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Abstract. Functional laws may be known only at a finite number of points, and
then the function is completed by interpolation techniques obeying some smoo-
thness conditions. We rather propose here to specify constraints by means of gra-
dual rules for delimiting areas where the function may lie between known points.
The more general case where the known points of the function are imprecisely lo-
cated is also dealt with. 
The use of gradual rules for expressing constraints on the closeness with respect
to reference points leads to interpolation graphs that are imprecise but still crisp.
We thus propose a refinement of the rule-based representation that enables the
handling of fuzzy interpolation graphs.

Keywords: Fuzzy rules, Gradual rules, Imprecise interpolation, Fuzzy interpola-
tion, Fuzzy data.

1 Introduction

Nowadays, most automated applications are based on models of the systems under con-
sideration. In this framework, a precise representation is often used, even when this rep-
resentation is based on a fuzzy rule base. Indeed, in Mamdani-like fuzzy systems
precision is artificially introduced by the defuzzification step, while Sugeno-like rules
do not allow the handling of imprecise conclusions. When uncertainties are explicitly
dealt with, they affect parameters of analytical laws, leading to probabilistic or interval-
based processing. The main objective of this paper is to propose an alternative to these
analytical approaches by investigating the interest of gradual rules [6] for defining im-
precise representations of ill-known functions. Actually, the proposed strategy relies on
set-valued interpolative reasoning. When specifying a representation with gradual
rules, there is no need to choose a parameterized function for the interpolator. The pro-
posed rule-based approach should thus be distinguished from works on fuzzy polyno-
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mial [14] or fuzzy spline interpolation [12], [1], which rely on fuzzy-valued functions.
Using such techniques, fuzzy interpolation still depends on the analytical form of the
interpolant. Here, using a rule-based formalism, the imprecise model is directly ob-
tained from the constraints expressed by the rules. 

What is supposed to be known, in a precise or in an imprecise way, is the behaviour of
the system at some reference points, the problem being to interpolate between these
points. Figure 1 illustrates our view of an imprecise interpolation in a case where the
points on which interpolation is based are imprecise. In order to avoid the choice of an
analytical model (linear, polynomial, piecewise linear, cubic spline, ...), an imprecise
representation which includes different possible precise interpolators is preferred. So,
we are no longer looking for a function, only for a relation linking input variables to out-
put variables. In the one-dimensional input case (as in figure 1) considered in this paper,
this relation is represented by its graph Γ defined on the Cartesian product X x Z (where
X is the input domain, and Z the output domain). A similar approach, recently proposed
in [15], also considers the design of uncertain fuzzy models in the setting of the approx-
imation of multi-valued mappings called “ambiguous functions”.

Fig. 1. : Imprecise interpolation

Actually, using gradual rules, the fuzziness introduced for modeling closeness with re-
spect to reference points is not present in the interpolation graph, which is imprecise but
still crisp. We thus propose a refinement of the rule-based representation that enables
the handling of fuzzy interpolation graphs. The method consists in implementing level
2 gradual rules, which are fuzzy sets of nested gradual rules.

The paper, after some brief background on gradual rules, discusses the process of build-
ing an imprecise model, constrained by precise reference points. The case of imprecise
reference points with interval-valued coordinates is then developed. Finally, the build-
ing of nested interpolation graphs is addressed. Their weighting allows the definition of
fuzzy graphs as fuzzy sets of crisp graphs.

2 Interpolation and gradual rules

The idea of imprecise modelling suggested above is based on constraints to be satisfied,
namely that the results of the interpolation should agree with the reference points. These
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constraints should be expressed in order to define the graph Γ of the relation on X × Z.

We first consider the case of precise reference points Pi with coordinates (xi, zi), i = 1,
..., n. Then the relation Γ should satisfy Γ(xi, zi) = 1 and ∀z≠zi∈Z, Γ(xi, z) = 0 for i = 1,
..., n. Without any further constraint on the nature of the interpolation, we only have
∀x≠xi∈X, ∀z∈Z, Γ(x, z) = 1. So each interpolation point induces the constraint “If x =
xi then z = zi”, represented by (x = xi) → (z = zi) where → is the material implication.
The relation Γ is thus obtained as the conjunction:

Γ(x, z) = ∧ i = 1, .., n (x = xi) → (z = zi). (1)

This relation is extremely imprecise since there is no constraint at all outside the inter-
polation points. The absence of a choice of a precise type of interpolation function
should be alleviated by the use of fuzzy rules in order to express constraints in the vi-
cinity of the interpolation points. The idea is to use rules of the form “the closer x is to
xi, the closer z is to zi” [6]. The extension to gradual rules of equation (1) provides the
following expression for the graph Γ:

Γ(x, z) = min i = 1, .., n µclose to xi
(x) → µclose to zi

(z) (2)

where → represents the Rescher-Gaines implication (a → b = 1 if a ≤ b and a → b = 0
if a > b), and µclose to xi

(x) is the degree of truth of the proposition “x is close to xi”.

