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NLP is used for many applications to mine text
- spam filtering 
- spell checking
- automatic translation
- finding information in text / databases
- finding entities and linking them
- classifying text, e.g. topic, fake news ...
- analysing opinion / sentiment in text
- summarizing text
- simplifying text
- profiling users
- detecting mental illness
- ...

More and more companies and other academic fields are interested in NLP techniques
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Released of ChatGPT:
- seems able to solve any problems = fluent 

generation, able to summarize, answer 
questions, multilingual etc

- prompt engineering: find the good 
questions to ask in order to solve any task

→ is NLP solved? 



Is it still interesting to take a Natural Language Processing course?
Let’s ask Gemini (in English and French):

https://gemini.google.com/app/b9ec5350707b545e (en) 

https://gemini.google.com/app/6434bd5f7295aa22 (fr)

→ Still many challenges, according to Gemini:

https://gemini.google.com/app/1023a063edb036d0 (en)

https://gemini.google.com/app/b9ec5350707b545e (fr)

● Generative AI excels at creating human-like text
● NLP provides the foundation for generative AI to understand language
● They work together
● Challenges: more natural conversations, word knowledge, biases, evaluation…
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Content of this course: NLP basics
1. What is Natural Language Processing?
2. (Computational) Linguistics basics
3. Learning from textual data
4. Main applications of NLP
5. Practical NLP: finding data, machine learning libraries, learning settings
6. Limits and current challenges of NLP

→ Practical session: 

- pre-processing text data ; 
- exploring language models: bias, classification, explainability

8



What is Natural Language Processing?
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What is Natural Language Processing?
At the interface between: 

- Linguistics: dealing with natural languages
- Computational Science: algorithms
- Mathematics: statistics, probabilities
- Physics: speech processing

Subdomain of Artificial Intelligence: 

- human machine interaction
- human human interaction  

= access to information / extract information

= understanding intelligence through communication
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What is Natural Language Processing?
Computational techniques to process data in natural language

- Practical: Creating tools to automatically process data in natural language, 
i.e. tools to analyse, model, “understand”, generate, save language

- Theoretical: Using empirical methods to better understand what is 
language: how does it work? how people understand each other?

11



What is Natural Language Processing?
Take data Process

Understand language

Develop applications
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What does it mean?
How do we do that?
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What does it mean?
How do we do that?Many challenges!

Which ones?



Why NLP is hard?
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Example: Question-Answering with Watson
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Why NLP is hard?

Keyword matching can 
provide good clues
→ but here, misleading



It won’t be enough most 
of the time:

→ stronger evidence are 
much harder to find, 
relying on:

- fine-grained analysis 
(e.g. temporal 
reasoning)

- complex 
understanding (e.g. 
paraphrasing)
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Why NLP is hard?



Many issues:

- ambiguity 
- coreferent entities
- equivalent forms
- sarcasm 
- negation, contrast
- ...

19

Why NLP is hard?

This mouse is not good looking, but it works 
perfect and I like it.



Other issues:

- language is evolving 
- speakers do not always master their own 

language…
- speakers are creative: 

- e.g. lol, mdr, yolo, omg ...
- e.g. cheeeeeerrrsss
- e.g. love u
- e.g. <3 :) :D

+ of course: many languages with variations 
across domains, socio-economic groups …

→ Makes the study of language fascinating but 
its automatic processing harder (and funnier ;)

Why NLP is hard?



Computational Linguistics Basics
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Main levels of linguistics structure
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Main levels of linguistics structure
Phonetics-Phonology:
Speech processing is distinct from 
NLP = focus on text. But NLP 
researchers work on transcriptions 
from speech.
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Pre-processing text data

29

Basic operations / pre-processing:

- tokenisation
- sentence segmentation
- normalization:

- lower-casing
- lemmatization, stemming
- removing stop-words

→ current models often include some preprocessing steps (e.g. tokenisation) but: 
- still others needed (e.g. sentence split)
- useful with different architectures / rule-based models
- important to understand what is done and what we expect.  



Words / Tokens
Text = sequences of characters, spaces, punctuation encoded the same way

→ We need to find the words boundaries = tokenization

→ Crucial: words are meaningful units, minimal input to NLP systems

What is a word? = sequence of characters separated with a blank (space, line) or punctuation?
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- apostroph: I don’t know = 3 or 4 words?
- Multiword expressions: in spite of; fleur bleue; perdre la tête = how many 

words? 
- Proper nouns: San Francisco, Tour Eiffel
- Other languages:

- German: rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz 
= "the law for the delegation of monitoring beef labeling."

- no word boundaries explicitly marked for some languages (= word 
segmentation) 



Sentences
Text = sequences of characters, spaces, punctuation encoded the same way

→ We need to find the sentence boundaries = sentence segmentation

→ Crucial: Sentences are the input of many systems; Syntactic analysis is based on sentences

- ‘.’ is very ambiguous,  a period may denote: 
- an abbreviation (47% of the periods in the Wall Street Journal), 
- decimal point, 
- an ellipsis, 
- an email address 

- ? and ! are less ambiguous  (in English), but they may appear in embedded quotations, emoticons, computer 
code, and slang

In Oct. 2013, M. Obama will visit Paris. He will meet ministers, deputies, parliamentarians etc. to discuss.

