since x ~p y, x[f Zp
gly(s) >p x[g Zp fly(s).

— Similarly, for s suchthat g(s) =p f(s), weget x[g =p fly(s) =p x[f ZZp gly(s).

Since 7, p isassumed to be complete, these threeitemsprovethat f (s) =—p g(s) < x[f Zp
gly(s) Zp x[g Zp fly(s). So,wecanderive f = g & [f Zp gl Zr g Zp f1

Finally notice that, when P5 does not hold, but - p is complete, it holds that: V£, g €
X5,Vs €S, f(s) ~pgs). ThusVf, g, [f Zpgl=I[gZp f1=S.ThusVf g [f Zp
gl lg mp f] (reflexivity of >~ and thus of ;). Moreover, by Ol and reflexivity of
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Zweget fZg Vg From*Vf, g [f ZpglZrlgZp fland Ve, g, f 2 g", wecan
derive"Vf, g, [f ZpreglZrleZr f1& f 28"
Reflexivity ofz . : 7 isreflexiveimpliesthat, VA, x Ay —~ x Ay, i.e,that A =~ A.
Non-triviality of —,: by P5, x >p y. S0, x > y,i.e,, xSy = x@y: weget S > @.
Preadditivity of>-; . Consider 3events A, B, C suchthat AN (BUC)=0.B=; C &
xBy - xCy. Since AN (BUC)=¢ and P2 holds, we have xBy - xCy < xBxAy =
xCxAy,whichmeansB-; C < AUB~, AUC. O

Proof of Corollary 1. Theorem 1 provestheif part. The proof of Ol in Proposition 5 does
not use any hypothesison =74 and 2 x, o, it provestheonly if part. O

Proof of Proposition 6. Under P5, 3x,y € X suchasx =p y. S0, A= B < xAy 7L
xBy. Moreover, Ol and 7, complete on constant acts imply P2 (Proposition 3) and
fzyelfzprelzilgzp f1(Theorem1). B

Monotonicity of7 ;. Supposethat A 77, B,i.e, xAy 7 xBy. By LM, weget x Ax(AN
C)y = xBy,i.e, AUC 1 B.Supposethat A—; BUC,i.e,xAy =~ x(BUC)y.ByRM,
weget xAy - xBy,i.e, A~ B.

Null eventsA isnull = @ —; A holdsin any case. Indeed, suppose that A is null. By
definitionVf, g € X5, (f = g)a, i.e, fAh ;= gAh whatever f, g, h; a particular case is:
yAy Z xAy,i.e, ¥ - A. Conversely, suppose that @ >~; A. By monotonicity of =~ , we
get ¥ =1 AN B, whatever B, and by monotonicity again, AN C =y AN B, whatever
B, C. By additivity of -, this implies (AN C)U A =7 (AN B) U A. Assume that
CUB=A,and C N B =.Then, since’~p iscomplete, letting C UA =[fAh >~ p gAh]
and BUA = [gAh —p fAh], weget by the likely dominancerule f Ah - gAh. Since we
did not make any restriction on f, g, i, thisimpliesthat A isnull.

Proof of P3. Supposethat (a - b) 4 and that not(a - b). Since - iscomplete on constant
acts, thisimpliesthat b > a. By definition, (a = b) 4 meansthat, whatever h, aAh - bAh.
Withh =a,wegeta - bAa. By P4, itentails@ —; A. Thus, A isnull (seethelast proof).

We have shown that (a 7Z b) 4 and not(a - b) implies A null, i.e., that (a 7 )4 and A
not null impliesa - b
Conversely, let us show that a - b implies (a =~ b) 4. Two cases are to be considered.

First case: a = b. Sinceit holdsthat, for any A, A =1 ¢, we get by P4: aAb = b and by
P2:aAh =~ bAhforany h,i.e, (a7 b)4.

Second case: a ~ b. So, whatever A and h, [aAh Z-p bAh]l = [bAh Z_p aAh] = S.
By reflexivity of 77, and the likely dominance rule, we get aAh - bAh whatever h, i.e,
(azb)a. O

Proof of Theorem 2.

