
1

Reconstruction of Enhanced Ultrasound Images
From Compressed Measurements Using

Simultaneous Direction Method of Multipliers
Zhouye Chen, Adrian Basarab, Denis Kouamé

Abstract

High resolution ultrasound image reconstruction from a reduced number of measurements is of great interest in
ultrasound imaging, since it could enhance both the frame rate and image resolution. Compressive deconvolution,
combining compressed sensing and image deconvolution, represents an interesting possibility to consider this
challenging task. The model of compressive deconvolution includes, in addition to the compressive sampling
matrix, a 2D convolution operator carrying the information on the system point spread function. Through this
model, the resolution of reconstructed ultrasound images from compressed measurements mainly depends on three
aspects: the acquisition setup, i.e. the incoherence of the sampling matrix, the image regularization, i.e. the sparsity
prior, and the optimization technique. In this paper, we mainly focused on the last two aspects. We proposed a
novel simultaneous direction method of multipliers-based optimization scheme to invert the linear model, including
two regularization terms expressing the sparsity of the RF images in a given basis and the generalized Gaussian
statistical assumption on tissue reflectivity functions. The performance of the method is evaluated on both simulated
and in vivo data.

Index Terms

Ultrasound imaging, Compressive Deconvolution, Simultaneous Direction Method of Multipliers

I. INTRODUCTION

S INCE the applicability of compressive sampling (CS) to 2D and 3D Ultrasound (US) imaging (e.g.
[2–8]) or to duplex Doppler [9] has been proven, the topic of CS in the field of US imaging

attracted a growing interest from several research groups. CS is a mathematical framework allowing
to recover a compressible image, via non linear optimization routines, from few linear measurements
(below the limit standardly imposed by the Shannon-Nyquist theorem) [10, 11]. According to the CS
theory, this reconstruction is possible provided that the restricted isometry property (RIP), characterizing
the measurement matrix, holds [10, 11]. RIP has been extensively explored in the literature for several
classes of matrices. The most common examples that guarantee the respect of RIP for a number of
measurements linearly depending on the sparsity level of the image to recover include random Gaussian
or Bernoulli matrices or partial Fourier matrix.

The interest of CS application in US imaging systems is to increase the frame rate and/or to decrease
the amount of acquired data and/or to decrease the computational complexity of beamforming [3, 4, 8].
Despite the promising results, the application of CS in US imaging still remains challenging. Firstly, we
may remark that RIP cannot strictly hold in practical situations, mainly because of the lack of incoherence
between the practical measurement and sparsity basis or because of the low level of sparsity of US images.
As a consequence, the images reconstructed through CS are usually less good compared to standard
acquisitions, especially when the compressive ratio (CS ratio) is low. In this paper, the CS ratio refers
to the ratio between the number of linear measurements and the number of samples in the image to
reconstruct. Secondly, the resolution of the reconstructed images is at most equivalent to those acquired
using standard schemes. Nonetheless, it is well known that the spatial resolution, the signal-to-noise ratio
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and the contrast of standard US images are affected by the limited bandwidth of the imaging transducer,
the physical phenomena related to US wave propagation such as diffraction and the imaging system.

In order to overcome these issues, we have recently proposed a compressive deconvolution (CD) method
aiming to reconstruct enhanced RF images from compressed linear measurements [12]. The main idea
behind CD is to combine CS and deconvolution reconstructions into an unique framework leading to the
following linear model:

y = ΦHx + n (1)

where y ∈ RM contains M linear measurements obtained by projecting one RF image Hx ∈ RN onto
the CS acquisition matrix Φ ∈ RM×N , with M << N . H ∈ RN×N is a block circulant with circulant
block (BCCB) matrix modelling the 2D convolution between the 2D PSF of the US system and the tissue
reflectivity function (TRF) x ∈ RN . In other words, the multiplication of the TRF by H models the US
RF image degradation mentioned above. Finally, n ∈ RM stands for a zero-mean additive white Gaussian
noise. We emphasize that all the images in (1) are expressed in the standard lexicographical order.