Two comments on equation (2) are worth stating. First, the principle underlying the
rules is the one at work in analogical or case-based reasoning and (2) is interpreting this
principle as a constraint (as opposed to a weaker interpretation leading to Mamdani-like
fuzzy systems, see [4]). Moreover, (2) embeds interpolation in a purely logical setting
(see [3]) which does not require a defuzzification step.

We have just to define what is meant by “close to”. Let Ai denote the fuzzy set of values
close to xi. It is natural to set µAi

(x) = 1 if x = xi and to assume that the membership
degree to Ai decreases on each side of xi with the distance to xi. The simplest solution
consists in choosing triangular fuzzy sets with a support denoted by [xi

−, xi
+]. In a sim-

ilar way, the closeness to zi will be modelled by a triangular fuzzy set Bi with modal val-
ue zi and support [zi

−, zi
+]. Then the interpolation relation only depends on 4n

parameters xi
−, xi

+ zi
−, zi

+ for n interpolation points. The purpose of the next sections is
to study criteria for choosing these parameters. 

3 Interpolation between precise reference points

3.1 Coverage and consistency of the rule base

In order to make the analysis of the interpolation relation simpler, we further assume
that at most two rules can be simultaneously fired at each point of the input domain (i.e.,
xi ≤ xi+1

− and xi
+ ≤ xi+1, i = 1, ..., n-1, which implies for triangular membership functions

that the coverage degree cov(x) = Σi = 1, .., n µAi
(x) is such that ∀x∈X, cov(x) ≤ 1).

It is generally expected that a set of parallel fuzzy rules covers any possible imput,
which means that each possible input value x should fire at least one rule. In other



words, the Ai 's should lead to a nonzero degree everywhere in X, i.e.:

xi+1
− < xi

+. (3)

Then, we might think of using a strong fuzzy partition both for X and Z (i.e. with a cov-
erage degree cov exactly equal to 1 for any x∈X and z∈Z), with triangular fuzzy sets Ai
and Bi. However, in this case, as shown in [7] and [8], gradual rules lead to a precise
and linear interpolation, as pictured in figure 2 with 3 interpolation points. This is not
what we are looking for.

Fig. 2. : Linear interpolation

In order to tune the fuzzy set parameters, let us first restrict ourselves to increasing ref-
erence points (i.e. xi < xi+1 and zi < zi+1) and study the generic case of figure 3 corre-
sponding to a pair of gradual rules Ai → Bi and Ai+1 → Bi+1. The grey area delimited by
points Mk, k = 1, ..., 6 corresponds to the interpolation graph obtained from both gradual
rules.

Figure 3 makes it clear that the interpolation graph should be connected in order to guar-
antee that any feasible input is associated with at least one possible output value. This
means that there should be no conflict when two rules are simultaneously fired, i.e.
when x∈[xi+1

−, xi
+]. From a geometric point of view, this amounts to locating the point

M5 in figure 3 under the segment M1M2, which is analytically expressed by the inequal-
ity:

(zi+1
− − zi)(xi

+ − xi) ≤ (zi
+ − zi)(xi+1

− − xi ). (4)

In a similar way, the point M2 should be above the segment M5M4, i.e.:

(zi
+ − zi+1)(xi+1

− − xi+1) ≤ (zi+1
− − zi+1)(xi

+ − xi+1). (5)

Conditions (4) and (5) are necessary for obtaining a connected interpolation graph.
They are also sufficient as far as the point M6 is located under the segment M1M2 (i.e.,
zi

− < zi < zi
+) and M3 is above M4M5 (i.e., zi+1

− < zi+1 < zi+1
+). In fact, conditions (4) and

(5) are a particular case of coherence conditions for a set of fuzzy rules, which were pre-
viously established in [9].