→ Context is crucial to find sentence boundaries 
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Normalization
Often, we do some normalization on words, to improve generalization:

- lower-casing: “The” → “the”
- lemmatization = reduce to “base form”, remove inflectional endings

- e.g. “managed” → “manage”, 
- e.g. “is/was/were/being” → “be”
- → introduce ambiguity: “changed” → “change” = Verb or Noun
- → no clear base form for some words 

- e.g. pronouns: in Spacy “I” → “PRON”
- removing stop-words = very frequent, less meaningful 

words e.g.“i, me, the, to, when, …” 

Many lists, see e.g. list in NLTK: https://www.nltk.org/book/ch02.html 
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Less useful for new models, partly included: ‘cased’ or ‘uncased’ 
Language Models ; subwords tokenization for unknown words. 

https://www.nltk.org/book/ch02.html


Linguistic Analysis

Additional processing that can provide rich information:

- Part-of-Speech (POS) tagging
- Word sense disambiguation
- Named Entity recognition
- Syntactic parsing
- Discourse parsing 

→ statistical models

→ Varied performance, can be very hard especially for high-level 
tasks (i.e. semantics) and low-resources languages / domains.
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Part-Of-Speech Tagging

37

= Associating a morpho-syntactic category to each word
→ Noun, Verb, Pronoun, Adjective, Adverb …



Part-Of-Speech Tagging

Ambiguity!
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= Associating a morpho-syntactic category to each word
→ Noun, Verb, Pronoun, Adjective, Adverb …

- useful for syntactic parsing, disambiguation, and many applications
- state-of-the-art: English ≃ 97%



Syntactic analysis
Two main paradigms: constituency and dependency

40
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Syntactic analysis
Two main paradigms: constituency and dependency
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Constituency trees Dependency trees

Root



Syntactic analysis 

- Useful for correcting syntactic errors, semantic analysis (e.g. identifying the 
subject / agent of an action), generation etc

- State-of-the-art system for English Constituency ≃ 96% ; Dependency ≃ 97%

Ambiguity!

46



Named Entity Recognition (NER) 
= Identifying Named Entities, Typing them

- Types: person names, organizations, locations, medical codes, time expressions, 
quantities, monetary values, percentages

- State-of-the-art: English ≃ 50-94% (depending on the difficulty of the task)

47

https://www.wikiwand.com/en/Medical_classification


Named Entity Recognition (NER) 

48

What is the average gas mileage 
of a Lincoln?



Pre-processing tools
Many existing tools: 

- NLTK is a bit outdated, more used for teaching
- Spacy is very easy to use
- Many other tools, often specialized e.g. for tokenization, syntactic parsing ..

49
https://www.nltk.org/ https://spacy.io/ 

https://www.nltk.org/
https://spacy.io/


NLP: tasks and applications

50



Classification

Idea: assign a (known) category to an object

- Word Sense disambiguation
- Classification of books: by genre, author, topic... 
- Sentiment analysis: classification of books, tweets, …
- Language detection
- Fake news detection
- Lie and fraud detection (e.g. in scientific publications…)
- Gender, Political side … detection 
- predicting patients’ trajectories, e.g. Identify cancer in clinical notes [Rohanian et al. 

2023]
- Classification of clauses in legal documents: categories e.g. Immigration, crime ; 

unfairunder some law etc [Guha et al. 2023]
- Psychological trouble detection 
- ....
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https://aclanthology.org/2023.bionlp-1.5/
https://aclanthology.org/2023.bionlp-1.5/
https://arxiv.org/pdf/2308.11462.pdf


Sequence Labelling
Idea: we want to take into account context, e.g. surrounding words

→ making the optimal label for a given element dependent on the choices of nearby elements 

- POS tagging
- Named Entity Recognition

→ Without neurons: = CRF, HMMs …

→ Now: e.g. with Recurrent Neural Network + CRF

52



Sequence to Sequence
Idea: we want to take a sequence as input, and to 
output another sequence, e.g.: 

- Machine translation
- Question-answering, e.g. on legal rules [Guha et 

al. 2023]
- Summarization
- Generation in general:

- e.g. generating subtitles, captions, poetry... 
- interface for patients to ask questions and 

access relevant information 
- Report generation, e.g. from radiology 

reports [Kim et al. 2023]
- simplification: Patient-friendly clinical notes 

[Trienes et al. 2022]
53
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Learning from textual data

54



Learning regularities from textual data
NLP systems are based on:

- 1980’s Early approach: Symbolic methods = hand-written rules
- ex: tokenizer based on regular expressions
- advantages: based on linguistics expertise, very precise
- inconvenients: lack of coverage, time consuming 

- 1990’s Statistical approaches: machine learning algorithms
- learn rules automatically = (mostly) linear functions  
- rather fast to train, still good baselines

- ≃ 2010 Neural methods 
- combine linear and non-linear functions
- improved performance (in general)
- harder to interpret (“black-box”)
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Learning from data: supervised classification
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Classical machine learning approach: linear models

64

→ intuition (2 dimensions): find a line (=linear models) that split 
the data according to their labels

- many possible lines / hypothesis
- best line: no error (or not too many), good generalization



Linear Classifiers 
The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions / 

features), a plane (3 d) or an hyperplane (n d) separating the two classes 
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Linear Classifiers 
The decision boundary is a linear function of the input: in the binary case, it's a line (2 dimensions / 

features), a plane (3 d) or an hyperplane (n d) separating the two classes 
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x=(x1,x2)
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0
, x

1
, …, x

n
> representing a data point is a vector

→ how do we build it?



Learning from text data 

Main issue: 

- how to represent text? 

e.g. how to transform a sentence into a vector of numerical 
values?
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BOW: One-hot encoding

71

- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1

18 words / dimensions



BOW: One-hot encoding
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- First, build a vocabulary: identify all the word in your data
- If the word is present in the sentence / document, value = 1
- The other words: value = 0 → present in the training data, 

but not in this specific sentence / document

BOW: One-hot encoding



- Easy to use: now the computer can “read” your sentence

            The elephant sneezed at the sight of potatoes.

