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ABSTRACT

In this paper we propose a bayesian approach for time-frequency
(t-f) based source separation. We propose a Gibbs sampler, a stan-
dard Markov Chain Monte Carlo (MCMC) simulation method, to
sample from the mixing matrix, the source t-f coefficients and the
input noise variance, under two models for the sources. In the first
one the t-f coefficients of the sources are assumed i.i.d, while a fre-
quency dependent modeling of the coefficients is proposed in the
second one, which provides improved interference and noise re-
jection. Audio results are presented over several time resolutions
of the t-f transform.

1. INTRODUCTION

Blind Source Separation (BSS) consists in estimating n signals
(the sources) from the sole observation of m mixtures of them (the
observations). If many efficient approaches exist for (over)determined
(m ≥ n) non-noisy linear instantaneous, in particular within the
field of Independent Component Analysis, the general linear in-
stantaneous case, with mixtures possibly noisy and/or underdeter-
mined (m < n) is still a very challenging problem.

In [1, 2], we described a Bayesian approach to source sep-
aration using the assumption of source sparsity on a chosen ba-
sis. Sparsity means that only “few” expansion coefficients of the
sources on the basis are significantly different from zero and its use
to handle source separation problem (possibly underdetermined)
was introduced in the seminal papers [3, 4]. In [1, 2] we mod-
eled the expansion coefficients of the sources on the chosen basis
by identically and independently distributed (i.i.d) Student t pro-
cesses and a Gibbs sampler (a standard MCMC simulation method)
was proposed to sample from the posterior distribution of the mix-
ing matrix, the input noise variance, the source coefficients and
hyperparameters of the Student t distributions. The method was
successfully applied to determined and underdetermined noisy au-
dio mixtures, decomposed on a MDCT basis (a local cosine basis).

In this paper, we propose two contributions to the latter work.
In the first half of this paper we study the impact of time resolution
of the MDCT on the separation results and we provide many audio
examples. The i.i.d Student t model of the sources coefficients is
however shown to have rather limited denoising performance. To
deal with this issue we propose in the second half of this paper
an improved model of the sources coefficients which takes into
account the non-uniformity of the energy distribution of audio sig-
nals along frequency. The proposed model consists of modeling
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each source frequency subband by a Student t i.i.d process with its
own (frequency dependent) scale parameter. This model is shown
to give better Signal to Interference and Signal to Noise Ratios of
the source estimates.

The paper is organized as follows: Section 2 introduces nota-
tions and the dual problem of source separation in the t-f plane.
Section 3 briefly summarizes the Gibbs sampler proposed in [1, 2]
for the i.i.d source coefficients model, and provides separation re-
sults on a 2 × 3 mixture for several time resolutions of the t-f
transform. Section 4 presents the improved model of the sources
and illustrates its better separation performances in terms of inter-
ference and noise rejection. Finally Section 5 draws conclusions
and perspectives.

2. NOTATIONS

2.1. Mixture and aim

We consider the following standard linear instantaneous model,
∀t = 1, . . . , N :

x(t) = As(t) + n(t) (1)

where x(t) = [x1(t), . . . , xm(t)]T is a vector of size m contain-
ing the observations, s(t) = [s1(t), . . . , sn(t)]T is a vector of
size n containing the sources and n(t) = [n1(t), . . . , nm(t)]T

is a vector of size m containing additive noise. Variables with-
out time index t denote whole sequences of samples, e.g, x =
[x(1), . . . ,x(N)] and x1 = [x1(1), . . . , x1(N)].

The aim of the following work is to estimate the sources s and
the mixing matrix A up to the standard BSS indeterminacies on
gain and order, that is, compute ŝ and Â such that Â = ADP

and ŝ = P
T

D
−1

s, where D is a diagonal matrix and P is a
permutation matrix.

