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Abstract

In this paper we describe a maximum likelihood approach for dictionary learning
in the multiplicative exponential noise model. This model is prevalent in audio
signal processing where it underlies a generative composite model of the power
spectrogram. Maximum joint likelihood estimation of the dictionary and expan-
sion coefficients leads to a nonnegative matrix factorization problem where the
Itakura-Saito divergence is used. The optimality of this approach is in question be-
cause the number of parameters (which include the expansioncoefficients) grows
with the number of observations. In this paper we describe a variational procedure
for optimization of the marginal likelihood, i.e., the likelihood of the dictionary
where the activation coefficients have been integrated out (given a specific prior).
We compare the output of both maximum joint likelihood estimation (i.e., stan-
dard Itakura-Saito NMF) and maximum marginal likelihood estimation (MMLE)
on real and synthetical datasets. The MMLE approach is shownto embed auto-
matic model order selection, akin to automatic relevance determination.

1 Introduction

In this paper we address the task of nonnegative dictionary learning described by

V ≈WH, (1)

whereV ,W ,H are nonnegative matrices of dimensionsF ×N ,F ×K andK×N , respectively.V
is the data matrix, where each columnvn is a data point,W is the dictionary matrix, with columns
{wk} acting as “patterns” or “explanatory variables” reprensentative of the data, andH is the acti-
vation matrix, with columns{hn}. For example, in this paper we will be interested in music data
such thatV is time-frequency spectrogram matrix andW is a collection of spectral signatures of la-
tent elementary audio components. The most common approachto nonnegative dictionary learning
is nonnegative matrix factorization (NMF) [1] which consists in retrieving the factorization (1) by
solving

min
W,H

D(V |WH)
def
=
∑

fn
d(vfn|[WH ]fn) s.t. W,H ≥ 0 , (2)

whered(x|y) is a measure of fit between nonnegative scalars,vfn are the entries ofV , andA ≥ 0
expresses nonnegativity of the entries of matrixA. The cost functionD(V |WH) is often a likeli-
hood function− log p(V |W,H) in disguise, e.g., the Euclidean distance underlies additive Gaussian
noise, the Kullback-Leibler (KL) divergence underlies Poissonian noise, while the Itakura-Saito (IS)
divergence underlies multiplicative exponential noise [2]. The latter noise model will be central to
this work because it underlies a suitable generative model of the power spectrogram, as shown in [3]
and later recalled.
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A criticism about NMF is that little can be said about the asymptotical optimality of the learnt
dictionaryW . Indeed, becauseW is estimated jointly withH , the total number of parametersFK+
KN grows with the number of data pointsN . As such, this paper instead addresses optimization of
the likelihood in the marginal model described by

p(V |W ) =

∫

H

p(V |W,H)p(H)dH, (3)

whereH is treated as a random latent variable with priorp(H). The evaluation and optimization of
the marginal likelihood is not trivial in general, and this paper is precisely devoted to these tasks in
the multiplicative exponential noise model.

The maximum marginal likelihood estimation approach we seek here is related to IS-NMF in such
a way that Latent Dirichlet Allocation (LDA) [4] is related to Latent Semantic Indexing (pLSI)
[5]. LDA and pLSI are two estimators in the same model, but LDAseeks estimation of the topic
distributions in the marginal model, from which the topic weights describing each document have
been integrated out. In contrast, pLSI (which is essentially equivalent to KL-NMF as shown in [6])
performs maximumjoint likelihood estimation (MJLE) for the topics and weights. Blei et al. [4]
show the better performance of LDA with respect to (w.r.t) pLSI. Wellinget al. [7] also report similar
results with a discussion, stating that deterministic latent variable models assign zero probability to
input configurations that do not appear in the training set. Asimilar approach is Discrete Component
Analysis (DCA) [8] which considers maximum marginal a posteriori estimation in the Gamma-
Poisson (GaP) model [9], see also [10] for the maximum marginal likelihood estimation on the same
model. In this paper, we will follow the same objective for the multiplicative exponential noise
model.