The counterpart to inequalities (4) and (5) for handling decreasing reference points (i.e.
xi < xi+1 and zi+1 < zi) using gradual rules Ai → Bi can be easily derived by taking the
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mirror image of figure 3 with respect to the Z axis. For keeping an understandable no-
tation of the support of the Bis, i.e. [zi

− zi
+] with zi

− < zi < zi
+, exponents + and − attached

to the z variable should be exchanged in (4) and (5).

Fig. 3. : Graph corresponding to a pair of gradual rules

Figure 4 illustrates the importance of the coherence of a rule base with respect to the
interpolation relation. The two rules A2→B2 and A3→B3 are incoherent (constraint (5)
is violated), which results in a gap in the interpolation graph between the reference
points P2 and P3. 

Fig. 4. : Effect of incoherent rules on the interpolation relation
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3.2 Shaping the interpolation areas

Coherent rules ensure the non-emptiness of the image of each input via the relation Γ.
However viewing figure 3, one may be disappointed by the shape of the graph which is
complicated and hard to justify on the basis of practical needs. Comparing figures 3 and
5, it can be stated that a slight modification of the parameters zi

+ and zi+1
− yields an in-

teresting change in the shape of the interpolation graph which should then be controlled. 
.

Fig. 5. : Graph corresponding to a pair of gradual rules

It remains to clarify the conditions which determine the 4-sided area between two ref-
erence points. From a geometric point of view, the deletion of the vertical segment
M2M3 in figure 3 requires that the point M2 be located above M3, which after computa-
tion of the z coordinate of M3 leads to:

(zi
+ − zi+1)(xi+1

− − xi+1) ≤ (zi+1
+ − zi+1)(xi

+ − xi+1). (6)

In a similar way the constraint that M5 be under M6 is expressed by:

(zi+1
− − zi)(xi

+ − xi) ≤ (zi
− − zi )(xi+1

− − xi). (7)

Keeping the hypothesis of the coverage of X by at most two rules everywhere in the in-
put domain, the satisfaction of (6) and (7) requires that:

zi+1 ≤ zi
+ and  zi+1

− ≤ zi (8)
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and thus the coverage of Z by the Bi's should be sufficiently high (more precisely ∀z∈Z,
Σi = 1, .., n µBi

(z) ≥ 1), which also ensures the consistency of the rules, since (4) and (5)
then hold.

When inequalities (6) and (7) hold, the interpolation graph between the reference points
is the 4-sided area delimited by M1, M’3, M4 and M’6 (see figure 5). Although the coor-
dinates of points M’3 and M’6 can be expressed in terms of the considered parameters,
it appears simpler to delimit the interpolation area by the points M1, M23, M4 and M56,
which corresponds to changing (6) and (7) into equalities. In other words, points M2 and
M3 (respectively M5 and M6) in figure 3 are positioned at the same location denoted M23
(respectively M56) in figure 5. Actually, the graph obtained using such a tuning is the
convex hull of the shaded region in figure 3, which corresponds to the smallest 4-sided
interpolation area that can be defined from gradual rules. In such a case, the x-coordi-
nates of M23 and M56, namely xi

+ and xi+1
−, can be explicitly chosen. Then, for a given

choice of the x-parameters, the definition of the rules requires the determination of 2n
z-parameters, which are linked together by 2(n-1) equations. Thus, two parameters re-
main free. A simple way of building the partition of Z is then to prescribe the values on
the boundaries, namely z1

− and zn
+, and to solve the system of equations obtained by the

equality constraints associated with (6) and (7). 

Figure 6 pictures the interpolation graph which is obtained with the interpolation points
of figure 2. The partitioning of X is obtained by cutting the intervals [xi, xi+1] into three
equal parts, i.e. xi+1

− − xi = xi
+ − xi+1

− = xi+1 − xi
+, as illustrated by the parameters which

define the fuzzy sets Ai. The extreme values z1
− and z3

+ are also predefined (see figure
6). Lastly, the other parameters have been obtained by solving the system of equations
derived from (6) and (7).

Fig. 6. : Construction of a piecewise 4-sided interpolation graph

3.3 Improving the interpolation areas 

In particular applications, supplementary constraints such as “If x ∈[xi, xi+1] then z ∈[zi,
zi+1]” can be available. In this case, the interpolation graph can be further refined by
limiting the imprecision area between two interpolation points to a quadrangle with hor-
izontal edges as suggested in [7]. 

