Low-rank time-frequency synthesis

Cédric Févotte1 & Matthieu Kowalski2

1Laboratoire Lagrange, Nice
(CNRS, Observatoire de la Côte d’Azur & Université Nice Sophia Antipolis)

2Laboratoire des Signaux et Systèmes (LSS), Gif-sur-Yvette
(CNRS, CentraleSupelec & Université Paris-Sud)

SPARS 2015
Cambridge, England
Spectral unmixing by NMF

- $y_{fn} = \sum_t x(t)\phi_{fn}^*(t)$: short-time Fourier transform (STFT) of temporal signal $x(t)$.
- $s_{fn} = |y_{fn}|^2$: power spectrogram.
- NMF extracts recurring spectral patterns from the data by solving

$$\min_{W,H \geq 0} D(S|WH).$$

- Successful applications in audio source separation and music transcription.
Itakura-Saito NMF & the Gaussian composite model
(Févotte, Bertin, and Durrieu, 2009)

- Low-rank variance model of analysis coefficients (STFT):
 \[y_{fn} \sim N_c(0, [WH]_{fn}). \]

- Log-likelihood equivalent to Itakura-Saito (IS) divergence:
 \[-\log p(Y|WH) = D_{IS}(|Y|^2|WH) + \text{cst}. \]

- Underlies a Gaussian composite model (GCM):
 \[y_{fn} = \sum_k y_{kfn}, \]
 \[y_{kfn} \sim N_c(0, w_{fk} h_{kn}). \]

- Given estimates of \(W \) and \(H \), latent STFT components can be estimated by Wiener filter:
 \[\hat{y}_{kfn} = \frac{w_{fk} h_{kn}}{[WH]_{fn}} y_{fn}. \]

- Inverse-STFT of \(\{\hat{y}_{kfn}\}_{fn} \) produces temporal components such that
 \(x(t) = \sum_k \hat{c}_k(t) \).
Low-rank time frequency synthesis (LRTFS)
(Févotte and Kowalski, 2014)

- Low-rank variance model of synthesis coefficients:
 \[
 x(t) = \sum_{f_n} \alpha_{f_n} \phi_{f_n}(t) + e(t),
 \]
 \[
 \alpha_{f_n} \sim N_c(0, [WH]_{f_n}),
 \]
 \[
 e(t) \sim N_c(0, \lambda).
 \]

- \(\phi_{f_n}(t)\): time-frequency atom (e.g., from a Gabor frame),
- \(\alpha_{f_n}\): synthesis coefficient,
- \(e(t)\): residual term.

- LRTFS is a generative model of raw data \(x(t)\).
- Like in the GCM, the synthesis coefficients have a latent composite structure:
 \[
 \alpha_{f_n} = \sum_k \alpha_{k,f_n},
 \]
 \[
 \alpha_{k,f_n} \sim N_c(0, w_{f_k} h_{k,n}).
 \]

- Given estimates of \(W\) of \(H\), latent coefficients \(\alpha_{k,f_n}\) can be estimated from their posterior mean and temporal components can be reconstructed as
 \[
 \hat{c}_k(t) = \sum_{f_n} \hat{\alpha}_{k,f_n} \phi_{f_n}(t).
 \]
Generative signal model in vector/matrix form:

\[x = \Phi \alpha + e. \]

- \(x, e \): vectors of **signal and residual time samples** (size \(T \)),
- \(\alpha \): vector of **synthesis coefficients** \(\alpha_{fn} \) (size \(FN \)),
- \(\Phi \): **time-frequency dictionary** (size \(T \times FN \)).

Synthesis coefficients model in vector/matrix form:

\[p(\alpha|v) = N_c(\alpha|0, \text{diag}(v)). \]

- \(v \): vector of **variance coefficients** \(\nu_{fn} = [WH]_{fn} \) (size \(FN \)).

Similar to **sparse Bayesian learning** (Tipping, 2001; Wipf and Rao, 2004) except that the **variance parameters are tied together** by the low-rank structure \(WH \).
Estimation in LRTFS
Maximum joint likelihood (JL)

▶ Optimise

\[C_{\text{JL}}(\alpha, W, H, \lambda) \overset{\text{def}}{=} -\log p(x, \alpha | W, H, \lambda) \]

\[= \frac{1}{\lambda} \| x - \Phi \alpha \|_2^2 + D_{\text{IS}}(|\alpha|^2 | v) + \log(|\alpha|^2) + \text{cst}. \]

▶ Possible EM algorithm using the procedure of (Figueiredo and Nowak, 2003) based on the hidden variable \(z \) such that

\[x = \Phi z + e_1, \]

\[z = \alpha + \sqrt{\beta} e_2, \]

with \(e_1 \sim N_c(0, \lambda I - \beta \Phi \Phi^*) \) and \(e_2 \sim N_c(0, I) \) (condition applies on \(\beta \)).

▶ Leads to a form of iterative shrinkage algorithm that scales well with real-world signal dimension. Shrinkage operator involves \textit{Itakura-Saito NMF} of power posterior expectation of \(\alpha \) at each iteration.
Estimation in LRTFS
Maximum marginal likelihood (ML)

- Integration of α from the joint likelihood (like in SBL)

\[C_{ML}(W, H, \lambda) \overset{\text{def}}{=} - \log p(x|W, H, \lambda) \]
\[= - \log \int \alpha p(x|\alpha, \lambda)p(\alpha|WH) d\alpha \]

- Possible EM algorithm treating α as the hidden variable. Tractable algorithm but does not scale well with dimension.
Toy example

(MIDI numbers: 61, 65, 68, 72)

Figure: Three representations of data.
Toy example

Dictionary W

Reconstructed components
Multi-resolution LRTFS

- LRTFS allows for multi-resolution hybrid representations:
 \[x = \Phi_a \alpha_a + \Phi_b \alpha_b + e. \]
- \(\Phi_a \) and \(\Phi_b \) are time-frequency dictionaries with different resolutions,
- \(\alpha_a \) and \(\alpha_b \) have their own latent low-rank structure \(W_a H_a \) and \(W_b H_b \).
- Not possible with standard NMF!
- Previous optimisation strategies apply by concatenation:
 \[\Phi = [\Phi_a \Phi_b] \]
 \[\alpha = \begin{bmatrix} \alpha_a \\ \alpha_b \end{bmatrix} \]
- Other hybrid decompositions are possible. E.g., low-rank layer + sparse layer (forthcoming EUSIPCO paper)
Hybrid decomposition of jazz music

\[x = \Phi_{\text{tonal}} \alpha_{\text{tonal}} + \Phi_{\text{transient}} \alpha_{\text{transient}} + e \]

spectrogram of \(x \)

\[
\begin{array}{lll}
\log |\hat{\alpha}_{\text{transient}}| \\
\log |\hat{\alpha}_{\text{tonal}}|
\end{array}
\]

Latent rank-1 components from transient layer

Latent rank-1 components from tonal layer
Speech enhancement in applause noise

\[x = \Phi_{\text{tonal}} (\alpha_{\text{speech tonal}} + \alpha_{\text{noise tonal}}) + \Phi_{\text{transient}} (\alpha_{\text{speech transient}} + \alpha_{\text{noise transient}}) + e \]

Spectrograms of \(x \) with short and large resolutions

Noisy signal: long window STFT analysis

Noisy signal: short window STFT analysis

\[\log |\hat{\alpha}_{\text{tonal}}^{\text{speech}}| \]

Denoised signal: Tonal Layer

\[\log |\hat{\alpha}_{\text{transient}}^{\text{speech}}| \]

Denoised signal: Transient Layer