We will describe a variational algorithm for the evaluationand optimization of (3); note that the
algorithm exploits specificities of the model and is not a mere adaptation of LDA or DCA to an
alternative setting. We will consider a nonnegative Generalized inverse-Gaussian (GIG) distribution
as a prior forH , a flexible distribution which takes the Gamma and inverse-Gamma as special
cases. As will be detailed later, this work relates to recentwork by Hoffmanet al. [11], which
considers full Bayesian integration ofW andH (both assumed random) in the exponential noise
model, in a nonparametric setting allowing for model order selection. We will show that our more
simple maximum likelihood approach inherently performs model selection as well by automatically
pruning “irrelevant” dictionary elements. Applied to a short well structured piano sequence, our
approach is shown to capture the correct number of components, corresponding to the expected note
spectra, and outperforms the nonparametric Bayesian approach of [11].

The paper is organized as follows. Section 2 introduces the multiplicative exponential noise model
with the prior distribution for the expansion coefficientsp(H). Sections 3 and 4 describe the MJLE
and MMLE approaches, respectively. Section 5 reports results on synthetical and real audio data.
Section 6 concludes.

2 Model

The generative model assumed in this paper is

vfn = v̂fn . ǫfn , (4)

wherev̂fn =
∑

k wfkhkn andǫfn is a nonnegative multiplicative noise with exponential distri-
bution ǫfn ∼ exp(−ǫfn). In other words, and under independence assumptions, the likelihood
function is

p(V |W,H) =
∏

fn
(1/v̂fn) exp(−vfn/v̂fn) . (5)

WhenV is a power spectrogram matrix such thatvfn = |xfn|2 and{xfn} are the complex-valued
short-time Fourier transform (STFT) coefficients of some signal data, wheref typically acts as a
frequency index andn acts as a time-frame index, it was shown in [3] that an equivalent generative
model ofvfn is

xfn =
∑

k
cfkn, cfkn ∼ Nc(0, wfkhkn) , (6)
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whereNc refers to the circular complex Gaussian distribution.1 In other words, the exponential
multiplicative noise model underlies a generative composite model of the STFT. The complex-
valued matrix{cfkn}fn, referred to askthcomponent, is characterized by a spectral signaturewk,
amplitude-modulated in time by the frame-dependent coefficient hkn, which accounts for nonsta-
tionarity. In analogy with LDA or DCA, if our data consisted of word counts, withf indexing words
andn indexing documents, then the columns ofW would describe topics andcfkn would denote
the number of occurrences of wordf stemming from topick in documentn.

In our settingW is considered a free deterministic parameter to be estimated by maximum likeli-
hood. In contrast,H is treated as a nonnegative random latent variable over which we will integrate.
It is assigned a GIG prior, such that

hkn ∼ GIG(αk, βk, γk) , (7)

with

GIG(x|α, β, γ) = (β/γ)α/2

2Kα(2
√
βγ)

xα−1 exp−
(

βx+
γ

x

)

, (8)

whereK is a modified Bessel function of the second kind andx, β andγ are nonnegative scalars.
The GIG distribution unifies the Gamma (α > 0, γ = 0) and inverse-Gamma (α < 0, β = 0)
distributions. Its sufficient statistics arex, 1/x andlog x, and in particular we have

〈x〉 = Kα+1(2
√
βγ)

Kα(2
√
βγ)

√

γ

β
,

〈

1

x

〉

=
Kα−1(2

√
βγ)

Kα(2
√
βγ)

√

β

γ
, (9)

where〈x〉 denotes expectation. Although all derivations and the implementations are done for the
general case, in practice we will only consider the special case of Gamma distribution for simplicity.
In such case,β parameter merely acts as a scale parameter, which we fix so as to solve the scale
ambiguity between the columns ofW and the rows ofH . We will also assume the shape parameters
{αk} fixed to arbitrary values (typically,αk = 1, which corresponds to the exponential distribution).
Given the generative model specified by equations (4) and (7)we now describe two estimators for
W .