            <1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0> 

Varied flavors:

- Binary
- Raw frequencies: some words are repeated = more important
- Normalizing with TF-IDF: take into account the distribution of the words in 

the entire corpus
- “the”: very frequent but not very crucial
- “magnificent”: rare, but crucial

78
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Bag of any features
Can be used to take into account any information, e.g. POS tags:

     The/D elephant/N sneezed/V at/P the/D sight/N of/P potatoes/N

81

1 1 1 1 0

D  N  V  P  A

We can encode any information: 
- presence of a syntactic relation
- presence of a Named Entity
- word associated to a sense if disambiguated
- words in the next sentence
- ...



Problems and extensions
1. Very high dimensional: 

- 18 dimensions for the previous sentence but could be 100k dimensions! 
- Curse of dimensionality: makes learning hard, prone to overfitting

- Solutions:
- ignoring specific words, e.g. stop words
- keeping only the most frequent / highest TF-IDF
- grouping words: semantic categories, clusters (Brown)
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Problems and extensions
1. Very high dimensional: 

- 18 dimensions for the previous sentence but could be 100k dimensions! 
- Curse of dimensionality: makes learning hard, prone to overfitting

- Solutions:
- ignoring specific words, e.g. stop words
- keeping only the most frequent / highest TF-IDF
- grouping words: semantic categories, clusters (Brown)

2. Bag-of-Words representation ignores word ordering and context
- crucial: 

- “I don’t know why I like this movie.” vs “I don’t like this movie and I know why.”
- solutions: n-grams, i.e. use combination of multiple words

- e.g. trigrams such as “do not like”, “like this movie”
- but even more dimensions!
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Learning algorithms for classification

- Naive Bayes
- Linear classifiers:

- perceptron 
- passive-aggressive 
- Logistic Regression aka MaxEnt
- linear SVM

- Non linear SVM 
- Neural networks

See the doc on supervised learning
See the tutorial: working with text

84

https://scikit-learn.org/stable/supervised_learning.html
https://scikit-learn.org/stable/tutorial/text_analytics/working_with_text_data.html


Example: Logistic Regression

- Spam (binary) classification

- We take word frequency as features 

feature fi weight wi

pharmacie 0.4

viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1

x1: “Pharmacie en ligne: viagra meilleure offre!”

score(x1) =  0.4×1+1.2×1+0.2×1+0.2×1+(−0.8)×0+(−1.7)
×0+0.1 = 2.1

85

score(x) = W.x + b
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- Spam (binary) classification

- We take word frequency as features 
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viagra 1.2

meilleure 0.2

offre 0.2

demande -0.8

transmets -1.7

bias 0.1
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score(x1) =  0.4×1+1.2×1+0.2×1+0.2×1+(−0.8)×0+(−1.7)
×0+0.1 = 2.1

x2: “Suite à votre demande, je vous transmets notre 
meilleure offre”

score(x2) = 0.4×0+1.2×0+0.2×1+0.2×1+(−0.8)×1+(−1.7)
×1+0.1 = −2.0 
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- We take word frequency as features 
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score(x) = W.x + b

linear function

scores

These weights are 
learned during training



Example with Logistic Regression 

92

- Linear scores range [-∞, ∞] difficult to interpret, we prefer probabilities
- Linear scores are transformed using (non linear) logistic functions

x1: “Pharmacie en ligne: viagra meilleure offre!”
x2: “Suite à votre demande, je vous 
transmets notre meilleure offre”



Introducing non-linearity
SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space 

93



Introducing non-linearity
SVM with non-linear kernel

- mapping of the original input feature space to a higher-dimensional feature space,

- with the hope that data may be linearly separable in this new space 

Neural Network: keep 
non-linearity and transformation 
of the input space.

94



Playing with data (without neurons): scikit-learn
Toolkit for machine learning in Python (developed at INRIA): 

- Contains the implementation of many algorithms:
- Naive Bayes
- Logistic Regression
- SVM
- Decision Trees
- Perceptron
- Passive-agressive
- …

- Makes also easy to: 
- pre-process / vectorize text data
- optimize and evaluate models
- select features

- Classification, clustering, regression

95

https://scikit-learn.org/stable/index.htm


Neural architectures

96



Limits of classical statistical methods

● Data representation: problems of sparsity and word similarity
● Learning architectures: Non-linearity for non linearly separable data

Standard / classical approach:

- linear model trained over high-dimensional but very sparse feature vectors

Neural approach: 

- non-linear neural networks over dense input vectors
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Neural architecture: the brain-inspired metaphor

98

Brain computation units = neurons [Perceptron, Rosenblatt, 1957]:

- A neuron has scalar inputs and outputs
- Each input has an associated weight to control its importance: the neuron 

multiplies each input by its weight and then sums = linear combination
- If the weighted sum is greater than the activation potential → the neuron 

“fires” = produces a single binary output
- The neurons are 

connected and form a 
network → the output of 
a neuron may feed into 
the inputs of one or 
more neurons



Artificial neuron
Using a binary output: not very practical

→ We prefer having small change in weight leading to small change in output
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Feed-forward Neural Network
Also called Multi-Layered Perceptron (MLP)

100

- standard neural network 
approach

- Fully connected layers
- Can be used as drop-in 

replacement for typical 
classifiers with one-hot 
inputs (but in general used 
with dense inputs)



Feed-forward Neural Network
Also called Multi-Layered Perceptron (MLP)

101

- standard neural network 
approach

- Fully connected layers
- Can be used as drop-in 

replacement for typical 
classifiers with one-hot 
inputs (but in general used 
with dense inputs)

A ‘neuron’



A ‘neuron’ in neural networks
- Layers are made of neurons = building blocks of neural networks

- A single neuron works like logistic regression, i.e. linear combination + 

a (non linear) function 
- We can feed an input vector to a bunch of LR functions and get an output vector

- which can be fed to another layer of LR functions

102w.x = w1x1 + w2x2 + w3x3 + 1

y = f( w.x )h = g(w.x)



A ‘neuron’ in neural networks
- Layers are made of neurons = building blocks of neural networks