2.2. Time domain / Transform domain

We propose to solve the problem defined by Eq. (1) using a t-f
model of the sources. Let x ∈ R

1×N → x̃ ∈ R
lframe×nframe

denote a bijective linear t-f transform, preferably orthonormal, with
time resolution lframe/fs and frequency resolution fs

2
/lframe,

where fs is the sampling frequency and nframe = N/lframe.
Such transforms includes the Modulated Lapped Transforms fam-
ily to which the Modified Discrete Cosine Transform (MDCT) be-
longs (see [5] for a survey). Denoting ∀(q, k) ∈ J1, lframeK ×
J1, nframeK, x̃(q, k) = [x̃1(q, k), . . . , x̃m(q, k)]T and ñ(q, k),
s̃(q, k) similarly, by linearity of the t-f transform we have

x̃(q, k) = As̃(q, k) + ñ(q, k) (2)
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Figure 1: Student t densities for α ∈ {0.1, 1, 10} with equal value
at the mode - The dash-lined plot is the Gaussian density with
variance 1/2 π.
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Figure 2: i.i.d model of the sources

Furthermore, the t-f transform being bijective, solving the prob-
lem defined by Eq. (1) in the time domain is equivalent to solving
Eq. (2) in the transform domain.

3. I.I.D MODEL OF THE SOURCES

In [1, 2] we exploited sparsity of the t-f coefficients of the sources:
∀i, the coefficients {s̃i(q, k), (q, k) ∈ J1, lframeK×J1, nframeK}
were modeled by a Student t i.i.d sequence t(α, λ) with density
given by

t(x|α, λ) =
Γ(α+1

2
)

λ
√

α π Γ(α
2
)

„

1 +
1

α

“ x

λ

”2
«

−
α+1

2

(3)

where α is the degree of freedom and λ is a scale parameter. Fig. 1
shows that for small α, the Student t density gathers most of its
probability mass around zero and exhibits “fatter tails” than the
normal distribution. The Student t distribution is thus a relevant
model for sparsity. A useful feature of the Student t distribution is
its formulation as a Scale Mixture of Gaussians [6]: x ∼ t(α, λ)
can be drawn by 1) sampling a variance v ∼ IG

`

v|α
2
, 2

α λ2

´

, 2)
sampling x ∼ N (0, v), where N (µ, σ2) denotes the Gaussian dis-
tribution and IG(γ, β) is the inverted-Gamma distribution defined
by IG(x|γ, β) = x−(γ+1)

Γ(γ) βγ exp(− 1
β x

) I[0,+∞)(x).1

The source model is illustrated on Fig 2. We furthermore as-
sumed the sequences of coefficients of the several sources to be
mutually independent, and assumed the noise ñ(q, k) to be i.i.d
Gaussian with power σ2

Im. A Gibbs sampler was presented to
sample from the posterior distribution p(θ|x̃) of the set of param-
eters θ = {A, σ2, s̃,v, α, λ}, where v contains the variances of
the source coefficients in their Scale Mixture of Gaussians, and
where α = {α1, . . . , αn} and λ = {λ1, . . . , λn}. Minimum
Mean Square Estimates of the parameters are computed by aver-
aging the samples obtained from the Gibbs sampler after the burnin
period, time-domain source estimates are reconstructed by inverse
transform of the estimated coefficients.

1The inverted-Gamma distribution is the distribution of 1/X when X
is Gamma distributed.

Initialize θ
(0) = {s̃(0),A(0), σ(0),v(0),α(0),λ(0)}

for k = 1 : K + KBurnin do
A

(k) ∼ p(A|s̃(k−1), σ(k−1), x̃)

σ(k) ∼ p(σ|s̃(k−1), x̃)

s̃(k) ∼ p(s̃|A(k), σ(k),v(k−1), x̃)

v(k) ∼ p(v|s̃(k),α(k−1), λ(k−1))

α
(k) ∼ p(α|v(k), λ(k−1))

λ
(k) ∼ p(λ|v(k), α(k))

end for

Table 1: Gibbs sampler for source separation of linear instanta-
neous mixtures.

3.1. Gibbs sampler

We recall in this section the principal steps of the Gibbs sampler
presented in [1, 2]. The sampler requires sampling from the dis-
tributions of each (subset of) parameters conditionally upon the
others and the data. The steps are summarized in Table 1 and the
conditional distributions are given below.