The first intuitive idea for coping with the desired graph form consists in translating the
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constraints related to the considered variables into constraints concerning the parame-
ters that define Ai and Bi. According to figure 3, the horizontal alignment of M2, M3 and
M4 leads to the following conditions:

zi
+ = zi+1 , (9)

. (10)

In the same way, the horizontal alignment of M1, M5 and M6 induces that:

zi+1
− = zi , (11)

. (12)

Applying conditions (9) and (11) to the entire rule base results in a strict partitioning of
Z. Furthermore, satisfying equations (10) and (12) requires either a strict partitioning of
X which produces linear interpolation (see figure 2), or the guarantee that zi+1

+ = zi+1
and zi

− = zi, which induces conflicts with (9) and (11) when applied to any interpolation
point. In other words, there is no parameter configuration that defines the desired shape
with horizontal edges. 

A simple strategy for obtaining the desired graph form consists in adding new rules to
the initial rule base that directly translate the interval-based constraints “If x ∈[xi, xi+1]
then z ∈[zi, zi+1]”. Two additional symbols, denoted Ai / i+1 and Bi / i+1, i = 1, ..., n-1,
with rectangular membership functions are thus defined for representing the intervals
between two consecutive interpolation points. Then, by implementing the rules “If x is
Ai / i+1 then z is Bi / i+1”, the upper and lower parts of the piecewise original graph are
suppressed (see figure 7). Such an approach is successful only when the rectangular re-
striction of the initial graph is composed of 4-sided areas, which means that conditions
(6) and (7) must be satisfied. 

Fig. 7. : Design of piecewise truncated graphs

(xi
+ − xi+1) = 0

zi+1
+ − zi+1 

xi+1
− − xi+1 

(xi+1
− − xi) = 0

zi
− − zi 

xi
+ − xi 

X

Z



4 Interpolation between imprecise reference points

An imprecise point can be viewed as a precise point whose coordinates are not exactly
known. Choosing an interval-based representation, an imprecise point is then modelled
by a rectangular area to which the ill-known point necessarily belongs. In this way, four
parameters, respectively denoted xi

l, xi
r, zi

l and zi
r, define the ith imprecise point. Using

gradual rules, trapezoidal membership functions are defined to handle closeness to im-
precise points. Let Ai be the trapezoidal fuzzy set defined by parameters xi

−, xi
l, xi

r and
xi

+ as illustrated in figure 8. Then the support of Ai, i.e. [xi
l, xi

r], is associated with the
x-coordinate of the imprecise point and the membership degree to Ai decreases on each
side of [xi

l, xi
r] with the distance to the nearest interval bound. Using a similar represen-

tation for the z-coordinate of imprecise points, each interpolation point is associated
with a gradual rule of the form “If x is Ai then z is Bi” where symbols Ai (resp. Bi) rep-
resent trapezoidal fuzzy sets with support [xi

−, xi
+] (resp. [zi

−, zi
+]) and core [xi

l, xi
r] (re-

sp. [zi
l, zi

r]).

Fig. 8. : Fuzzy representation of imprecise points

When n imprecise reference points are known, the design of the graph relies on param-
eters xi

−, xi
+, zi

− and zi
+, i = 1, ..., n. In fact, the problem is similar to the one previously

addressed in the case of precise interpolation points and an identical solving procedure
can be developed. 

Once again, coherence conditions can be determined from geometric constraints on the
position of points M2 and M5 in figure 9. The counterparts to inequalities (4) and (5) are
respectively given by:

(zi+1
− − zi

r)(xi
+ − xi

r) ≤ (zi
+ − zi

r)(xi+1
− − xi

r). (13)

(zi
+ − zi+1

l)(xi+1
− − xi+1

l) ≤ (zi+1
− − zi+1

l)(xi
+ − xi+1

l). (14)

In the same way, it is again possible to control the shape of the imprecision area for ob-
taining a 4-sided-like interpolation graph between two imprecise points. Constraints (6)
and (7) are then transformed into:

(zi
+ − zi+1

r)(xi+1
− − xi+1

l) ≤ (zi+1
+ − zi+1

r)(xi
+ − xi+1

l). (15)

(zi+1
− − zi

l)(xi
+ − xi

r) ≤ (zi
− − zi

l)(xi+1
− − xi

r). (16)
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Fig. 9. : Interpolation graph between imprecise points