(=) We know by Theorem 1 that the relation - p and - defined by Egs. (5) and (6)
aresuchthat: f ~y < [fzp gl g Zp f]. Moreover, we know by Proposition 6 that
>~ 1, is an additive and monotonic confidence relation.

(<) We know by Proposition 5 that the preferenceon XS defined by alikely dominance
rule from a monotonic confidence relation and a complete preference on X is reflexive,
satisfies OI, LM, RM. We also know that >~ x and - p coincide, so the restriction to =~ to
constant actsis complete. O
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Proof of Propositions7, 9and 8. By P5, 3 x,y € X: x =p y. S0, by Eq. (6), A 71
B < (xAy) = (xBy). Since a likely dominance rule is used, (xAy) =~ (xBy) iff
[xAy —x xBy] 4 [xBy Zx xAy]. Findly, since we know that zx and ’Zp coincide
(Proposition 5), A =, B < [xAy =p xBy]l o [xBy Zp xAy] & AUB -, BUA
(indeed, [xAy =—p xBy] = AU (AN B) and [xBy =p xAy] = BU (AN B)).

If >4 is preadditive, AUB ~4, BUA < A =4 B (deleting A N B on both sides of
the inequality), so A —; B < A =4 B. Conversely, if - 4=, the preadditivity of >~ 4
is an obvious consequence of the preadditivity of >, (that itself holds since any likely
dominancerule based on areflexive - 4 buildsareflexive 7 that also satisfies Ol (proof of
Proposition 5), and thus satisfies P2 (Proposition 3), that directly implies the preadditivity
of =1 (seethe proof of Proposition 6)).

If we now assumethat AUB=S,i.e, ANB=@, AUB=A and BUA = B. S0,
AZLB& AUBZ,BUAisthesameasA=;  B& A B, O

Proof of Proposition 10 . From A5, we know that 3x, y, z such that x >p y >p z. By
Theorem 2, we know that the preference can be represented by a likely dominance rule
So, fmeg<fzpglzLlg Zp f]. Thanksto Proposition 6, = is preadditive and
monotonic. In particular, the property of preadditivity impliesthat: f - ¢ < [f >p gl 7L
[g>p [

Suppose that 77 p is not transitive, i.e, that there exist x1, y1,z1 such as x1 >p y1,
x1~pziandy; ~p z1. Let A and B betwo non-null events. By Proposition 6, thisimplies
that A >; #and B > ¥. Let f, g, h betheactsdefined by: f =x(ANB)x1(ANB)z1(AN
B)z, g = y(A N B)y1(A N B)x1(A N B)z, h = z(A N B)z1(A N B)y1(A N B)z. Since
[f>pgl=A,lg>p fl=0and A >, J, weget f > g. Similarly, since [g >p h] = B,
[h>pgl=0and B >, }, weget g = h. The quasi-trangitivity of 77 implies f > h: since
[f=phl=ANnBand[h>p f]=0thisimpliesANB >p@,i.e, ANBnotnull. O

Proof of Corollary 2. Property 10 impliesthat O = ({B, B not null} isnot null. Hence,
O > ¥ (Proposition 6): O cannot be the empty set since ¥ ~. @ by reflexivity.

If A isnot null, then O isasubset of A by construction. Conversely, since O >, ¢ and
O C A, the monotonicity of =~ alows the derivation of A > @, i.e., by Proposition 6: A
not null.

By monotonicity of =y, O C A implies A 1 O. Suppose that A = O: we get
AN O > ¢ by preadditivity of ;. So, AN O is not null: this yields a contradiction
since any non-null event must contain 0. O

Proof of Proposition 11. If there are two non-null states, then, thereisno set O C S such
that A not null & O C A. Hence due to Corollary 2 the set of axioms A1, OIl, LM, RM,
A5, 2NN imply that ~p is transitive. Since Al also requires the completeness and the
quasi-trangitivity of > p, A1, Ol, LM, RM, A5, 2NN impliesthat - p isaweak order. O

Proof of Proposition 12. A5 requiresthat X contains at least three elements x, y, z such
that x = y, x > z, y = z. S0, by Definition 6, A =1 B < (xAy) =, (x By).