• Sampling A and σ2: Let r1, . . . , rm be the n× 1 vectors denot-
ing the transposed rows of A, such that AT = [r1 . . . rm]. With
(Jeffrey’s) uninformative uniform prior p(A) ∝ 1, the rows of A

are a posteriori mutually independent with

ri ∼ N (µ
ri

,Σr) (4)

where Σr = σ2 (
P

q,k s̃(q, k) s̃(q, k)T )−1 and
µ

ri
= 1

σ2 Σr

P

q,k
x̃i(q, k) s̃(q, k). 2

A can be integrated out in the posterior distribution of σ, re-
sulting in

σ2 ∼ IG(ασ, βσ) (5)

with ασ = (N−n) m

2
and 2/βσ =

Pm

i=1

“

P

q,k
x̃2

i (q, k)
”

−
“

P

q,k
x̃i(q, k)s̃(q, k)T

” “

P

q,k
s̃(q, k)s̃(q, k)T

”

−1

×
“

P

q,k
x̃i(q, k)s̃(q, k)

”

.

• Sampling s̃: ∀(q, k) ∈ J1, lframeK × J1, nframeK

s̃(q, k) ∼ N (µ
s̃(q,k),Σs̃(q,k)) (6)

where Σ
s̃(q,k) =

`

1
σ2 A

T
A + diag (v(q, k))−1

´−1
and µ

s̃(q,k) =
1

σ2 Σ
s̃(q,k) A

T
x̃(q, k) (and where diag (u) is the diagonal matrix

whose main diagonal is given by u).

• Sampling v: Since the likelihood does not depend on the pa-
rameters {v, α, λ}, their posterior distributions are conditionally
independent of x̃. ∀(q, k) ∈ J1, lframeK × J1, nframeK

vi(q, k) ∼ IG(γvi , βvi(q, k)) (7)

with γvi = (αi + 1)/2 and βvi (q, k) = 2/(s̃2
i (q, k) + αi λ2

i ).

• Sampling λ: With the uninformative Jeffreys prior p(λi) =
1/λi, we have:

λ2
i ∼ G (γλi

, βλi
) (8)

with γλi
= (αi N)/2 and βλi

= 2/(αi Ri), where Ri =
P

q,k
1/vi(q, k)

and G(γ, β) is the Gamma distribution defined by G(x|γ, β) =

2In practice r1 is clamped to ones to solve the BSS indeterminacy on
gain.
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xγ−1

Γ(γ) βγ exp(− x
β
) I[0,+∞)(x).

• Sampling α: We have

p(αi|θ−α, x̃) ∝ P
−(

αi
2

+1)

i

Γ(αi

2
)N

„

αi λ2
i

2

«

αi N

2

exp

„

−αi λ2
i

2
Ri

«

p(αi)

(9)
with Pi =

Q

q,k vi(q, k). The conditional posterior distribution
of α is not straightforward to sample from but since the precise
value of αi for each source is unlikely to be important provided it
is within an appropriate small range, in practice we sample α from
a uniform grid of discrete values with probability masses propor-
tional to Eq. (9) (with the uninformative uniform prior p(α) ∝ 1).
However, the Student t being a special case of the Generalized Hy-
perbolic distribution, sampling from αi can also be done exactly
by rejection sampling as in [7].

3.2. Results

We study in this section the quality of the separation results over
several time resolutions lframe. We apply the previous Gibbs sam-
pler to a mixture of n = 3 sources with m = 2 observations. The
sources are ≈ 8s audio signals sampled at 8kHz (N = 65536).
s1 is an excerpt of speech, s2 an excerpt of piano solo and s3 an
excerpt of rhythmic guitar. All sound samples, including sources,
observations and source estimates can be listened to at http://
www-sigproc.eng.cam.ac.uk/˜cf269/waspaa05_2/
sound_files. The mixing matrix is chosen as

A =

»

0.7071 0.9239 0.3827
0.7071 0.3827 0.9239

–

(10)

which, if x1 and x2 are respectively the left and right channels of
a stereo excerpt, provides a mixture where the speech s1 is in the
middle, the piano s2 originates at 45o on the left and the guitar s3

at 45o on the right. Gaussian noise was added to the observations
with σ = 0.05, resulting in ≈ 12dB input SNR on each channel.