3 Maximum joint likelihood estimation

3.1 Estimator

The joint (penalized) log-likelihood likelihood ofW andH is defined by

CJL(W,H)
def
= log p(V |W,H) + log p(H) (10)

= −DIS(V |WH)−
∑

kn
(1− αk) log hkn + βkhkn + γk/hkn + cst , (11)

whereDIS(V |WH) is defined as in equation (2) withdIS(x|y) = x/y − log(x/y) − 1 (Itakura-
Saito divergence) and“cst” denotes terms constant w.r.tW andH . The subscript JL stands for joint
likelihood, and the estimation ofW by maximization ofCJL(W,H) will be referred to asmaximum
joint likelihood estimation (MJLE).

3.2 MM algorithm for MJLE

We describe an iterative algorithm which sequentially updatesW givenH andH givenW . Each of
the two steps can be achieved in aminorization-maximization (MM) setting [12], where the original
problem is replaced by the iterative optimization of an easier-to-optimize auxiliary function. We first
describe the update ofH , from which the update ofW will be easily deduced. GivenW , our task
consists in maximizingC(H) = −DIS(V |WH)− L(H), whereL(H) =

∑

kn(1− αk) log hkn +
βkhkn + γk/hkn. Using Jensen’s inequality to majorize the convex part ofDIS(V |WH) (terms in

1A complex random variable has distributionNc(µ, λ) if and only if its real and imaginary parts are inde-
pendent and distributed asN (ℜ(µ), λ/2) andN (ℑ(µ), λ/2), respectively.
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vfn/v̂fn) and first order Taylor approximation to majorize its concave part (terms inlog v̂fn), as in
[13], the functional

G(H, H̃) = −
(

∑

k
pkn/hkn + qknhkn

)

− L(H) + cst, (12)

wherepkn = h̃2kn
∑

f wfkvfn/ṽ
2
fn, qkn =

∑

f wfk/ṽfn, ṽfn = [WH̃ ]fn, can be shown to be

a tight lower bound ofC(H), i.e.,G(H, H̃) ≤ C(H) andG(H̃, H̃) = C(H̃). Its iterative max-
imization w.r.tH , whereH̃ = H(i) acts as the current iterate at iterationi, produces an ascent
algorithm, such thatC(H(i+1)) ≥ C(H(i)). The update is easily shown to amount to solving an
order 2 polynomial with a single positive root given by

hkn =
(αk − 1) +

√

(αk − 1)2 + 4(pkn + γk)(qkn + βk)

2(qkn + βk)
. (13)

The update preserves nonnegativity given positive initialization. By exchangeability ofW andH
when the data is transposed (V T = HTWT ), and dropping the penalty term (αk = 1, βk = 0,
γk = 0), the update ofW is given by the multiplicative update

wfk = w̃fk

√

∑

n hknvfn/ṽ
2
fn

∑

n hkn/ṽfn
, (14)

which is known from [13].

4 Maximum marginal likelihood estimation

4.1 Estimator

We define the marginal log-likelihood objective function as

CML(W )
def
= log

∫

p(V |W,H)p(H) dH . (15)

The subscript ML stands for marginal likelihood, and the estimation ofW by maximization of
CML(W ) will be referred to asmaximum marginal likelihood estimation (MMLE). Note that in
Bayesian estimation the termmarginal likelihood is sometimes used as a synonym for themodel
evidence, which is the likelihood of data given the model, i.e., whereall random parameters (in-
cludingW ) have been marginalized. This is not the case here whereW is treated as a deterministic
parameter and marginal likelihood only refers to the likelihood ofW , whereH has been integrated
out. The integral in equation (15) is intractable given our model. In the next section we resort to a
variational Bayes procedure for the evaluation and maximization ofCML(W ).