- A single neuron works like logistic regression, i.e. linear combination + 

a (non linear) function 
- We can feed an input vector to a bunch of LR functions and get an output vector

- which can be fed to another layer of LR functions

103w.x = w1x1 + w2x2 + w3x3 + 1

y = f( w.x )h = g(w.x)



Example with text classification

input layer hidden layers output layer

input output

104

This movie 
is 
excellent

This movie 
is 
excellent

Filtre

1

0

1

0

movie:      [1, 0, 0, 0]
excellent:  [0, 0, 1, 0]
→ combined: [1, 0, 1, 0]

Input a text with one-hot encoding



Example with text classification

input layer hidden layers output layer

input output
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This movie 
is 
excellent

This movie 
is 
excellent

Filtre

1

0

1

0

movie:      [1, 0, 0, 0]
excellent:  [0, 0, 1, 0]
→ combined: [1, 0, 1, 0]

w.x = w1xInput1 + w2xInput2 + w3xInput3 + w4xInput4

Input a text with one-hot encoding

Do some calculations through the network

h1 = g(w.x)



Example with text classification

input layer hidden layers output layer

input output
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This movie 
is 
excellent

This movie 
is 
excellent

Filtre

1

0

1

0

movie:      [1, 0, 0, 0]
excellent:  [0, 0, 1, 0]
→ combined: [1, 0, 1, 0]

w.x = w1xInput1 + w2xInput2 + w3xInput3 + w4xInput4

Input a text with one-hot encoding

Do some calculations through the network

Output predictions

h1 = g(w.x)



Example with text classification

input layer hidden layers output layer

input output
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This movie 
is 
excellent

This movie 
is 
excellent

Filtre

1

0

1

0

movie:      [1, 0, 0, 0]
excellent:  [0, 0, 1, 0]
→ combined: [1, 0, 1, 0]

→ usual way: dense vectors



Feed-Forward Neural Network
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x2

x3

x4

h11

h12

h13

h21

h22

h23

input layer hidden layers output layer

= Deep learning
(here Depth = 2)

feed an “input” vector to a bunch of LR functions

repeat



Feed-Forward Neural Network
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x2

x3

x4

h11

h12

h13

h21

h22

h23

Layers are all vectors of numerical values 

- layer = vector resulting from a linear transformation
- each hidden layer is followed by a non-linear activation

MLP is a basic architecture, several improvements / modifications have been proposed

→ Before introducing more refined architectures: how to get a dense vector representing 
the input ?



Back to: text data representation

- Previous approach: defining features has to be done 
manually: require expertise and tests

- A word is represented with a one-hot vector: easy to 
implement
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Data representation

111

But does not represent the meaning of words → no notion of similarity



Data representation
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But does not represent the meaning of words → no notion of similarity



Data representation
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But does not represent the meaning of words → no notion of similarity

Expected!



Word distribution
- Rather old idea: distributional hypothesis → 1950’s!

Example (from Tim van der Cruys):

- delicious sooluceps
- sweet sooluceps
- stale sooluceps
- freshly baked sooluceps 

→ Guess what is a sooluceps ?
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Word distribution
- Rather old idea: distributional hypothesis → 1950’s!

Example (from Tim van der Cruys):

- delicious sooluceps
- sweet sooluceps
- stale sooluceps
- freshly baked sooluceps 

→ Guess what is a sooluceps ?

Looking at the context of use of a word, you can guess its meaning

115

Food!



Word embeddings
Many studies on representing the meaning of words using context 

Before neural networks:

- build a matrix over all the words appearing in a corpus
- count the number of time words appear together
- reduce the dimensions (e.g. PCA)

Now: Train a neural network to build a representation / language model 

- massive amount of data
- task = predicting a linguistic unit (word, sentence…)
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Word2vec
CBOW:

- predict the target word given 
the context

Skip-gram:

- predict the context words 
given the target word

→ the hidden layer is used as the 
representation of the target word 
= word embeddings

117

For each target word (blue), consider some context words (here, window = 5)



Word2vec
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For each target word (blue), consider some context words (here, window = 5)

CBOW:

- predict the target word given 
the context

Skip-gram:

- predict the context words 
given the target word

→ the hidden layer is used as the 
representation of the target word 
= word embeddings



Word2vec
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For each target word (blue), consider some context words (here, window = 5)

CBOW:

- predict the target word given 
the context

Skip-gram:

- predict the context words 
given the target word

→ the hidden layer is used as the 
representation of the target word 
= word embeddings



Word2vec
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For each target word (blue), consider some context words (here, window = 5)

CBOW:

- predict the target word given 
the context

Skip-gram:

- predict the context words 
given the target word

→ the hidden layer is used as the 
representation of the target word 
= word embeddings



Word2vec

121

Learned word embeddings allow semantic inferences:



Visualizing embeddings
https://projector.tensorflow.org/ 
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https://projector.tensorflow.org/


Visualizing embeddings
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Data representation
→ Before NN: expertise needed to find good data representations

→ Now: feed your NN with word embeddings! but…. 

- Setting:
- which ones? GloVe, FastText, Word2Vec, ELMO, BeRT, RobeRTa, GPT-2, GPT-3, XLNet... 
- which size, window size, number of iterations?

- Other issues:
- how to combine them into a sentence / document?
- what about other information: POS / syntax / pragmatics? 
- what about different languages and domains?
- problem with evaluation: e.g. natural language inference tasks seem inadequate 
- choice of the data / problem with models: bias and representativeness 

→ expertise still needed
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Neural architectures

The Feed-forward neural networks are general purpose 
classification architectures, not tailored specifically for language 
data or sequences)

→ Feed-forward network assumes

 fixed dimensional input
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Neural architectures: dealing with text sequences
How to represent variable number of features, e.g. words in a sentence?