Let A,B,C CSbe3eventssuchthat ANB=ANC=BNC=@y,AUC > B,
and AU B >, C and consider the six following acts: ab =x(A U B)y,ac=x(AUC(C)y,
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bc=x(BUC)y, a=xAy, b=xBy, c=xCy.Itholdsthat AUC =; B < ac>b
and AUB > C < ab > c. Since A, B and C are digoint, one can build the acts:
f=xAyBzCy,g=yAzBxCy,h =zAxByCy.Itiseasy to check that [(f, g) = (ab, ¢)],
[(g,h) = (ac, b)]. Hence by Ol weget f > ¢ and g > h. By transitivity of >, thisimplies
that f > h.Since [(f, h) = (a, bc)], Ol impliesthat a > be,i.e., x Ay = x(BUC)y. Thus,
A=, BUC. O

Proof of Lemma 1. Suppose that O is decisive in S’ and for x >p y build the acts
x0y(S’\ O)h and x(S'\ O)yOh. Since O is decisivein ', we get xOy(S'\ O)h >
x(8"\ O)yOh,Vh. So, it holdsthat x Oy(S’\ O)y = x(§'\ 0)yOy,i.e, O =1 S\ O.
Conversely, supposethat O >, S'\ O and consider f, g suchasVs € O, f(s) = p g(s).
Consider the acts £S'h and gS'h. It holds that O C [fS’h >p gS’h] and [gS'h >p
fS'h] € 8\ 0.By monatonicityof =1, O > S'\O gives[fS'h>p gS’h]l > [gS'h >p
fS'h]. By additivity of > , thisisequivalentto [ fS'h =p gS’h]l =1 [gS'h =p fS'h],i.e,
fS'h = gS’h. Since we did not make any assumption on k, thismeans (f > g)s. O

Proof of Theorem 3.

Unicity of a predominant evenAssume x >=p y. Suppose S’ contains at least two
distinct predominant events O; and O,. On the one hand we get xO1y(S’ \ O1)h >
yO1x(S8"\ O1)h, Vh since Oy isdecisivein S’. On the other hand, since O is predominant
in §” and distinct from 01, there exists at least one state s € 02\ 01 that isavetoer. Thus,
thereisat least one state s € S’ \ O that isavetoer. Thisfact contradicts x 01y (S’ O1)h >
yO01x(S" O1)h, Vh.

Existence of a predominant eveRecall that >, isamonotonic negligibility relation.
Let usfirst remark that if A C S’ isdecisivein §” and B C S’ isdecisivein §’,then AN B is
non-empty and decisivein S’. Indeed, thanksto Lemma 1 the conditionimpliesthat A >,
ANS and B> BNS'. Writeit asfollows(ANB)U(ANB) =1 (ANBNS)U(ANB)
and (ANB)U(ANB)>; (AN BNS)U(AN B). By monotonicity of >~;, we get
(ANB)U(ANB)> (ANBNSYUANB)and (ANB)UANB)UANBNS) >1
(A N B). By negligibility, we get: (ANB) =, (ANBNS)U(ANB)U(ANB),i.e,
(ANB) >, S\ (AN B). So, (AN B) is decisive in S’ due to Lemma 1. It cannot be
empty: otherwise we would get @ =, S’, which contradict the assumption that S’ is not
null (indeed, from Proposition 6 we know that ¢ =, S’ < S isnull).

Since S” isnotnull, S’ -, @ (applying Proposition 6). From Lemma 1 we thus know that
there exist at least one decisiveeventin S: §" itself. So, O = (4 4., 1\ - theintersection
of al the sets decisivein S’ is a non-empty set decisivein S’. Let us show that any state
s € O isavetoer. Consider f, g such that f(s) ~p g(s). s belongsto [fS'h >=p gS'h].
Suppose that gS'h > fS'h, which is equivalent to [gS'h >=p fS'h] = [fS'h =p gS'h].
Sinces € [fS’h =p gS’hland[gS’h =p fS'h] C S\ {s}, themonactonicity of =, implies
§"\ {s} =L {s}. So, s cannot belong to O = (4 4., sn4- Thisyields a contradiction: s
must be a vetoer.

O =4, 4>, 514 iSthusapredominant setin S". We already know that it is unique.