4.2 Variational algorithm for MMLE

In the following we propose an iterative lower bound evaluation/maximization procedure for
approximate maximization ofCML(W ). We will construct a boundB(W, W̃ ) such that
∀(W, W̃ ), CML(W ) ≥ B(W, W̃ ), whereW̃ acts as the current iterate andW acts as the free pa-
rameter over which the bound is maximized. The maximizationis approximate in that the bound
will only satisfyB(W̃ , W̃ ) ≈ CML(W̃ ), i.e., is loosely tight in the current updatẽW , which fails to
ensure ascent of the objective function like in the MM setting of Section 3.2.

We propose to construct the bound from a variational Bayes perspective [14]. The following in-
equality holds for any distribution functionq(H)

CML(W ) ≥ 〈log p(V |W,H)〉q + 〈log p(H)〉q − 〈log q(H)〉q
def
= Bvb

q (W ) . (16)

The inequality becomes an equality whenq(H) = p(H |V,W ); when the latter is available in close
form, the EM algorithm consists in using̃q(H) = p(H |V, W̃ ) and maximizeBvb

q̃ (W ) w.r.t W ,
and iterate. The true posterior ofH being intractable in our case, we takeq(H) to be a factorized,
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parametric distributionqθ(H), whose parameterθ is updated so as to tightenBvb
q (W̃ ) to C(W̃ ).

Like in [11], we chooseqθ(H) to be in the same family as the prior, such that

qθ(H) =
∏

kn
GIG(ᾱkn, β̄kn, γ̄kn) . (17)

The first term ofBvb
q (W ) essentially involves the expectation of−DIS(V |WH) w.r.t to the vari-

ational distributionqθ(H). The productWH introduces some coupling of the coefficients ofH
(via the sum

∑

k wfkhkn) which makes the integration difficult. Following [11] and similar to
Section 3.2, we propose to lower bound this term using Jensen’s and Taylor’s type inequalities to
majorize the convex and concave parts of−DIS(V |WH). The contributions of the elements ofH
become decoupled w.r.t tok, which allows for evaluation and maximization of the bound.This leads
to

〈log p(V |H,W )〉q ≥ −
∑

fn

(

∑

k

φ2fkn
vfn
wfk

〈

1

hkn

〉

q

)

+

(

logψfn +
1

ψfn

∑

k

wfk〈hkn〉q − 1

)

,

(18)

where{ψfn} and{φfkn} are nonnegative free parameters such that
∑

k φfkn = 1. We define
Bθ,φ,ψ(W ) asBvb

q (W ) but where the expectation of the joint log-likelihood is replaced by its lower
bound given right side of equation (18). From there, our algorithm is a two-step procedure consisting
in 1) computingθ̃, φ̃, ψ̃ so as to tightenBθ,φ,ψ(W̃ ) to CML(W̃ ), and 2) maximizingBθ̃,φ̃,ψ̃(W )
w.r.tW . The corresponding updates are given next. Note that evaluation of the bound only involves
expectations ofhkn and1/hkn w.r.t to the GIG distribution, which is readily given by equation (9).

Step 1: Tightening the bound Given current dictionary updatẽW , run the following fixed-point
equations.

φfkn =
w̃fk/〈1/hkn〉q
∑

j w̃fj/〈1/hjn〉q
, ψfn =

∑

j

w̃fj〈hjn〉q

ᾱkn = αk, β̄kn = βk +
∑

f

w̃fk
ψfn

, γ̄kn = γk +
∑

f

vfnφ
2
fkn

w̃fk
.

Step 2: Optimizing the bound Given the variational distributioñq = qθ̃ from previous step,
updateW as

wfk = w̃fk

√

√

√

√

√

√

∑

n vfn

[

∑

j w̃fj〈1/hjn〉
−1
q̃

]

−2

〈1/hkn〉−1
q̃

∑

n

[

∑

j w̃fj〈hjn〉q̃
]

−1

〈hkn〉q̃
. (19)

The VB update has a similar form to the MM update of equation (14) but the contributions ofH are
replaced by expected values w.r.t the variational distribution.