- Continuous Bag of Words (CBOW): sum embedding vectors of 
corresponding features

- no ordering info e.g. ”not good quite bad” = ”not bad quite good”
- Convolutional layer

- ’Sliding window’ approach that takes local structure into account
- Combine individual windows to create vector of fixed size
- NLP: identifying informative ngrams in a sequence of text, regardless of their 

position but while taking local ordering patterns into account
- Recurrent layer

- Allow to take into account the whole history / sequence
- designed to capture subtle patterns and regularities in sequences



Recurrent Neural Network
- Main idea:  

- if we have data in a sequence such that one data point depends upon the 
previous data point 

- → modify the neural network to incorporate the dependencies between 
these data points

- RNNs have the concept of ‘memory’ = store the states or information of previous 
inputs to generate the next output of the sequence.

e.g. to predict the next word in a sentence, you need the previous outputs/words

→ LSTM or GRU are specific implementations of RNN



RNN: language model

- allow to condition on the entire history
- can act as language models → 

learning the likelihood of occurrence 
of a word based on the previous 
sequence of words (or based on 
characters, sentences, paragraphs)

→ suitable for use as generators: 
generating natural language sequences



RNN: language model
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RNN: language model



Encoder-Decoder

- Until now RNN = generating the next token tj+1 
- based on the previously generated tokens t1:j

- Conditioned generation = the same
- + an additional conditioning context (vector) c 

→ Combining encoding + generation = encoder-decoder / sequence to 
sequence

- encoder: produce a representation of the input (in general a sequence)
- decoder: generate an output (in general a sequence)



Typical example: Machine translation

e.g. : Machine translation
- encoding the input in source 

language = produce a 
representation

- decoder: use the 
representation to condition the 
output in target language

decoder = generator of target 
language



General idea
Pipeline:

- feed source and previously 

generated target words into a 

network;

- get vector representation of 

context (both source and previous 

target);

- from this vector representation, 

predict a probability distribution 

for the next token.



General idea

Neural networks learn 
representations:

- the hidden layers build 
representations of the 
input during learning

- the embeddings are 
updated during learning

→ representations tailored 
to the task 



Encoder-Decoder: application examples
→ originally built to solve Seq2Seq problems, useful to map sequences of size 
n to sequences of length m 

- Machine translation: in [Sutskever et al. 2014], they feed the source sentence in 
reverse (then xn is the first word) 

- Email auto-response: map an email to a short answer [Kannan et al 2016] 
- Morphological inflection: input is a base word + inflection request, the output is 

an inflected form [Faruqui et al 2016]
- Other uses: almost any task can be formulated this way (but there could be 

better, easier to learn architectures). It has also been used for e.g. sentence 
compression by deletion [Filippova and Altun, 2013], POS tagging and NER 
[Gillick et al 2106], syntactic parsing using constituency bracketing decisions 
[Vinyals et al 2014] 

https://arxiv.org/pdf/1409.3215.pdf


Learned representation
In [Sutskever et al. 2014] (MT) they looked at the last encoder state and 
visualize several examples

https://arxiv.org/pdf/1409.3215.pdf


Attention

Encoder-decoder = the input sentence is encoded into a single vector

- the encoder vector c must contain all the information required
- hard to compress a sentence

- the generator must extract information from this fixed-length vector
- but different information may be relevant at different steps

This compression in one representation is suboptimal 

→ attention mechanism to replace the representation learned with an 
RNN [Bahdanau et al 2014; Luong et al 2015]

https://arxiv.org/pdf/1409.0473.pdf


Attention
- at different steps, let a model ‘focus’ on different parts of the input  
- at each step, the decoder decides on which parts of the encoding input it should 

focus / which source parts are more important



Attention
1. Assign some weights (and normalize)



Attention
1. Assign some weights (and normalize)
2. Compute a context vector using weights and word embeddings



Attention
1. Assign some weights (and normalize)
2. Compute a context vector using weights and word embeddings
3. Give the context vector to the decoder



Attention is all you need 

Transformer models:

- also takes sequence as input
- but based on attention mechanism without the RNN architecture
- = it is not required to read in any order the sequence

→ easier to parallelize computation, thus to train on larger corpora: leading to BERT, 
GPT language models

- [Vaswani et al 2017]: new state-of-the-art on Machine translation (with “only” 
3.5 days on eight GPUs :D), high performance for constituency parsing 

- https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

https://arxiv.org/abs/1706.03762
https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html


General idea
- When encoding a sentence, RNNs 

won't understand what bank 
means until they read the whole 
sentence,

- Transformer's encoder tokens 
interact with each other all at once.

→ Encoder < self-attention: at each step, tokens look at each other, extract information 
and try to understand each other better in the context of the whole sentence
→ Decoder < self-attention tokens predicted also interact with each other 
→ Encoder-Decoder interaction < attention: look at the context / encoder states



Self-Attention

Self-Attention = Attention over the sequence itself

Transformer model: relies entirely on self-attention to compute representations of 
its input and output (without using sequence aligned RNNs or convolution)

→ the model must understand how the words relate to each other in the context of the 
sentence

- used  for reading comprehension, abstractive summarization, textual 
entailment and learning task-independent sentence representations [Cheng et 
al 2016, Parikh et al 2016, Lin et al 2017, Paulus et al 2017]



Self-Attention

Visualization:

- the model puts a large attention 
weight between “the” and “animal” 
and “it”, allowing to ‘understand’ 
that “it” refers to “animal”

→ similar to the memory of RNNs, 
allow to keep an history



Multi-heads: multiple attention mechanisms
Positional heads Syntactic heads (subject → verb)

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html 

https://lena-voita.github.io/nlp_course/seq2seq_and_attention.html


The beast

Transformer:  Attention is 
all you need,Vaswani et 
al. 2017

Multiple hidden layers, multiple 
heads: very large number of 
parameters (the w)

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Back to: text data representations
From GloVe to ELMo

GloVe: the word “stick” would be represented by a 
unique vector no-matter what the context was.