Figure 10 shows two different examples of interpolation graphs between imprecise
points marked with grey rectangles. Each situation can be linked to its counterpart that
was previously dealt with when considering precise interpolation points. Figure 10(a)
coincides with linear interpolation of figure 2 and figure 10(b) is the extension of figure
6. In the linear case, it should be noticed that a strong partitioning of X and Z with trap-
ezoidal fuzzy sets, i.e. xi+1

− = xi
r, xi

+ = xi+1
l and zi+1

− = zi
r, zi

+ = zi+1
l, leads to coherent

rules since constraints (4) and (5) hold but the interpolation simply links the reference
points by means of a segment joining their nearest corners (see grey lines in figure
10(a)). Keeping a strong partition of X but modifying the Z partition such that zi+1

− = zi
l

and zi
+ = zi+1

r results in the graph pictured in figure 10(a) which includes all possible
linear interpolants that link the vertical edges of the reference points.
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Fig. 10. : Different interpolation graphs with imprecise points

5 Interpolative fuzzy graph

One may be disappointed that the fuzziness introduced in the closeness relations is no
more present in the interpolation graph. This section is devoted to the issue of introduc-
ing membership degrees in the 4-sided areas while keeping their support unchanged.
Such an approach is motivated by the need to evaluate the relative merits of different
possible paths between the reference points.
According to equation (2), it is obvious that using a crisp implication for defining the
graph necessarily results into a crisp graph. Then, the most intuitive strategy for keeping
memberhip degrees in the interpolative graph consists in replacing Rescher-Gaines im-
plication by another one. In order to be in accordance with the semantics of gradual
rules, only residuated implications can be used, which means that: 

a → b = 1 if a ≤ b and a → b = α if a > b (17)

where α depends on the chosen implication. From equations (2) and (17), it is obvious
that the core of the graph Γ (white areas in figures 6 and 10) does not depend on the
chosen implication. Actually, only values outside the core area (black areas with zero
membership grade in figures 6 and 10) are affected by the choice of an implication.
Thus, our aim when introducing membership degrees in the 4-sided areas cannot be
achieved simply by choosing a suitable fuzzy implication. As an alternative, an ap-
proach based on level 2 gradual rules (still implemented using Rescher Gaines implica-
tion) is proposed. In the following developments, we restrict ourselves to precise
reference points, that is to triangular fuzzy sets, but similar results can be obtained with
imprecise interpolation points.

X

Z Z

(a) Linear interpolation (b) Quadrangle-based interpolation

X



5.1 Nested graph family

According to sections 3, it is clear that given a set of rules, i.e. a set of reference points,
a collection of crisp graphs is obtained by varying the support parameters of the Ai’s
and/or the Bi’s. Moreover, inclusion properties between the built graphs can be exhibit-
ed for controlling the variation of the supports as expressed by the following statements.

P1: If Ai ⊆ Ai*, i=1, ..., n, then Γ* ⊆ Γ, 
where Γ and Γ* are the graphs associated with rules Ai → Bi and Ai* → Bi re-
spectively. 

Indeed, (x, z) ∈ Γ* means that ∀i, Ai*(x) ≤ Bi(z). According to the assumption that ∀i,
Ai ⊆ Ai*, it follows that ∀i, Ai(x) ≤ Bi(z) which results in (x, z) ∈ Γ.

P2: If Bi* ⊆ Bi, i=1, ..., n, then Γ* ⊆ Γ, 
where Γ and Γ* are now the graphs associated with rules Ai → Bi and Ai → Bi*
respectively. 

Indeed, (x, z) ∈ Γ* if and only if ∀i, Ai(x) ≤ Bi*(z). Since ∀i, Bi* ⊆ Bi, it follows that
∀i, Ai(x) ≤ Bi(z), i.e. (x, z) ∈ Γ.
The combination of P1 and P2 leads to:

P3: If Ai ⊆ Ai* and Bi* ⊆ Bi, i=1, ..., n, then Γ* ⊆ Γ,
where Γ and Γ* are now the graphs associated with rules Ai → Bi and Ai*→ Bi*
respectively. 

Thus, according to the above inclusion properties, it is possible to design a family of
nested graphs simply by building collections of nested fuzzy subsets on X and Z. Indeed,
denote {Ai

λ, λ∈[0,1]} a family of fuzzy subsets on X such that Ai
λ’ ⊆ Ai

λ if λ≥λ’ and
{Bi

λ, λ∈[0,1]} a family of fuzzy subsets on Z such that Bi
λ ⊆ Bi

λ’ if λ≥λ’. The graph
family associated with rules Ai

λ → Bi
λ, λ∈[0,1], guarantees that Γλ ⊆ Γλ’ if λ≥λ’. Ac-

tually, such a construction of nested graphs simply expresses that implicative graphs in-
crease in the sense of inclusion when underlying constraints become more permissive.
Indeed, more permissive rules are obtained either by restricting input conditions further,
or by enlarging output fuzzy sets. 