Proof of the properties 0©: let A, B C §’ besuchthat AN B =@ and A =, B. By
monotonicity of =, A >, B implies S’ \ B >, B. Thus, by construction of O, O must
beincludedin S’ \ B and thusdigjoint of B.
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Let A,BC S’ besuchthat AN B =¢ and O C A. Since O is decisive, it holds that
O >1 8\0.SinceANB =@, O C Aimpliesthat B must beasubset of S\ O. Therefore,
O =1 S\ O and the monotonicity of =, impliesA ~; B. O

Proof of Corollary 4. Theexistence of the top predominant event 04 isdueto Theorem 3.
Suppose that the property holds until level j. So, there is a O; predominant in §; =
S\ (01U---UO0;_1). Then, two cases must be distinguished:

(i) Sj+1=S;\ O;j isanull event, then the hierarchy is: Oy, ..., Ojand Oj11=Sj41.

(ii) Suppose that S;41 is not null. Thanks to Theorem 3, there is a unique event 041
predominant in S;.1, that also satisfies the three additional properties. This process
can be iterated until the set of remaining statesisanull event. O

Proof of Theorem 4. Theresultisderived from Corollary 4. The basic ideaisto show that
under completeness and transitivity of -, any predominant event isasingleton. To thisend,
suppose there exists at least two states s and s’ in the same predominant event. Consider
three elements x, y, z of X such that x >~p y >p z (A5) and the three following acts:
f=vy{s}z, g =z{s}x,h = x{s}y. Since s isavetoer, f(s) >p g(s) impliesnot(g >p f).
7~ being complete, we get f = g. Using similar arguments, g(s’) > p h(s’) implies g =~ h.
Henceweget f = h since - istrangitive.

Ontheother hand, [f p h]=@ and [ Zp f]1=S. Since S >, ¥ (Proposition 6), we
get h > f,which contradicts f =~ h. O

Proof of Proposition 13. Reflexivity and completeness’ofare direct consequences of
the reflexivity and completeness of any measure, and of necessitiesin particular.

Quasi-transitivity of—: let us consider three acts f, g, h. Since the relation Zp is a
weak order, S can be partitioned as follows:

={s, f(s) =p g(s) =p h(s)}
={ f(s)=ph(s)=pgs)}
= {s.8() > p f(s) ~p h(s)}

{s h(s) >p f(s)>p g(s)}
= {s, h(s) >p g(s)>p f(s)}
={s, f(s) ~p h(s) =p f(5)}
M= s, f(s) ~p g(s) ~p h(s)}.

Supposethat f >~ g, ¢ = h andthat not f > h, i.e, h = f dueto the completeness of .
Using the necessity-based dominance rule, thiswrites:

—_———— ——

s, f(s)>p g(s) ~p h(s)
s,8(8)>p f(s)>ph(s)
s,8(s) >=ph(s)>p f(s)f,
s, h(s) =p f(s)~p g(s)
{s. f(s) ~p g(s) =p h(s)},
= {5, g(s) ~p h(s) »p f(s)},

bl

bl

—_—
———

)

N~ T mU ™
|

o f>g N(fzZgh>Nlgxz fD, ie, O(f > g > I(g > f1). Therefore:
max(IT(A), [1(B), I[1(C), I1(G), [1(K)) > max(IT(D), I[1(E), [T(F), [T(I), [T(L)).

e g>=h: N(g = h]) > N([h = g]), that is to say: max(IT(A), [1(D), [1(E), [1(F),
I1(J)) > max(I1(C), [1(G), [T(H), IT(I), [T(K)).

e h= f1 N(th = f1) > N(Lf = h]), that is to say: max(I1(F), [1(G), [T(H), I1(I),
I1(L)) > max(I1(A), I1(B), I1(C), [1(D), [1(J)).
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We thus get a system of equations of the form:

max(a, b, c, g, k) > max(d, e, f,i,1)
max(a,d, e, f, j) > max(c, g, h,i, k)
max(f, g, h,i,l) > max(a, b, c,d, j)

which isinconsistent.