4.3 Relation to other works

A variational algorithm using the activation matrixH and the latent componentsC = {cfkn} as
hidden data can easily be devised, as sketched in [2]. IncludingC in the variational distribution also
allows to decouple the contributions of the activation coefficients w.r.t tok but leads from our expe-
rience to a looser bound, a finding also reported in [11]. In a fully Bayesian setting, Hoffmanet al.
[11] assume Gamma priors for bothW andH . The model is such that̂vfn =

∑

k λkwfkhkn, where
λk acts as a component weight parameter. The number of components is potentially infinite but,
in a nonparametric setting, the prior forλk favors a finite number of active components. Posterior
inference of the parametersW , H , {λk} is achieved in a variational setting similar to Section 4.2,
by maximizing a lower bound onp(V ). In contrast to this method, our approach does not require to
specify a prior forW , leads to simple updates forW that are directly comparable to IS-NMF and
experiments will reveal that our approach embeds model order selection as well, by automatically
pruning unnecessary columns ofW , without resorting to the nonparametric framework.
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Figure 1: Marginal likelihoodCML (a) and joint likelihoodCJL (b) versus number of components
K. CML values corresponding to dictionaries estimated byCJL maximization (c).

5 Experiments

In this section, we study the performances of MJLE and MMLE methods on both synthetical and
real-world datasets.2 The prior hyperparameters are fixed toαk = 1, γk = 0 (exponential distri-
bution) andβk = 1, i.e.,hkn ∼ exp(−hkn). We used 5000 algorithm iterations and nonnegative
random initializations in all cases. In order to minimize the odds of getting stuck in local optima, we
adapted the deterministic annealing method proposed in [15] for MMLE. Deterministic annealing
is applied by multiplying the entropy term−〈log q(H)〉 in the lower bound in (16) by1/η(i). The
initial η(0) is chosen in(0, 1) and increased through iterations. In our experiments, we set η(0) = 0.6
and updated it with the ruleη(i+1) = min(1, 1.005η(i)).

5.1 Swimmer dataset

First, we consider the syntheticalSwimmer dataset [16], for which the ground truth of the dictionary
is available. The dataset is composed of 256 images of size32 × 32, representing a swimmer built
of an invariant torso and 4 limbs. Each of the 4 limbs can be in one of 4 positions and the dataset
is formed of all combinations. Hence, the ground truth dictionary corresponds to the collection of
individual limb positions. As explained in [16] the torso isan unidentifiable component that can
be paired with any of the limbs, or even split among the limbs.In our experiments, we mapped the
values in the dataset onto the range[1, 100] and multiplied with exponential noise, see some samples
in Fig. 2 (a).

We ran the MM and VB algorithms (for MJLE and MMLE, respectively) for K = 1 . . . 20 and the
joint and marginal log-likelihood end values (after the 5000 iterations) are displayed in Fig. 1. The
marginal log-likelihood is here approximated by its lower bound, as described in Section 4.2. In
Fig. 1(a) and (b) the respective objective criteria (CML andCJL) maximized by MMLE and MJLE
are shown. The increase ofCML stops afterK = 16, whereasCJL continues to increase asK gets
larger. Fig. 1 (c) displays the corresponding marginal likelihood values,CML, of the dictionaries
obtained by MJLE in Fig. 1 (b); this figure empirically shows that maximizing the joint likelihood
does not necessarily imply maximization of the marginal likelihood. These figures display the mean
and standard deviation values obtained from 7 experiments.