Using a convex linear combination of fuzzy intervals enables the automatic construc-
tion of a collection of nested fuzzy subsets ranging from the lower bound of the family
to the upper one. Applying such a technique results in the following equation:

Ai
λ = (1−λ)Ai

0 ⊕ λAi
1, λ∈[0,1], i=1, .. ,n (18)

where Ai
0 and Ai

1, such that Ai
0 ⊆ Ai

1, are the lower and upper bounds of the family and
⊕ denotes the extended sum of fuzzy numbers. In the same way, nested output fuzzy
subsets can be built according to:

Bi
λ = (1−λ)Bi

0 ⊕ λBi
1, λ∈[0,1], i=1, .. ,n (19)

where Bi
0 and Bi

1, such that Bi
1 ⊆ Bi

0 , are the upper and lower bounds of the family. It
should be noted that the inclusion ordering of the Bi

λ for increasing λ is the converse of
the one of the Ai

λ, due to opposite behaviors with respect to graph inclusion. 



Using such fuzzy subset families (see figure 11) results in the following graph inclu-
sions:

Γ1 ⊆ Γλ ⊆ Γλ’⊆ Γ0, λ,λ’ ∈[0,1] and λ≥λ’ (20)

One interesting point is now to study whether the 4-sided shape introduced in section 3
can be shared by nested graphs. In other words, do inequalities (6) and (7) hold for any
Γλ when they hold for Γ0 and Γ1 ? A positive answer can be given to this question ac-
cording to property P4 whose proof is established in the appendix.

P4: If both (Ai
0, Bi

0) and (Ai
1, Bi

1), i=1, .. ,n, satisfy equations (6) and (7), then
(6) and (7) are still valid for any (Ai

λ, Bi
λ), λ ∈[0,1], i=1, .. ,n, when Ai

λ and Bi
λ

are built according to (18) and (19).

Fig. 11. : Nested fuzzy subsets (λ>λ’)

5.2 Fuzzy graph
According to the previous section, the construction of indexed nested graphs can be eas-
ily handled from the knowledge of lower and upper graphs. Now, given the above fam-
ily {Γλ, λ∈[0,1]}, there is a unique fuzzy set F whose λ-cuts Fλ are precisely Γλ for each
λ ∈[0,1]. This fuzzy set is built using the standard representation theorem [16], that is:

µF(x, z) = supλ ∈[0,1] min (λ, Γλ(x, z) ) (21)

According to formulation (21), the reconstructed F is finally a classical fuzzy graph de-
fined on X × Z. Another interpretation consists in viewing F as a fuzzy set of crisp
graphs, that is as a level 2 fuzzy set [17]. In this case, F is represented as:

F = ∫λ ∈[0,1] λ / Γλ (22)

according to Zadeh’s notation where the integral sign stands for the union of the fuzzy
singletons λ / Γλ.

Figure 12 plots the fuzzy graph obtained when the lower graph Γ1 is precise and piece-
wise linear (as in figure 2) and the upper graph Γ0 has the 4-sided shape of figure 6.

According to figure 11, families {Ai
λ, λ∈[0,1]} and {Bi

λ, λ∈[0,1]}, i=1, ...,n, can also
be viewed as type 2 fuzzy subsets, i.e. fuzzy sets with fuzzy membership grades [17].
In this framework, one may wonder if extending the Rescher-Gaines implication to
fuzzy set-valued arguments would be compatible with equation (21). This approach is
studied in [11] where it is shown that the fuzzy graph F can be also obtained from a type
2 fuzzy set-based view.

The proposed approach based on (21) provides a constructive method for deriving a
genuine fuzzy implication from a set of gradual rules. That it is a genuine implication
can be checked by verifying the following properties:

Ai
0

Ai
1Ai

λ'
Ai

λ

X

1

Bi
1

Bi
0Bi

λ
Bi

λ'

Z

1



if µA1(x) ≥ µA1(x*) then µF(x, z) ≤ µF(x*, z)
if µB0(z) ≥ µB0(z*) then µF(x, z) ≥ µF(x, z*)

Moreover,

if µA1(x) = 1 then µF(x, z) = 0 when µB0(z) ≠1
if µA1(x) = 0 then µF(x, z) = 1
if µB0(z) = 1 then µF(x, z) = 1 (identity principle).