But “stick”” has multiple meanings depending on 
where it’s used. 

→ give it an embedding based on its context

➢ takes into account an entire sentence as 
context

➢ should deal with polysemy

ELMo is based on RNNs, it was the first step toward 
contextual representations, but complex to use



Moving from ELMo to BERT*

Great ideas from ELMo: 

- contextual embeddings
- learned from large amount of unlabeled data → transfer 

learning

But issues with sequential models

→ use transformers 



ELMo vs BERT vs GPT
Use Transformers:

- GPT: Generative Pre-trained Transformer (OpenAI) [Radford et al., 2018]
- BERT: Bidirectional Encoder Representations from Transformers (Google) [Devlin et al 2019] 

and post 

BERT is bi-directional, GPT is unidirectional (information flows only from left-to-right), and ELMO is shallowly bidirectional.

https://arxiv.org/pdf/1810.04805.pdf
https://ai.googleblog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
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Transformer-based Pre-trained Language Models
[Kalyan et al. 2022] 

- PLMs learn universal language representations from large datasets 
using self-supervised learning

- make use of unlabeled data to inject universal knowledge about language (and/or 
image, speech) 

- based on the pseudo supervision provided by pretraining tasks: 
- labels are automatically generated based on data attributes
- e.g. masked language modelling (MLM), next sentence prediction (NSP) …

- transfer this knowledge to downstream tasks

https://arxiv.org/abs/2108.05542
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Types of self-supervised learning

- Generative SSL: learn by 
decoding the encoded input: 

- autoregressive = predict the next 
tokens based on the previous 
ones (GPT-1)

- autoencoding = predict the 
masked tokens based on the 
unmasked ones (e.g. MLM)

- Contrastive SSL: learn by 
comparing

- NSP or Sentence Order Prediction 

- Adversarial SSL: learn to 
identify whether tokens are 
replaced or shuffled

- Hybrid: e.g. 
BERT = 
generative (MLM) 
and contrastive 
(NSP)



Types of architectures
- encoder only: 

- embedding layer followed by a stack of encoder layers ; e.g. BERT, XLNet, RoBERTa, 
ELECTRA, ALBERT and XLM-E - NLU

- decoder only: 
- an embedding layer followed by a stack of decoder layers ; e.g. GPT-1, GPT-2 and GPT-3 - 

NLG

- encoder-decoder: 
- T5, mT5, mT6, BART, mBART, PLBART, PEGAUSUS and PALM



Example of BERT: Language model with transformer
→ non-directional: trying to predict a word without direction, can’t be “the next 
word”

BERT = 2 tasks, trained jointly: 

- Masked Language Model: 15% of the input tokens are masked, the model has 
to predict the missing tokens = a classification layer on top of the encoder

- Next sentence prediction: the model receives pairs of sentences as input and 
learns to predict if the second sentence is the subsequent sentence in the 
original document (50% are randomly replaced) = another classification layer



Using BERT

The pre-trained BERT 
model can be fine-tuned 
with just one additional 
output layer to create 
state-of-the-art models for 
a wide range of tasks, such 
as question answering and 
language inference, without 
substantial task specific 
architecture modifications.



Little trick
Words are split into frequent subwords (algorithm WordPiece)

→  frequently used words should not be split but rare words should be decomposed into 
meaningful subwords

- decrease the vocabulary size
- less unknown words
- use morphological information

Model dependent: “Tokenization is difficult”

- Model 1: ’token’, ’ization’, ’is’, ’difficult’
- Model 2: ’to’, ’ken’, ’ization’, ’is’, ’difficult’

https://huggingface.co/docs/transformers/tokenizer_summary 

https://arxiv.org/pdf/1609.08144v2.pdf
https://huggingface.co/docs/transformers/tokenizer_summary


BERT: results
The General Language Understanding Evaluation (GLUE) 
benchmark (Wang et al., 2018a) is a collection of diverse 
natural language understanding tasks

https://gluebenchmark.com/faq
https://gluebenchmark.com/faq


ChatGPT and the issues with LLMs
LLM stands for: Large Language Model = PLM that is considered ‘large’

- ChatGPT is built on PLMs (GPT3 or 4) = a model trained to predict the next word, and 
able to output a sequence given an input sequence 

- → ChatGPT is a wonder of engineering (fast in prediction, trained on very very large datasets, fluent) but 
built on tools known for some time now (not exactly a scientific revolution) + use human feedback

- Training such models is very expensive: that’s why they mostly come from GAFAM
- But these companies don’t share details about the models, not reproducible, not 

open-source, not free to use (not open science)
- In particular: we don’t know on which data they were trained: they could ‘see/learn’ our 

evaluation data, making it impossible to evaluate their progress
- + other issues: they are as biased as the data (and we don’t know what the creator do 

about that), ethical issues (the human annotators behind), data linkage, not 
trustworthy, not explainable… 
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Language models size
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How to use BERT and co?
- Models are on: https://github.com/google-research/bert
- Easier way: using HuggingFace library Transformers https://huggingface.co/docs/transformers/index 

BERT like:

- RoBERTa (Robustly Optimized BERT Approach) - Facebook: without the NSP task, faster to train, bigger dataset, 
more iterations (16GB → 160GB, 100k → 300/500k epochs)

- ALBERT (A Lite BERT):  18× less parameters, just marginally worse performance
- FlauBERT: for French [Hang et al 2020] https://github.com/getalp/Flaubert 
- LegalBERT: pre-trained on the Pile of Law, a dataset consisting of ~256GB of English language legal and 

administrative text 

Beyond fixed-size sequences: XLNet: using Transformer-XL,  improved training methodology, larger data and more 
computational power