Proof of P2, P3, P4, P5, Ol, LM, RM: see the corresponding proofsin Proposition 5, that
hold here since (i) the weak order - x isobviously reflexive, quasi-transitive and compl ete
and (ii) therelation - 4: VA, BC S, A~ 4 B < N(A) > N(B) isamonotonic confidence
relation. O

Proof of Proposition 14. Let usdenote L = {«, s € S, 7 (s) = «} and rank the elements of
Lsothat g > a0 > -+ > 0.

Let usshow that O; = {s, 7 (s) = «;} isapredominanteventin S; = S\ {s, 7 (s) > «;},
of any i < j. Obviously, I7(0;) = o; and I1(S; \ O;) = a;41. Hence I1(0;) > I1(S; \
0;) = a;j+1, that isto say, since O; and S; \ O; aredigoint, O; > S; \ 0;. S0, O; is
decisivein S;. Let us finaly show that any state s* with possibility «; is a vetoer in S;.
Consider f, g such that f(s*) —p g(s*) and for any s € S\ S;, f(s) = g(s). It holds
that IT([f >p g]) = «; (Since s* belongsto [f =p g]) and IT([g =p f]) < o; (Since
() >a; =>s€S\S;i = f(s)=g(). S0, [I([f =p gD =g >p fD, i€, f g s
isavetoer. O

Proof of Proposition 15. Aisnull if andonly if V£, g, (f 7= g)a. IltwritesIT([f =x g]N
A)>T([g>x f1NA).Using f, g suchthat g(s) >x f(s) on A, ityields IT(¥) > I1(A),
hence IT(A) = 0. So the maximal null set Z is the maximal set with I7(Z) = 0, that is
Z ={s, (s) =0}. Theconverseisobvious. O

Proof of Proposition 16. VA, (f Z @)a < ITI(AN[f =p gD) =2 MT(AN[g >=p f]).
So, from (f Z g)a and (f Z g)p we get II(AN[f >p gh =2 I(AN[g>p f]) and
HBO[f>pghZ=H(BN[g>p f1). S0, MXUT(AN[f >p gD, TBN[f>pgDh) =
max(II(AN[g>p fD, I(BNIg>p fD),i.e, T(AUB)N[f >pgl) 2M(AUB)N
[g>p fD,thatistosay, (f Z g aus. O

Proof of Proposition 17. If there is no null state then VA A0, A >, . So Z = ¥ and
the result trivially holds. Now suppose there are null states, and let Z = {s, {s} ~ ¥}.
If s1,520€ ZthenVf, g, (f 2 &5y @nd (f 2 )15, Using EUN, (f 77 8)(sy,50)- HeENCE
{s1, s2} is null and {s1, s2} ~ ¥. Repeating this scheme, it followsthat Z ~; ¥ and Z
is null, like al of its subsets. Now when A € S isnot true, 3s € A,s > @. Since - is
monotonic, A >, ¥, and A isnotnull. O

Proof of Theorem 5. First assume there are no null states. Then, the confidence relation
~r issuch that A =1 @,VA # @, it is monotonic (since Z; is monotonic), and the
negligibility property holds. As shown in [12,13], the associated inference relation (A
implies B <& AN B >, AN B) satisfies all the postulates of non-monotonic inference
after Kraus et a. [31]. So, according to [16], it can be represented on digjoint sets by a
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family F of possibility distributionssuchthat A >=; B <V € F, I[1(A) > I1(B) (in[15]
the direct link between such families and the negligibility property is provided). The
equivalence f > g & VN e N, N([f = gl) > N([g == f]) is then deduced using Theo-
rem 2.

Now suppose the set of null states is Z. Then it is easy to see that (f 5 g)7 implies
(by EUN) (f = g) since (f = g)z aways holds for a null set (Z is a null set again
by EUN). Hence (f > g) implies (f > g)7, that is, by the likely dominance rule:
([fzpglNZ)UZ > ([gzp fINZ)U Z. Since > ispreadditive, thisis equivalent to
[f =p glNZ > [gp f1NZ.Hencethereisafamily F of possibility distributions such
that Vo e F,II([f =p g1NZ)> T ([g =p f1N Z) Sincethereisnonull setinZ. O

Proof of Lemma 2. From the Representation theorems of Section 4, it only remains to
show that if — iscomplete and (OI, A1, A5, LM, RM, EUN, and TS) hold then =~ can
be encoded by a necessity measure suchthat A >-; B < N(AUB) > N(AU B).