The observations were decomposed on a MDCT basis with a
sine bell analysis window, and several time resolutions were tried.
Table 2 presents separation evaluation criteria for the sources for 4
different values of lframe, ranging from 32ms to 256ms. The
criteria are described in [8], but basically, the SDR (Source to
Distortion Ratio) provides an overall separation performance cri-
terion, the SIR (Source to Interferences Ratio) measures the level
of interferences from the other sources in each source estimate,
SNR (Source to Noise Ratio) measures the error due to the addi-
tive noise on the sensors and the SAR (Source to Artifacts Ratio)
measures the level of artifacts in the source estimates.

Table 2 also shows the estimated values of the degrees of free-
dom α estimated by the Gibbs sampler (and sampled from a grid
of linearly spaced values between 0.5 and 5 with step size 0.1),
together with an index of sparsity computed on the original source
coefficients sequences. The index of sparsity was chosen as cx̃ =
‖x̃‖1/‖x̃‖2. 3 The smaller cx̃ is, the sparser x̃ is.

3.3. Discussion

Table 2 shows that the best separation results are obtained for time
resolutions of 64ms and 128ms. Table 2 also shows that the cor-
relation between the sparsity index and the separation quality is not

3Note that since the MDCT is an orthonormal transformation, the norm-
2 of x̃ is identical whatever time resolution is used.

ŝ1 (speech)
lframe SDR SIR SAR SNR α̂ cs1

32ms 1.6 9.2 3.1 21.8 1.1 63.5
64ms 3.1 13.6 3.9 21.0 1.2 64.8
128ms 3.2 14.1 3.9 19.8 1.2 70.3
256ms -0.3 8.6 1.0 19.0 1.2 78.0

ŝ2 (piano)
lframe SDR SIR SAR SNR α̂ cs2

32ms 8.5 18.9 9.5 18.6 1.2 60.1
64ms 10.0 20.5 10.9 20.8 1.1 50.1
128ms 10.2 21.9 10.9 21.7 1.2 44.1
256ms 7.1 20.8 7.5 21.1 1.2 42.3

ŝ3 (guitar)
lframe SDR SIR SAR SNR α̂ cs3

32ms 7.5 16.9 8.7 17.6 1.0 74.7
64ms 8.7 19.8 9.8 18.3 1.1 64.6
128ms 9.0 20.0 9.8 20.0 1.0 59.7
256ms 6.2 16.0 7.0 19.8 1.1 59.3

Table 2: Performance criteria for the i.i.d model.

completely straightforward, in particular for the speech. This sug-
gests that the specifications of the basis are to be chosen accord-
ingly to the nature of the signals. In every case, estimated values of
α are near one, which corresponds to the Cauchy distribution. We
ran the Gibbs sampler by clamping α to 1 for every source and very
similar results were obtained (with generally less than 1dB differ-
ence on the SDRs). Clamping α to 1 has the advantage of accel-
erating the convergence of the Gibbs sampler and also the update
step of the variances vi(q, k). Indeed, when α = 1, the inverted-
Gamma distribution can be efficiently sampled as 1/X where X is
a simple exponential distribution (while the general Gamma distri-
bution usually involves rejection sampling). However it decreases
the total computational burden involved by the Gibbs sampler by
only 14%, and 1000 iterations of the sampler still take 2.5h on a
Mac G4 cadenced at 1.25GHz (and convergence was usually ob-
tained after ≈ 1500 iterations). The bottleneck of the algorithm
is the update step of the sources which requires sampling N times
from a multivariate Gaussian vector of size n at each iteration.

From a subjective point of view, the sound quality of the source
estimates obtained for the various time resolutions appears quite
similar, except for 256ms because of the presence of (pre)echo
on the speech. It appears that the estimates are contaminated by
disturbing remains of the additive noise on the observations. We
believe that the reason for this comes from the scale parameter λ
being chosen equal for all the frequencies subbands in the mod-
eling of the sources, which thus emphasizes additive noise in the
high frequencies domain, where the energy of the sources is nor-
mally low. To alleviate this problem, we propose in the next sec-
tion a frequency-dependent model of the sources.