The likelihood values increase with the number of components, as expected from nested models.
However, the marginal likelihood stagnates afterK = 16. Manual inspection reveals that passed
this value ofK, the extra columns ofW are pruned to zero, leaving the criterion unchanged. Hence,
MMLE appears to embed automatic order selection, similar toautomatic relevance determination
[17, 18]. The dictionaries learnt from MJLE and MMLE withK = 20 components are shown in
Fig. 2 (b) and (c). As can be seen from Fig. 2 (b), MJLE producesspurious or duplicated compo-
nents. In contrast, the ground truth is well recovered with MMLE.

2MATLAB code is available at http://perso.telecom-paristech.fr/∼dikmen/nips11/
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(a) Data (b)WMJLE (c)WMMLE

Figure 2: Data samples and dictionaries learnt on the swimmer dataset withK = 20.

5.2 A piano excerpt

In this section, we consider the piano data used in [3]. It is atoy audio sequence recorded in real
conditions, consisting of four notes played all together inthe first measure and in all possible pairs in
the subsequent measures. A power spectrogram with analysiswindow of size 46 ms was computed,
leading toF = 513 frequency bins andN = 676 time frames. We ran MMLE withK = 20 on the
spectrogram. We reconstructed STFT component estimates from the factorization̂WĤ , whereŴ is
the MMLE dictionary estimate and̂H = 〈H〉q. We used the minimum mean square error (MMSE)
estimate given bŷcfkn = gfkn. xfn, wheregfkn is the time-frequency Wiener mask defined by
ŵfkĥkn/

∑

j ŵfj ĥjn. The estimated dictionary and the reconstructed components in the time do-
main after inverse STFT are shown in Fig. 3 (a). Out of the 20 components, 12 were assigned to zero
during inference. The remaining 8 are displayed. 3 of the nonzero dictionary columns have very
small values, leading to inaudible reconstructions. The five significant dictionary vectors correspond
to the frequency templates of the four notes and the transients. For comparison, we applied the non-
parametric approach by Hoffmanet al. [11] on the same data with the same hyperparameters forH .
The estimated dictionary and the reconstructed componentsare presented in Fig. 3 (b). 10 out of
20 components had very small weight values. The most significant 8 of the remaining components
are presented in the figure. These components do not exactly correspond to individual notes and
transients as they did with MMLE. The fourth note is mainly represented in the fifth component, but
partially appears in the first three components as well. In general, the performance of the nonpara-
metric approach depends more on initialization, i.e., requires more repetitions than MMLE. For the
above results, we used 200 repetitions for the nonparametric method and 20 for MMLE (without
annealing, same stopping criterion) and chose the repetition with the highest likelihood.

5.3 Decomposition of a real song

In this last experiment, we decompose the first 40 seconds ofGod Only Knows by the Beach Boys.
This song was produced in mono and we retrieved a downsampledversion of it at 22kHz from the
CD release. We computed a power spectrogram with 46 ms analysis window and ran our VB algo-
rithm withK = 50. Fig. 4 displays the original data, and two examples of estimated time-frequency
masks and reconstructed components. The figure also shows the variance of the reconstructed com-
ponents and the evolution of the variational bound along iterations. In this example, 5 components
out of the 50 are completely pruned in the factorization and 7others are inaudible. Such decompo-
sition can be used in various music editing settings, for example for mono to stereo remixing, see,
e.g., [3].
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Figure 3: The estimated dictionary and the reconstructed components by MMLE and the nonpara-
metric approach by Hoffmanet al. withK = 20.

Log power data spectrogram

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

0 5 10 15 20 25 30 35 40
−1

0

1
Temporal data

5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

x 10
−3 Variance of reconstructed components

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

5

10

x 10
5 Variational bound against iterations

Time−frequency Wiener mask of component 13

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

0 5 10 15 20 25 30 35 40
−1

0

1
Reconstructed component 13

Time−frequency Wiener mask of component 18

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

0 5 10 15 20 25 30 35 40
−1

0

1
Reconstructed component 18

Figure 4: Decomposition results of a real song. The Wiener masks take values between 0 (white)
and 1 (black). The first example of reconstructed component captures the first chord of the song,
repeated 4 times in the intro. The other component captures the cymbal, which starts with the first
verse of the song.
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6 Conclusions

In this paper we have challenged the standard NMF approach tononnegative dictionary learning,
based on maximum joint likelihood estimation, with a better-posed approach consisting in maximum
marginal likelihood estimation. The proposed algorithm based on variational inference has compa-
rable computational complexity to standard NMF/MJLE. Our experiments on synthetical and real
data have brought up a very attractive feature of MMLE, namely its self-ability to discard irrelevant
columns in the dictionary, without resorting to elaborate schemes such as Bayesian nonparametrics.