TS+ Al + monotonicity of -, requires that the projection of ~~; on singletonsis a
weak order (indeed, it is reflexive, complete and transitive). So, it can be represented by a
possibility distribution such that {s} 7=, {s'} & 7 (s) > 7 (s’). Let us now show that A =,
B& IM(ANB)>M(BNA),ie, that Az B sup,_,qz7(s) L SUP gz (s). IN
other terms, we must provethat A »—; B iff 3s* € AN B suchthat, Vs € BN A, {s*} 1 {s}.

Supposethat 3s* € AN B such that, Vs € BN A, {s*} > {s}. Then {s*} =, B. Indeed,
by EUN, applied to -z, {s*} 1 {s1} and {s*} zr {s2} imply {s*} =1 {s1,s2}. One
can iterate this procedure on all the elements of B until getting {s*} 71 B. Then the
monotonicity of >~ alowsthederivationof A = B.

Conversely, suppose that the condition is false, i.e., that Vs; € AN B 3sl e BN
A, {s/} =1 {si}. HenceVs; € AN B, BN A > {s;}. Hence, by EUN, BN A >, AN B. By
additivity thismeansthat B >, A, i.e., not(A - B) (therelation iscomplete). This shows
by contrapositionthat A »~; B implies3s* € ANB suchthat, Vs € BNA, {s*} . {s}. O

Proof of Proposition 18. P5 requiresthat X contains at least two elements x, y such that
x >py. Since P5 + Ol + = reflexive are assumed, we know that whatever A, B C S
(AZzp Biff xAy =1 xBy).

Moreover, since EUN holds we know that x Ay ~ xBy and x Ay ~ xCy imply xAy ~
x(BUC)y,i.e,thaa A~y Band A~y CimplyA~; BUC,for AN(BUC)=40.

Supposethat {s1} ~. {s2} and that {s1} ~1 {s3}. SO {s1} ~1 {52, s3}.

Consider thefollowingacts: f = x{s1}y, g = x{s2, s3}y. By definition, f;, s, = x{s2}y
8s1o5p = X{s1, s3}y. Since {s1} ~r {s2}, ANO implies that f, ..s, must be indifferent
t0 gy 5,0 1.6, X{s2}y ~ x{s1, s3}y. Thus {s2} ~1 {s1,s3}. By monotonicity, this implies
{s2} = {s3}. Symmetrically, from the indifference between {s1} and {s3}, we get that
{s3} =1 {s2}. Hence, it holdsthat {s2} ~1 {s3}. O

Proof of Proposition 19. First of al, remark that the postulates of Savage imply that, if
x ~py,thenVs, f,x{s}f ~ y{s}f.Indeed, by S3, weget x{s} f ~ y{s} f if {s} isnotnull,
and, if {s} isnull, x{s}f ~ y{s}f holds by definition.

Consider two states s1 and s2 such as s1 ~p, s2:
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o If f(s1) >p f(52), s1~L s2 ¢ f(sD{s1}f(s2) ~ f(s1){s2} f(s2) (by P4). By P2, we
get f(sp){s1}f(s2){s2} f ~ f(sD{s2} f(s2){s1}f, 1.8, f ~ foy s,

o If f(s2) >p f(s1), the same reasoning proves f ~ fy os,.

o If f(s1) ~p f(s2), we know that the two consequences can be exchanged, i.e.:
flsDlsahf(sls2bf ~ fGsisa) fsD{s2}f ~ f(s2){s1} f(s1){s2} f. By transitiv-
ity, thismeans f ~ fi os,.

So,inany case, f ~ fi<s,. ONecan provein the sameway that g ~ g5, <s,- SO, f 22 8
implies by transitivity of - that fi, <., 7 gs;<s, (and conversely). O

Proof of Proposition 20. First, let s,s' € S be two states and x*, y* € X be two
consequences such that x* >p y*. When the necessity-based dominance rule is used,
{s} 2o {s'} & 7(s) > 7(s)). Indeed, {s} . {s'} & x*{s}y* oL x*{s'}y* & N({&'D >
N({s}) & n(s) = n(s).