Multilingual : XLMRoBERTa, mBERT …

Datasets: HuggingFace also makes available tons of datasets (language, image, video) to play with, including e.g. 
LegalBench

https://github.com/google-research/bert
https://huggingface.co/docs/transformers/index
https://ai.googleblog.com/2019/12/albert-lite-bert-for-self-supervised.html
https://github.com/getalp/Flaubert
https://huggingface.co/pile-of-law/legalbert-large-1.7M-2
https://huggingface.co/datasets/pile-of-law/pile-of-law
https://arxiv.org/pdf/1906.08237.pdf
https://huggingface.co/datasets
https://huggingface.co/datasets/nguha/legalbench


Current challenges in NLP
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Current challenges in NLP
- across languages and domains, beyond textual data
- bias and "fairness" 
- interpretability 
- environmental and financial costs
- reproducibility, data sharing 
- robustness

On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? 
http://faculty.washington.edu/ebender/papers/Stochastic_Parrots.pdf 
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➢ Low-resourced languages
○ 100 languages covered by LM vs 5000-7000 languages in the world (+ sign languages) 

➢ Most work on:
○ specific domains e.g. news, wikipedia … more and more on social media. More work 

needed on specific domain: technical, medical, legal etc
○ mostly work on monologues, but increasing work on dialogues / spoken language 

➢ Multi-modality:
○ communication also based on e.g. image, audio (see data here), also an active domain!

174

text-to-video prediction: can be used to automatically illustrate a set of instructions video-to-text: automatic captioning

Across languages and domains, beyond text data

http://nlpprogress.com/english/multimodal.html


Bias and fairness
Bias and fairness in NLP data / 
models

- Gender bias
- Racial bias: Tweets written by 

African Americans are more likely to 
be flagged as offensive by AI (see 
here)

- Many ref here

Biases come from data: our systems 
encode the stereotypes present in data

→ but it’s the responsibility of the 
algorithm’s creator to detect / correct 
these biases

https://www.vox.com/recode/2019/8/15/20806384/social-media-hate-speech-bias-black-african-american-facebook-twitter
https://www.vox.com/recode/2019/8/15/20806384/social-media-hate-speech-bias-black-african-american-facebook-twitter
https://web.stanford.edu/class/cs384/
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https://bioethics.com/archives/70493 

Risks and ethics

https://www.cbsnews.com/news/eating-disorder-helpline-chatbot-disabled/
https://bioethics.com/archives/70493
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Bias and fairness: IA used in legal domain
Algorithms Were Supposed to Reduce Bias in Criminal Justice—Do They? (The Brink)

Championed as dispassionate, computer-driven calculations about risk, crime, and recidivism, their deployment in 
everything from policing to bail and sentencing to parole was meant to smooth out what are often unequal decisions 
made by fallible, biased humans.

→ algorithms built upon incomplete or biased data can replicate or even amplify that bias: ProPublica found that 
one particular system used by courts across the country guessed wrong about two times as often for Black people 
than for white people ( → "Correctional Offender Management Profiling for Alternative Sanctions": COMPAS system 
is used in parts of the US to predict whether defendants will commit crime again)
→ because these scores feel impartial, they can carry a lot of weight with the judges who use them

Rapport du Conseil de l’Europe, [Barocas and Selbst, 2016]

→ AI systems are often "black boxes": opaqueness of (...) decisions [makes it] difficult for people to assess whether 
they were discriminated against on the basis of, for instance, racial origin.
→ AI-driven decision-making can lead to discrimination in several ways. (...) The problems relate to (i) how the 
"target variable" and the "class labels" are defined; (ii) labelling the training data; (iii) collecting the training data; (iv) 
feature selection; and (v) proxies. In addition, (vi), AI systems can be used, on purpose, for discriminatory ends

https://www.bu.edu/articles/2023/do-algorithms-reduce-bias-in-criminal-justice/
https://www.brookings.edu/research/algorithmic-bias-detection-and-mitigation-best-practices-and-policies-to-reduce-consumer-harms/
https://rm.coe.int/discrimination-artificial-intelligence-and-algorithmic-decision-making/1680925d73
https://www.jstor.org/stable/pdf/24758720.pdf?casa_token=utjMCLSPmv8AAAAA:TwnyjXKHAtvLL1yT4Ufs1xQv72mdfcFXKS9Rtnsc9y5vQCZ63BQ9jQeAZf574tXshoyaAzeGDzbubre7i2m0T44zlK-S3ArcPkSW0RAy7_Y1GGujZ-GA
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Interpretability

To accept automatic systems: 

- we need to be able to justify / 
understand / interpret their decisions 

- but neural models are hard to analyze

→ very important research area 

→ crucial for ‘critical’ domains: medicine, 
legal domain, some technical domains (e.g. 
airplanes) …



LIME Explaining an example based on its inputs: LIME [Ribeiro et al 2017]
https://github.com/marcotcr/lime 

https://github.com/marcotcr/lime


Saliency map

Explaining an example based on its inputs
- Saliency Map / Allen Interpret (Wallace et al., 2019) https://allennlp.org/interpre

https://allennlp.org/interpret


Environmental and financial cost

Energy and Policy Considerations for Deep Learning in NLP 

- training of BERT – Large 16 Cloud TPUs (64 TPU chips total) → 16 (devices) * 4 (days) * 24 
(hours) * 4.5 (US$ per hour) = US$6,912

- GPT-2 model used 256 Google Cloud TPU v3 cores → costs $256 per hour
- XLNet: about $245,000… (estimated costs, no communication)
- How to shrink AI’s ballooning carbon footprint

https://www.aclweb.org/anthology/P19-1355.pdf
https://analyticsindiamag.com/google-introduces-new-architecture-to-reduce-cost-of-transformers/
https://www.nature.com/articles/d41586-022-01983-7?WT.ec_id=NATURE-202207