8



References

[1] D. D. Lee and H. S. Seung. Learning the parts of objects with nonnegative matrix factorization.
Nature, 401:788–791, 1999.

[2] C. Févotte and A. T. Cemgil. Nonnegative matrix factorisations as probabilistic inference in
composite models. InProc. 17th European Signal Processing Conference (EUSIPCO), pages
1913–1917, Glasgow, Scotland, Aug. 2009.

[3] C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the Itakura-
Saito divergence. With application to music analysis.Neural Computation, 21(3):793–830,
Mar. 2009.

[4] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. LatentDirichlet allocation.Journal of
Machine Learning Research, 3:993–1022, Jan. 2003.

[5] Thomas Hofman. Probabilistic latent semantic indexing. In Proc. 22nd International Confer-
ence on Research and Development in Information Retrieval (SIGIR), 1999.

[6] E. Gaussier and C. Goutte. Relation between PLSA and NMF and implications. InProc. 28th
annual international ACM SIGIR conference on Research and development in information
retrieval (SIGIR’05), pages 601–602, New York, NY, USA, 2005. ACM.

[7] M. Welling, C. Chemudugunta, and N. Sutter. Deterministic latent variable models and their
pitfalls. In SIAM Conference on Data Mining (SDM), pages 196–207, 2008.

[8] W. L. Buntine and A. Jakulin. Discrete component analysis. In Lecture Notes in Computer
Science, volume 3940, pages 1–33. Springer, 2006.

[9] John F. Canny. GaP: A factor model for discrete data. InProceedings of the 27th ACM in-
ternational Conference on Research and Development of Information Retrieval (SIGIR), pages
122–129, 2004.

[10] O. Dikmen and C. Févotte. Maximum marginal likelihoodestimation for nonnegative dictio-
nary learning. InProc. of International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP’11), Prague, Czech Republic, 2011.

[11] M. Hoffman, D. Blei, and P. Cook. Bayesian nonparametric matrix factorization for recorded
music. InProc. 27th International Conference on Machine Learning (ICML), Haifa, Israel,
2010.

[12] D. R. Hunter and K. Lange. A tutorial on MM algorithms.The American Statistician, 58:30 –
37, 2004.

[13] Y. Cao, P. P. B. Eggermont, and S. Terebey. Cross Burg entropy maximization and its applica-
tion to ringing suppression in image reconstruction.IEEE Transactions on Image Processing,
8(2):286–292, Feb. 1999.

[14] C. M. Bishop. Pattern Recognition And Machine Learning. Springer, 2008. ISBN-13: 978-
0387310732.

[15] K. Katahira, K. Watanabe, and M. Okada. Deterministic annealing variant of variational
Bayes method. InInternational Workshop on Statistical-Mechanical Informatics 2007 (IW-
SMI 2007), 2007.

[16] D. Donoho and V. Stodden. When does non-negative matrixfactorization give a correct de-
composition into parts? In Sebastian Thrun, Lawrence Saul,and Bernhard Schölkopf, editors,
Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.

[17] D. J. C. Mackay. Probable networks and plausible predictions – a review of practical Bayesian
models for supervised neural networks.Network: Computation in Neural Systems, 6(3):469–
505, 1995.

[18] C. M. Bishop. Bayesian PCA. InAdvances in Neural Information Processing Systems (NIPS),
pages 382–388, 1999.

9