We should note that similar models have been recently proposed for general image processing purpose
[13–17] including a theoretical derivation of RIP for random mask imaging [18]. Nevertheless, in contrast
to the solutions provided by these existing works, we showed in [12] that inverting (1) by minimizing the
following unconstrained objective function is well suitable for US imaging:

x̂ = argmin
x

‖ Ψ−1Hx ‖1 +α ‖ x ‖pp +
1

2µ
‖ y − ΦHx ‖22 (2)

This objective function is composed by three terms: i) the l1-norm term that aims at imposing the
sparsity of the RF data Hx in a transformed domain Ψ, ii) the lp-norm (1 ≤ p ≤ 2) regularizing the TRF
x based on generalized Gaussian distribution (GGD) statistical assumption of US images (p is related
to the shape parameter of the GGD), see e.g. [19–21], iii) the data fidelity term. In order to solve the
optimization problem in (2), the solution proposed in [12] was based on the Alternative Direction Method
of Multipliers (ADMM) [22].

In this paper, we further improve the US compressive deconvolution scheme in [12] by proposing a
new reconstruction algorithm based on the Simultaneous Direction Method of Multipliers (SDMM) [23].
Results on simulated and experimental images show improved convergence properties obtained with the
proposed optimization routine, resulting into better reconstruction results and lower computational times
compared to our previous work. Moreover, we extend the CD approach to non-orthogonal measurement
matrices, thus covering a more general compressed acquisition model.

This paper is organized as follows. We first recall the general framework of SDMM in section II. The
proposed SDMM-based optimization scheme able to solve (2) is detailed in section III. In IV, simulated
and experimental results are provided to show the effectiveness of the proposed method and its efficiency
in recovering the TRF from compressed US data. The conclusions are drawn in Section V.

II. GENERAL FRAMEWORK OF SIMULTANEOUS DIRECTION METHOD OF MULTIPLIERS

The algorithm of Simultaneous Direction Method of Multipliers (SDMM) e.g, [23], generalizes the
alternating split Bregman method (ASB) [24] to a sum of more than two functions. The ASB was initially
proposed to solve optimization problems that can be expressed in the following form:

argmin
u∈Rs,v∈Rt

f(u) + g(v) s.t. v = Cu (3)

where C ∈ Rt×s is a given matrix, f : Rs → R̄ and g : Rt → R̄ are convex functions. R̄ is designated
for extended real numbers, i.e. R

⋃
{+∞}.

The iterative ASB method declines as follows:
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uk+1 = argmin
u∈Rs

f(u) +
1

2β
‖ bk + Cu− vk ‖22 (4)

vk+1 = argmin
v∈Rt

g(v) +
1

2β
‖ bk + Cuk+1 − v ‖22 (5)

bk+1 = bk + Cuk+1 − vk+1 (6)

where b ∈ Rt is the Lagrangian parameter. It has been proven that the alternating split Bregman method
is equivalent to Alternating Direction Method of Multipliers (ADMM) when the constraints are linear [25].

Inspired from ASB, the general optimization problem considered in the framework of SDMM is:

argmin
u∈Rs

m∑
i=1

fi(Ciu) (7)

where Ci ∈ Rti,s and fi : Rti → R̄ are convex functions. Considering vi ∈ Rti , vi = Ciu, f(u) = 〈0, u〉
and g(v) =

∑m
i=1 fi(vi), (7) can be reformulated as

argmin
u∈Rs,vi∈Rt

i

f(u) +
m∑
i=1

fi(vi) (8)

Similarly to ASB method, SDMM iteratively solves the optimization problem above as follows:

uk+1 = argmin
u∈Rs

1

2β
‖

bk1
...
bkm

 +

C1
...
Cm

u−

vk1
...
vkm

 ‖2 (9)

v
k+1
1
...

vk+1
m

 = argmin
vi∈Rt

i

{ 1

2β
‖

bk1
...
bkm

 +

C1
...
Cm

uk+1 −

v1
...
vm

 ‖2 +
m∑
i=1

fi(vi)} (10)

b
k+1
1
...