4. FREQUENCY-DEPENDENT MODEL

Instead of modeling each sequence {s̃i(q, k), (q, k) ∈ J1, lframeK×
J1, nframeK} by a i.i.d sequence with a fixed scale parameter λi,
we now propose to model each source frequency subband q {si(q, k), k ∈
J1, nframeK} by a i.i.d Student t distributed sequence with its own
scale parameter λi(q) and degree of freedom αi(q). The model is
illustrated on Fig. 3.
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Figure 3: Frequency-dependent scale model of the sources

4.1. Gibbs sampler

The sampling steps for A, σ and s remain unchanged, but one now
has to update lframe scale parameters and degrees of freedom for
each source, and γvi is now frequency dependent. This is of course
at the cost of extra computation, but is still reasonable compared
to the update of s̃.

• Sampling v: The variances of the sources coefficients are now
sampled as:

vi(q, k) ∼ IG(γvi(q), βvi(q, k)) (11)

with γvi (q) = (αi(q) + 1)/2 and βvi (q, k) = 2/(s̃2
i (q, k) +

αi(q)λi(q)
2).

• Sampling λ: With the uninformative Jeffreys prior p(λi(q)) =
1/λi, we have, ∀q ∈ J1, lframeK:

λ2
i (q) ∼ G (γλi

(q), βλi
(q)) (12)

with γλi
(q) = (αi(q) nframe)/2 and βλi

(q) = 2/(αi(q)Ri(q)),
where Ri(q) =

Pnframe

k=1 1/vi(q, k).

• Sampling α: We have, ∀q ∈ J1, lframeK:

p(αi(q)|θ−α, x̃) ∝

Pi(q)
−(

αi(q)
2

+1)

Γ(
αi(q)

2
)
nframe

“

αi(q) λi(q)
2

2

”

αi(q) nframes
2
exp

“

−αi(q) λi(q)
2

2
Ri(q)

”

with Pi(q) =
Qnframes

k=1 vi(q, k) and where we chose p(αi(q)) ∝
1. As before, we sample αi(q) from a grid of discrete values.

4.2. Results and discussion

The Gibbs sampler is applied to the same mixture as in Section 3.2,
and several time resolutions were also tried. The results are given
in Table 3. Table 3 shows the important improvements brought by
the frequency-dependent scale modeling of the sources when com-
paring the values with those of Table 2. All the SDRs values were
improved by at least 1dB (which mostly reflects the improvement
by at least 1dB of the SARs), but most importantly, the SIRs for
the speech were all improved by ≈ 5dB and the SNRs for the
piano and the guitar were nearly all improved by 4dB. These im-
provements can be clearly heard when listening to the sound sam-
ples, and from a subjective point of view sound quality is much
better than with the i.i.d model. Best results are obtained with
lframe = 64ms.

ŝ1

lframe SDR SIR SAR SNR
32ms 4.1 14.1 4.9 20.7
64ms 4.6 19.4 5.0 20.9
128ms 4.1 18.9 4.5 20.8
256ms 3.5 19.2 3.8 20.5

ŝ2

SDR SIR SAR SNR
32ms 10.8 19.4 11.9 22.6
64ms 11.5 20.8 12.4 24.3
128ms 11.2 23.4 11.7 25.7
256ms 10.9 21.4 11.6 25.6

ŝ3

SDR SIR SAR SNR
32ms 9.8 18.6 11.0 20.5
64ms 10.4 19.9 11.3 22.1
128ms 10.1 21.2 10.8 22.5
256ms 10.0 19.4 10.8 23.0

Table 3: Performance criteria for the frequency dependent model.

5. CONCLUSIONS

In this paper we described a Bayesian approach to t-f based source
separation. We illustrated how time resolution relates to the quality
of the separation and then proposed a frequency dependent scale
model of the sources which significantly improves the results ob-
tained with the i.i.d model.

Further work will include the comparison of the MDCT basis
with other bases, such as wavelets bases. An interesting line of
research will be the extension of the current work to the use of
overcomplete dictionaries (such as unions of basis). In order to
further improve the models of the sources, we would also like to
model persistencies over time and correlations over frequencies of
the t-f coefficients.
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