Let 51 and s be two states such that s1 ~; s2. We have proved that this is equivalent
to w(s1) = m(s2). Let us use the following notations. « = 7w ({s1}) = w({s2}), A=[f >p
gIN (S —{s1,s2h) and B=1[g >p f1N(S — {51, 52}).

Let usfirst supposethat f(s1) >p g(s1):

(i) Supposethat f(s2) >p g(s2). Inthiscase[f >p g] = [fs1550 > P &s1052] and[g >p
f] = [gslesz >P fs1<—>s2]- Hence H([f >Pp g]) = H([g >Pp f]) 4 H([fslesz >pP
8s1os2]) Z T1([8510550 > P [s1 50 f zge Ss1os Z 85152+

(i) Supposethat g(s2) =p f(s2). Inthiscase: [f >p gl ={s1}UA, [g =p f1={s2} UB,
[fsl<—>sz >P gs1<—>s2] ={s2} UA, [gs1<—>s2 >P fs1<—>s2] = {s1} U B. On the one hand
f g I({s1} UA) > I({s2} U B). In other terms, f =~ g <& max(w, [T(A)) >
max(«, I1(B)). On the other hand, Ss1os0 z 8s1o5p & TI({s2} U A) > I1({s1} U B),
1.8, frosy 15 8s1osy € MaX(at, [T(A)) > max(e, IT(B)). Hence f 5 g iff fiy o, 2
85150+

(iii) Suppose that g(s2) and f(s2) are indifferent. In this case: [f >p g] = {s1} U 4,
[g =p f1= B, [fs1os =P &1os] = {52} U A, [gnos, P fios] = B. Hence
f g iff II({s1} U A) > I1(B). In other terms, f - g iff max(«, [T(A)) > I1(B).
MOreover, fi,os, = gsios, € ({52} U A) > I1(B), that also writes fi s, 2
8s1os0 & max(«, I1(A)) = I1(B). Hence f i 8§ <= fs1<—>s2 i 8514552+

So,inany case, f(s1) >p g(51) = f 58 6 frosr 25 851052

By symmetry, when f (s2) >p g(s2) or g(s1) >p f(s1) Or g(s2) >p f(s2), weaso get
g iff fuos, 7 8sios,- Finaly, when g(s1) and f(s1) are indifferent and g(s2) and
f(s2) areindifferent, [f >p gl = [fs1om =P 8ol = A and [g >=p f]1=[8s1<s, =P
fs1os] = B.Henceinany case f 2 g & foyosp I 851052 O

Proof of Theorem 6.

(=) Since Lemma 2 has already been proved, we only have to show that > p is a
weak order and that the necessity measure is not trivial. The first condition is due to
Proposition 11 and the existence of two non-null states. Let us prove it for the necessity
measure N: we know that no event of the form {s} is null (since there are two non-null
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states). So, I7({s}) > 0. If none of the states receive a positive degree, this condition cannot
hold. If only one state s* receives apositive degree, then I7({s*}) = 0. S0, there are at least
two states such that 7 (s) > 0. The necessity measureis not trivial.

(«) From Proposition 13, we know that OI, A1, A5, LM, RM hold. ANO and EUN
are due to Proposition 20. Let us prove there are two non-null states. 2NN here writes
Vs, IT({s}) > 0: Thisholdssince N isnon-trivial. O

Proof of Proposition 21. The possibility-based dominance rule writes: V£, g € X5, f -

g N(f =Zx g) > H(lg =x f1). Consider any pair of acts f,g. Suppose that
Eis € § such that IT({s*}) =1 and f(s*) =x g(s*) Then obviously IT([ f = X gD =
M&Xq e[ ri- o1 T ({5}) = 1. Thus, whatever IT([g Zx f1), T([f Zx gD = 18 Zx f),
i.e, f t . Conversely, supposethat Vs € S such that I7({s}) = 1, not(f (s) 7 x g(s)), i.e,
since Zx is assumed to be complete, Vs € S such that I7({s}) = 1, g(s) >x f(s). Thus,
O(frmxgl)<landI1([g =x f]) =1 weget g = f. Thus, by contraposition, we have
shownthat 3s € S suchthat IT({s}) =1and f(s) Zx g(s). O
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