bk+1
m

 =

bk1
...
bkm

 +

C1
...
Cm

uk+1 −

v
k+1
1
...

vk+1
m

 (11)

III. PROPOSED COMPRESSIVE DECONVOLUTION METHOD

In this paper we propose an SDMM-based optimization scheme adapted to solve the problem in (2).
First, we remark that (2) can be reformulated as

argmin
x

f1(v1) + f2(v2) + f3(v3) (12)

with 
f1(v1) = α ‖ v1 ‖pp
f2(v2) =‖ v2 ‖1

f3(v3) = 1
2µ
‖ y − Φv3 ‖22

v1 = C1x,v2 = C2x,v3 = C3x
C1 = IN , C2 = Ψ−1H,C3 = H

Using the parametrization above, the SDMM steps given in eq. (9)-(11) write for our compressive
deconvolution problem as follows:
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xk+1 = argmin
x∈RN

1

2β
‖

bk1
bk2
bk3

 +

 IN
Ψ−1H
H

x−

vk1
vk2
vk3

 ‖2 (13)

vk+1
1

vk+1
2

vk+1
3

 = argmin
v1,v2,v3

{ 1

2β
‖

bk1
bk2
bk3

 +

 IN
Ψ−1H
H

xk+1 −

v1

v2

v3

 ‖2 +
3∑
i=1

fi(vi)} (14)

bk+1
1

bk+1
2

bk+1
3

 =

bk1
bk2
bk3

 +

 IN
Ψ−1H
H

xk+1 −

vk+1
1

vk+1
2

vk+1
3

 (15)

In the following, we give the details of solving each of the steps above. Firstly, we remark that Eq. (13)
is a classical l2-norm minimization problem that can be efficiently solved in the Fourier domain [26].

Eq. (14) consists in solving three subproblems, corresponding to the update of v1, v2 and respectively
v3. The v1-subproblem can be solved as follows:

vk+1
1 =argmin

v1

α ‖ v1 ‖pp +
1

2β
‖ bk1 + xk+1 − v1 ‖22

=proxαβ‖·‖pp(bk1 + xk+1)

(16)

where prox represents the proximal operator [27–29]. The proximal operator of ‖ x ‖pp has been given
explicitly in the literature [30] and used in [31]. More details about the proximal operator can be found
in Appendix A.

The v2-subproblem can also be solved using the proximal operator associated to the `1-norm that
corresponds to the soft thresholding operator [26] (see Appendix A):

vk+1
2 =argmin

v2

‖ v2 ‖1 +
1

2β
‖ bk2 + Ψ−1Hxk+1 − v2 ‖22

=proxβ‖·‖1(b
k
2 + Ψ−1Hxk+1)

(17)

Finally, the v3-subproblem can be solved as follows:

vk+1
3 = argmin

v3

1

2µ
‖ y − Φv3 ‖22 +

1

2β
‖ bk3 +Hxk+1 − v3 ‖22

⇔ [βΦtΦ + µ]vk+1
3 = βΦty + µbk3 + µHxk+1

(18)

For orthogonal sampling matrices Φ, the Sherman-Morrison-Woodbury inversion matrix lemma [32]
allows us to efficiently find the solution of the v3-subproblem above [31]. In order to make our compressive
deconvolution method more general and therefore relevant to various compressive acquisition schemes in
US imaging, we give in Appendix B a solution of (18) for non orthogonal Φ matrices.

Algorithm 1 summarizes the SDMM-based numerical scheme proposed for solving 2.
We emphasize that compared to the ADMM-based scheme that we have recently proposed to solve

(2) [12], the method resumed in Algo. 1 requires one less hyperparameter. Moreover, with the proposed
optimization scheme all the subproblems are solved exactly, while in [12] we have only obtained an
approximation for the v1-subproblem in eq. (16). This improvement allows the SDMM-based iterative
scheme to converge faster than the ADMM-based algorithm proposed in [12]. Since this v1-subproblem
is critical for the deconvolution process, one may also expect more accurate compressive deconvolution
results with SDMM than with ADMM.
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Algorithm 1 Compressive deconvolution SDMM-based algorithm.
Input: α, µ, β, v0

i , b
0
i , i = 1, 2, 3

1: while not converged do
2: xk+1 ← vki , b

k
i . update xk+1 using (13)