NLP: an empirical field with high societal impact 

187

Empirical field:

- Models are built upon data ‘observed’ or ‘created’ 
- representativeness? 
- label annotation is necessary → cost, representativeness, quality, ethical issues

- Evaluation: metrics are often debatable and qualitative analysis is often missing
- Language diversity = no ‘universal’ approach: most work for majority / dominating languages

High societal impact:

- carbon footprint
- ethical stakes

- excluding part of the population (low-resourced languages, minorities …)
- increasing societal biases
- malicious use: surveillance, personal data, advertising, political targeting…
- The Social Impact of Natural Language Processing https://aclanthology.org/P16-2096.pdf 
- Cartography of Natural Language Processing for Social Good 

https://aclanthology.org/2021.nlp4posimpact-1.3.pdf 

https://aclanthology.org/P16-2096.pdf
https://aclanthology.org/2021.nlp4posimpact-1.3.pdf


Progress in NLP
Fast evolving field!

- increasing number of articles, 
researchers, conferences are 
growing

- many computer scientists but a 
need for interdisciplinarity, 
linguistics, sociology, and experts 
of targeted domains

Find papers:

- ACL anthology
- Track NLP progress, nice initiative, 

e.g. sentiment analysis on IMDB 
https://nlpprogress.com/ 

https://nlpprogress.com/


Practical session
1. Spacy: pre-processing and analysing text data
2. Biases in Languages Models
3. Classification using HuggingFace library
4. Explainability 

→ upload the Python notebook and make a copy: 
https://colab.research.google.com/drive/1ve0jpSz5EDYLSpmnUQaxi662Kj2UbOyW?usp=sharing 189

https://colab.research.google.com/drive/1ve0jpSz5EDYLSpmnUQaxi662Kj2UbOyW?usp=sharing


Machine Learning: Summary (and missing details) 

In this course we talked about:

- learning functions / architectures
- linear functions
- neural architectures combining linear and non linear functions
- specific neural architectures : RNN, Transformers

- textual data representations
- one-hot encoding
- distributional representation: static and contextual embeddings

Some details on machine learning settings are missing.
190



Machine Learning: Summary (and missing details) 
1. What does the function f looks like ? 

a. we need to assign a score to all possibles outputs 
b. and decide the predicted output based on these scores

2. How to learn the function f? 
a. we see examples of pairs of input, output
b. build a (first) approximation of f
c. compare its prediction with the gold truth 
d. modify f if the models is wrong 

3. How to evaluate our function?
a. perform predictions on an unseen dataset
b. compute some performance metrics
c. compare to baselines, other architectures and state-of-the-art
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1. What does the function f looks like ? → linear / neural archi.

a. we need to assign a score to all possibles outputs 
b. and decide the predicted output based on these scores

2. How to learn the function f? = training + tuning / optimizing
a. we see examples of pairs of input, output
b. build a (first) approximation of f
c. compare its prediction with the gold truth 
d. modify f if the models is wrong 
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a. perform predictions on an unseen dataset
b. compute some performance metrics
c. compare to baselines, other architectures and state-of-the-art

194



Machine Learning: Summary (and missing details) 
1. What does the function f looks like ? → linear / neural archi.

a. we need to assign a score to all possibles outputs 
b. and decide the predicted output based on these scores

2. How to learn the function f? = training + tuning / optimizing
a. we see examples of pairs of input, output
b. build a (first) approximation of f
c. compare its prediction with the gold truth 
d. modify f if the models is wrong 

3. How to evaluate our function?
a. perform predictions on an unseen dataset
b. compute some performance metrics, e.g. accuracy = fraction of correctly predicted 

samples
c. compare to baselines, other architectures and state-of-the-art
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The different tasks
- Classification: predict a categorical label for each item

- single label: each instance is assigned a single label
- binary: 2 labels, e.g. an email is either a spam or not
- multi-class: > 2 labels, e.g.  sentiment is either positive, negative or neutral

- multi-label: each instance is assigned multiple labels, e.g. The Lord of the Ring is 
classified as: Adventure, Fantasy, Drama

- Sequence labeling / structured prediction: predict a categorical label for each member 
of a sequence

- e.g. POS tagging, NER...
- can be seen as performing independent classification tasks on each item
- but performance are improved when taking into account the dependence between 

the elements
- Regression: Predict a real value for each item

- e.g.: prediction of stock values, variations of economic variables, house prices..
- rarer for NLP, but e.g. data with depression “scores” (DAIC)

- Clustering: group (similar) data without knowing the classes, e.g. social media relations 196



The learning scenarios
Depend on the annotations you have: 

Supervised learning: 

- we have a set of labeled examples as training data 

- most common for classification and regression

Unsupervised learning:

- we only have unlabeled training data

- e.g.: Clustering and dimensionality reduction 

- often hard to evaluate 

Semi-supervised learning: in-between 

- use unlabeled data and annotated data together, and propagate labels

- use knowledge, e.g. from the domain to automatically annotate (noisy) data :) = happy ; :( = sad
197



Classification with Scikit-Learn
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Classification with Scikit-Learn
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Robustness

Adversarial examples

- Find examples correctly predicted by the system
- try to generate similar examples where the system makes a mistake

→ test system robustness (or to hack it)



Adversarial examples



NLP courses, slides, interesting websites (and sources)
- https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segme

ntation.html
- https://www.slideshare.net/dinel/new-trends-in-nlp-applications
- https://www.infoq.com/presentations/nlp-practitioners/
- https://github.com/sebastianruder/NLP-progress

+ Thanks to: Tim Van Der Cruys and Philippe Muller who shared their 
materials 
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https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html
https://dair.ai/notebooks/nlp/2020/03/19/nlp_basics_tokenization_segmentation.html
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