It is interesting to compare our construction to the one in [5]. This paper establishes re-
sults under which fuzzy implications can be decomposed as convex sums of crisp rules.
It assumes a finite number of membership grades. Under certain mild conditions, this
decomposition involves a nested family of gradual rules of the form mi(A)→B where
{mi} is a family of modifiers affecting the condition part only. In the present paper, both
conditions and conclusions are varied.

Fig. 12. : Fuzzy graph obtained from a set of gradual rules

6 Conclusion

This paper has proposed a representation framework which is faithful to the imprecision
of available data. In the intervals between interpolation points where it is difficult to
specify an analytical law, imprecision is captured by means of 4-sided areas. In practice,
the specification of these areas is rather simple and can take into account qualitative
knowledge about the system behavior such as the absence of overshoot, or some infor-
mation on the magnitude order of the derivative at the reference points. The modelling
methodology, which has been applied for categorizing time series [10], has exhibited
interesting performance. Moreover, we can hope to improve the proposed imprecise
representation by using fuzzy gradual rules as introduced in the last section. Indeed, it
enables us to distinguish between typical members of a class which remain in subareas
with high membership degrees from borderline members which go through subareas
with smaller membership degrees. 

}

}

}
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The interest of using gradual rules for specifying imprecise interpolation is potentially
manifold: easy interfacing with the user, embedding of the representation into an infer-
ence or fusion system, possibility of extending the approach to fuzzy interpolation
points and to fuzzy inputs, specifying queries in data mining applications (see [13] for
an example of such possible use), .... These advantages should be more patent in the
case of multi-input systems. So, the practical use of the suggested strategy now requires
that the multi-input case be developed. Perspectives also include comparison between
interpolation graphs obtained from gradual rules and those that can be derived from in-
terpolation between rules in sparse rule bases [2].
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Appendix

The proofs concerning inequalities (6) and (7) are distinct but can be handled using ex-
actly the same approach. For the sake of conciseness, we restrict this appendix to the
proof of (6).

According to fuzzy arithmetics, the convex combination of two triangular fuzzy subsets
produces a new triangular fuzzy subset whose parameters are obtained using the convex
combination under consideration. The three Ai

λ parameters are thus derived from equa-
tion (18) as follows:

xi
− λ = (1−λ) xi

− 0 + λ xi
− 1,

xi
λ = (1−λ) xi

0 + λxi
1,

xi
+ λ = (1−λ)xi

+ 0 + λxi
+ 1.

According to equation (19), the same mechanism is applied for the Bi
λ parameters. 

Then, substituting λ-indexed parameters in equation (6), the sign of the following f
polynomial has to be established:

f(λ) = aλ bλ − cλ dλ, (23)

where aλ = zi
+ λ − zi+1

λ, bλ = xi+1
λ − xi+1

− λ, 
cλ = zi+1

+ λ − zi+1
λ, dλ = xi+1

λ − xi
+ λ. 

The development of f with respect to λ leads to:

f(λ) = (1−λ)2 f(0) + λ2 f(1) + 
λ(1−λ) (a0b1 + a1b0 − c0d1 − c1d0).

The assumption that both (Ai
0, Bi

0) and (Ai
1, Bi

1), i=1, .. ,n, satisfy equation (6) can be
reformulated as:

f(0) ≥ 0 and f(1) ≥ 0. (24)



Furthermore, the inclusion properties Ai
0 ⊆ Ai

1 and Bi
1 ⊆ Bi

0, i=1, .. ,n, induce that a1

≤ a0, b0 ≤ b1, c1 ≤ c0and d1 ≤ d0, which expresses that:

(a0 − a1)(b1 − b0) + (c0 − c1)(d0 − d1) ≥ 0, (25)

Then, the development of (25) leads to:

a0b1 + a1b0 − c0d1 − c1d0 ≥ f(0) + f(1). (26)

Finally, using (24) and (26) it follows that:

f(λ) ≥ 0, λ ∈[0,1], (27)

which means that inequality (6) is valid for any (Ai
λ, Bi

λ), λ ∈[0,1], i=1, .. ,n, and con-
cludes the proof.