3: vk+1
1 ← bk1,x

k+1 . update vk+1
1 using (16)

4: vk+1
2 ← bk2,x

k+1 . update vk+1
2 using (17)

5: vk+1
3 ← bk3,x

k+1 . update vk+1
3 using (18)

6: bk+1
i ← vk+1

i ,xk+1 . update bk+1
i using (15)

7: end while
Output: x

IV. SIMULATION RESULTS

In this section, we provide numerical experiments to evaluate the effectiveness of the proposed com-
pressive deconvolution optimization framework, denoted by SDMM hereafter. Since we have recently
shown in [12] the superiority of the ADMM-based method (denoted by ADMM in this section) compared
to other compressive deconvolution methods, the technique in [12] is used herein for comparison purpose
1.

A. Results on simulated data
Two groups of simulation experiments (named Group 1 and 2) have been conducted to evaluate the

performance of the proposed scheme. The RF images have been generated following the procedure in [33]
using a 2D convolution between a US PSF and a map of scatterers, i.e, tissue reflectivity function (TRF). In
both cases, the PSF was generated using a Field II [34] simulation corresponding to a 128-element linear
probe operating at 3.5 MHz and an axial sampling frequency of 20 MHz. The TRFs were generated using
an well-established procedure in US imaging, by assigning the scatterers random amplitudes following a
given distribution, weighted by a cartoon image denoted by mask hereafter. For the first group, a Laplacian
distribution has been employed and the mask has been hand drawn to simulate four different regions with
different echogenicity. The resulting TRF and US image (plotted in B-mode) are shown in Fig. 1 (a) and
(e).

The TRF of Group 2 follows one of the examples proposed by the Field II simulator [34], mimicking a
fetus. In this case, the scatterer amplitudes were generalized Gaussian distributed, with the shape parameter
of the GGD equal to 1.5. The TRF and the simulated US image are displayed in Fig. 2 (a) and (e). For
both simulations, the number of scatterers was considered sufficiently large (105) to ensure fully developed
speckle.

The compressed measurements were obtained in the same manner for both groups, by projecting the
RF images onto orthogonal Structurally Random Matrix (SRM) [35] and were degraded by an additive
Gaussian noise corresponding to a SNR of 40 dB. We emphasize that results corresponding to a non-
orthogonal measurement matrix are also provided in the Appendix B.

Fig. 1 and Fig. 2 display the compressive deconvolution reconstruction results obtained with ADMM
[12] and with the proposed SDMM scheme for CS ratios of 0.6, 0.4 and 0.2. The value of p used to
regularize the TRF estimations was set to 1 for Group 1 and 1.5 for Group 2. All the other hyperparameters
were set to their best possible values by cross-validation. We should note that since both ADMM and
SDMM methods aim at solving the same objective function in (2), the hyperparameters α and µ have
been assigned the same values in order to ensure a fair comparison. For the same reason, both algorithms
were assigned the same convegence criterion, i.e. ‖ xk − xk−1 ‖ / ‖ xk−1 ‖< 5e−4, with k the iteration
number and xk the estimated image at iteration k.

1The code corresponding to the ADMM-based method is available http://www.irit.fr/∼Adrian.Basarab/codes.html

http://www.irit.fr/~Adrian.Basarab/codes.html
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Fig. 1: Results on simulated data (Group 1). (a) TRF, (b-d) Reconstruction results using ADMM for CS
ratios of 0.6, 0.4 and 0.2, (e) Simulated US image, (f-h) Reconstruction results using SDMM for CS ratios
of 0.6, 0.4 and 0.2.

Taking benefit from the fact that the TRF ground truth is available in simulation experiments, the peak
signal-to-noise ratio (PSNR) and the structural similarity (SSIM) are used in this paper to assess the
quality of the reconstruction results. Higher PSNR or SSIM indicates that the reconstruction is of higher
quality. PSNR is usually expressed in terms of the logarithmic decibel scale and defined as

PSNR = 10log10
NL2

x− x̂
(19)

where x and x̂ are the original and reconstructed images, and the constant L represents the maximum
intensity value in x. SSIM is usually measured in percentage and defined as

SSIM =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
(20)

where x and x̂ are the original and reconstructed images, µx, µx̂, σx and σx̂ are the mean and variance
values of x and x̂, σxx̂ is the covariance between x and x̂; c1 = (k1C)2 and c2 = (k2C)2 are two variables
aiming at stabilizing the division with weak denominator, C is the dynamic range of the pixel-values and
k1, k2 are constants. Herein, C = 1, k1 = 0.01 and k2 = 0.03.

These quantitative results are regrouped in Table.I, where bold values stand for the best result obtained
for each experiment.

TABLE I: Quantitative results for compressive deconvolution reconstruction of simulated US images
CS ratios 0.8 0.6 0.4 0.2

Group 1

ADMM PSNR(dB) 29.14 28.34 27.01 24.60
SSIM(%) 81.58 77.44 69.07 51.65

SDMM PSNR(dB) 30.67 29.55 27.94 26.18
SSIM(%) 85.77 81.66 74.37 63.15

Group 2

ADMM PSNR(dB) 24.38 22.67 20.70 18.54
SSIM(%) 63.31 53.63 39.04 19.96

SDMM PSNR(dB) 25.07 22.97 20.77 18.57
SSIM(%) 64.48 54.53 39.39 20.05
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Fig. 2: Results on simulated data (Group 2). (a) TRF, (b-d) Reconstruction results using ADMM for CS
ratios of 0.6, 0.4 and 0.2, (e) Simulated US image, (f-h) Reconstruction results using SDMM for CS ratios
of 0.6, 0.4 and 0.2.

Fig. 3: Convergence performance on simulated data (Group1).

Both the visual inspection of images in figures 1 and 2 and the quantitative results in Table.I show that
the proposed SDMM-based method outperforms the ADMM algorithm for the two simulated images and
for all the CS ratios. In addition to the reconstruction quality gain, the proposed method also offers better
convergence properties compared to ADMM. This convergence improvement is clearly highlighted by the
plots in Fig. 3. We may thus remark that for all the CS ratios, the convergence curves, both in terms of
objective function (as eq. (2)) and of Normalized Mean Square Error (NMSE) defined in eq.(21), decreases
much faster with SDMM than with ADMM. The computations were performed using a computer with
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Fig. 4: Results of all the methods with different p on simulated data (Group1).

Intel Xeon CPU E5620 @2.40GHz, 4.00G RAM. Depending on the stopping criterion, the convergence
rate of SDMM for Group 1 is at least twice faster than the one of ADMM. We emphasize that the same
convergence properties have been obtained for Group 2.

NMSE =
1

N
‖ x− x̂ ‖22 (21)

where x and x̂ are the normalized original and reconstructed TRF images and N represents the number
of pixels in the image.

As explained previously, the value of the regularization parameter p has been manually tuned in the two
simulated experiments. However, one may notice the importance of this parameter on the reconstruction
results, as it directly affects the regularization of the TRF [21]. In order to show its influence on the
results, we regroup in Fig. 4 the PSNR and SSIM results for both SDMM and ADMM methods for three
values of p, versus the CS ratio. In addition to the superiority of SDMM compared to ADMM, one may
remark that the choice of p is more important for low CS ratios. This observation can be explained by
the further importance of the regularization when only a small amount of data is available.

B. Results on in vivo data
In this section, we evaluate the results of the proposed SDMM-based compressive deconvolution method

on two in vivo US images, denoted by Group 3 and Group 4. Group 3 corresponds to a mouse bladder
shown in Fig. 5 (a), while Group 4 represents a mouse kidney, see Fig. 6 (a). Both images were acquired
with a 20 MHz single-element US probe. Since the PSF is unknown in practical situations, it has
been initially estimated from the data, as a pre-processing step, following the PSF estimation procedure
presented in [36]. The compressive deconvolution results obtained with ADMM and SDMM are shown in
figures 5 (b-g) and 6 (b-g) for CS ratios of 0.8, 0.6 and 0.4. Given the ”sparse” appearance of the mouse
bladder caused by the weak amount of scatterers in the liquid, the value of p was set to 1 for Group 3
and to 1.5 for Group 4.

For the in vivo data, the true TRFs are obviously not available, making thus impossible the computation
of quantitative results such as the PSNR or the SSIM. As a consequence, the quality of the compressive
deconvolution results is evaluated in this section according to the standard contrast-to-noise ratio (CNR).
Moreover, CPU times for both ADMM and SDMM reconstructions are shown in Table II. The CNR
values were computed for the regions highlighted by the red or orange rectangles in Figures 5 and 6.
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Fig. 5: Results on in vivo data (Group 3). (a) Original US image, (b-d) Reconstruction results using
ADMM for CS ratios of 0.8, 0.6 and 0.4, obtained for p = 1, (e-g) Reconstruction results using SDMM
for CS ratios of 0.8, 0.6 and 0.4, obtained for p = 1.

Fig. 6: Results on in vivo data (Group 4). (a) Original US image, (b-d) Reconstruction results using
ADMM for CS ratios of 0.8, 0.6 and 0.4, obtained for p = 1.5, (e-g) Reconstruction results using SDMM
for CS ratios of 0.8, 0.6 and 0.4, obtained for p = 1.5.

For instance, two CNRs have been calculated for Group 3, between one region in the bladder cavity and
respectively two regions extracted from the bladder wall. The results in Table II show equivalent results
between ADMM and SDMM. Nevertheless, SDMM was roughly 2 to 6 times faster than ADMM, due
to its better convergence properties discussed in the previous section.

The visual inspection of the results highlights better denoising achievements with SDMM compared
to ADMM, as for example in weak scatterer regions such as the bladder cavity. We emphasize that the
reconstructed TRF in Figures 5 and 6 are shown after envelope detection and log compression, in order to
be comparable to the standard B-mode images. However, the deconvolution process results into TRFs that,
contrary to RF images, are not longer modulated in the axial direction. Indeed, the carrier information
is included in the PSF that is eliminated during the deconvolution process. For this reason, the standard
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procedure of envelope detection based on the amplitude of the complex analyitic signal, is not adapted
to TRF. Instead, we have used an envelope estimator based on the detection and interpolation of local
maximum, classically used in empirical mode decomposition techniques [37].

TABLE II: Quantitative results for the in vivo data
CS ratios 1 0.8 0.6 0.4

Group 3

ADMM
CNR1 1.65 1.63 1.57 1.40
CNR2 2.51 2.00 1.52 1.10

Time(s) 76.40 77.36 100.88 112.96

SDMM
CNR1 1.40 1.39 1.38 1.23
CNR2 2.33 2.29 2.05 1.50

Time(s) 16.40 18.71 24.76 41.31
Group 4

ADMM CNR 1.98 1.90 1.77 1.40
Time(s) 629.57 561.20 484.93 343.09

SDMM CNR 1.90 1.87 1.84 1.58
Time(s) 186.64 216.66 265.43 312.12

V. CONCLUSION

Reconstructing enhanced US images from compressed measurements is a very recent paradigm that
regroups compressive sampling and deconvolution into a sole framework. The main objective of this paper
was to propose an SDMM-based algorithm dedicated to solve the compressive deconvolution problem
in US imaging. Compared to an ADMM-based method that we have recently published in [12], the
proposed algorithm requires one less hyperparameter since one of the optimization subproblems can be
solved without any approximation. Moreover, the proposed variable splitting scheme made possible by
SDMM is shown to allow faster convergence compared to ADMM. Finally, an alternative to compressed
measurements obtained with non-orthogonal matrices is provided, thus extending the practical interest
of the compressive deconvolution approach. Our future work will include the consideration of blind
deconvolution techniques able to jointly estimate the PSF and tissue reflectivity function, through statistical
regularization techniques or parametric models. Moreover, an automatic choice of the optimal value of the
regularization parameter p would be of great interest in practice. This optimal choice may be considered
through statistical assumptions on the US images, such as the heavy-tailed distributions discussed in [21].
Finally, an interesting future researh track will be to evaluate the compressive deconvolution with specific
compressed measurements, such as those obtained by Xampling [4] or with optimized sparse arrays [38].

APPENDIX
PROXIMAL OPERATOR

The proximal operator (or proximal mapping) of a function f , denoted by proxf , is defined by

proxf (x) = argmin
u∈RN

f(u) +
1

2
‖ u− x ‖22 (22)

When f(u) = K | u |p, (22)

proxK|·|p(x) = argmin
u

K | u |p +
1

2
‖ u− x ‖22 (23)

or

proxK|·|p(x) = argmin
u

| u |p +
1

2K
‖ u− x ‖22 (24)

The unique solution to the minimization problem above given by [28] is:
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proxK|·|p(x) = sign(x)q (25)

where q ≥ 0 and

q + pKqp−1 =| x | (26)

For the case p = 1, the proximal operator of K | x | is the well known thresholding. For the case
p 6= 1, the numerical solution to the equation above, i.e. the value of q, can be obtained using Newton’s
method. The resulting proximal operators for different values of p are plotted in Fig.7.
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Fig. 7: Proximal operator of | x |p for different values of p

APPENDIX
SDMM-BASED COMPRESSIVE DECONVOLUTION WITH NON-ORTHOGONAL MEASUREMENT MATRICES

When the sampling matrix Φ is non-orthogonal, the solution of v3-subproblem in eq. (18) cannot be
computed in practical situations because of the high-dimensional matrices. To overcome this issue, we
propose to use Newton’s method to approximate its solution.

Let us denote

h(v3) = [βΦtΦ + µ]v3 − βΦty + µbk3 + µHxk+1 (27)

At each iteration, we approximate vk+1
3 by

vk+1
3 = vk3 − stp ∗ h(vk3) (28)

where stp is defined as

stp =
h(vk3)th(vk3)

β[Φh(vk3)]t[Φh(vk3)] + µh(vk3)th(vk3)
(29)

To conclude, the solution to eq.(18) are shown in Algorithm 2.
In order to evaluate the effectiveness of this method for non-orthogonal measurements matrices (the

resulting SDMM scheme is denoted by nSDMM), we use hereafter the simulated image in Fig.1. The
compressive measurements are obtained by projecting the TRF onto a random Gaussian matrix. The
reconstruction results with nSDMM are compared to those obtained in Section IV-A with SDMM using
an orthogonal measurement matrix.

Fig. 8 regroups the nSDMM and SDMM reconstructions for CS ratios of 0.6, 0.4 and 0.2, while
the quantitative results are reported in Table. III. Despite a slight reconstruction degradation caused by
the Newton approximation, one may remark that nSDMM is able to fairly reconstruct the TRF from
non-orthogonal measurements.
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Algorithm 2 Solution to eq.(18)
Input: µ, β, Φ, y, H , xk+1, vk3, bk3,

1: if Φ is orthogonal then
2: Update vk+1

3 by Sherman-Morrison-Woodbury inversion matrix lemma
3: else
4: Update vk+1

3 using eq.(28)
5: end if

Fig. 8: Results on simulated data (Group 1). (a) TRF, (b-d) Reconstruction results using SDMM from
orthogonal measurements for CS ratios of 0.6, 0.4 and 0.2, (e) Simulated US image, (f-h) Reconstruction
results using nSDMM from non-orthogonal measurements for CS ratios of 0.6, 0.4 and 0.2.

TABLE III: Quantitative comparison between SDMM and nSDMM
CS ratios 0.8 0.6 0.4 0.2

SDMM PSNR 30.67 29.55 27.94 26.18
SSIM 85.77 81.66 74.37 63.15

nSDMM PSNR 30.33 29.36 28.02 26.00
SSIM 83.90 79.89 73.44 57.45
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