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ABSTRACT
We address in this paper a unified presentation of previous
works by A. Belouchrani, K. Abed-Meraim and co-authors
about separation of FIR convolutive mixtures using (joint)
block-diagonalization. We first present general equations in
the stochastic context. Then the implementation of the gen-
eral method is studied in practice and linked with previous
works for stationary and non-stationary sources. The non-
stationary case is especially studied within a time-frequency
framework: we introduce Spatial Wigner-Ville Spectrum
and propose a criterion based on single block auto-terms
identification to select efficiently, in practice, the matrices
to be joint block-diagonalized.

1. INTRODUCTION

Recently a very interesting approach was proposed by A. Be-
louchrani, K. Abed-Meraim and co-authors to tackle the
problem of blind separation of FIR convolutive mixtures.
Their work relies on formulating the FIR convolutive mix-
ture as an instantaneous mixture by introducing some ap-
propriate variables. Then the problem comes down to sep-
aration of an instantaneous mixture of some new sources
but some of them are now dependent. To solve this chal-
lenging problem, the latter authors have generalized some
standard BSS methods for the instantaneous case by using
a joint block-diagonalization scheme. The standard algo-
rithm SOBI [1] for stationary ergodic sources is generalized
in [2] while in the non-stationary case, [3] and [4] propose
extensions of [5] and [6].

In this paper, we propose a unified presentation of these
algorithms and we show that papers [2–4] can be interpreted
as practical implementations of some theoretical Blind Source
Separation (BSS) equations that we present in a stochastic
context. In Section 2 we state BSS aim and assumptions for
our problem. In Section 3 we introduce several variables
to rearrange the convolutive mixture into an instantaneous
mixture. Then, the overall BSS problem is formulated in
the time-lag plane in Section 4. Some general equations
are then derived in Section 5. They show, without approx-
imation, that the sources can be retrieved up to unknown
filters. Then, some practical implementations of these equa-
tions are considered in Sections 6 and 7. The non-stationary
case is especially studied in Section 7.3: we introduce Spa-
tial Wigner-Ville Spectrum and propose a criterion based on
single block auto-terms identification to select efficiently, in
practice, the matrices to be joint block-diagonalized.

2. AIM AND ASSUMPTIONS

We consider the following discrete-time FIR MIMO model:

x[t] = H[0] s[t] + H[1] s[t− 1] + . . . + H[L] s[t− L]

+n[t] (1)

where x[t] = [x1[t], . . . , xm[t]]
T is the vector of size m

containing the observations, s[t] = [s1[t], . . . , sn[t]]
T is the

vector of size n containing the stochastic sources (assumed
zero-mean and mutually independent at every time instant),
H[k] = {hij [k]}, k = 0 . . . L, are m × n matrices with
m > n and n[t] is a i.i.d noise vector, independent of the
sources with:

E {n[t]nH [t + τ ]} = δ[τ ] σ2Im (2)

where Im denotes the identity matrix of size m, δ[τ ] is
the Kronecker δ function, ·H denotes “conjugate transpose”
and σ2 denotes the unknown variance of the noise, assumed
identical for all observations.

The overall objective of BSS in the convolutive context
is to obtain estimates of the mixing filters and/or estimates
of the sources up to standard BSS indeterminacies on or-
dering, scale and phase. In this paper we aim at retrieving
estimates of the sources up to unknown FIR filters.

3. FROM CONVOLUTIVE MIXING BACK TO
INSTANTANEOUS MIXING

We recall from [2–4] how the convolutive mixing (1) can be
rearranged into an instantaneous mixing.

3.1. Notations

Let L′ be an integer such that mL′ ≥ n(L + L′) (L′ exists
when m > n). We note, for i = 1, . . . , n:

Si[t] = [si[t], . . . , si[t − (L + L′) + 1]]
T

and for j = 1, . . . , m

Xj [t] = [xj [t], . . . , xj [t − L′ + 1]]
T

Nj [t] = [nj [t], . . . , nj [t − L′ + 1]]
T



where ·T denotes “transpose”. Then we introduce:

S[t] =
[

S1[t]
T
, . . . ,Sn[t]T

]T

X[t] =
[

X1[t]
T
, . . . ,Xm[t]

T
]T

N[t] =
[

N1[t]
T
, . . . ,Nm[t]

T
]T

∀t, S[t] is a column vector of size n(L + L′), X[t] and N[t]
are column vectors of size mL′. For simplicity we note
N = n(L + L′) and M = mL′.

For i = 1, . . . , n and j = 1, . . . , m we note Aij the
following L′ × (L + L′) matrix:

Aij =











hij [0] . . . hij [L] 0 . . . 0
. . .

. . .
. . .

. . .
0 . . . 0 hij [0] . . . hij [L]











Finally, we note:

A =





A11 . . . A1n

...
...

A1m . . . Amn





A is a M × N matrix which satisfies:

X[t] = AS[t] + N[t] (3)

In the following we assume that A is full rank.

3.2. Discussion

Eq. (3) shows that the convolutive mixing (1) can be written
as a noisy instantaneous mixing. Such mixtures (3) have
been widely studied in BSS/ICA literature. However the
big difference here is that the components of S[t] are not all
mutually independent: when the sources are not white, for
i = 1, . . . , n, the components of Si[t] are dependent. More-
over the noise vector N[t] is stationary but not white (see
Section 4.2). However, the variables S1[t], . . . ,Sn[t] are
mutually independent. Hence, the separation problem de-
scribed by Eq. (3) enters the scope of Multidimensional In-
dependent Component Analysis (MICA) introduced in [7],
which is the generalization of ICA when some sources are
mutually dependent. Then, as explained in [7], we can al-
ready state that the components S1[t], . . . ,Sn[t] will be es-
timated only up to an invertible matrix which models inde-
terminacies inherent to MICA (see Section 5.3).

4. TIME-LAG REPRESENTATION

In this section, we formulate the overall problem described
by Eq. (3) in the time-lag plane.

4.1. Covariance relations

For (t, τ) ∈ Z
2 we note RSS[t, τ ] the covariance matrix of

S[t] defined by:

RSS[t, τ ]
def
= E{S[t] S[t + τ ]H}

The vector signals S1[t], . . . ,Sn[t] being mutually indepen-
dent, the N×N covariance matrixRSS[t, τ ] is block-diagonal
with n blocks of dimensions (L + L′), such that:

RSS[t, τ ] =





RS1S1
[t, τ ]

. . .
RSnSn

[t, τ ]





With Eq. (3) we have:

RXX[t, τ ] = ARSS[t, τ ]AH + RNN[t, τ ] (4)

4.2. About the noise

The expression ofRNN[t, τ ] can be further developed. First,
the noise being assumed stationary, we have:

RNN[t, τ ] = RNN[τ ]

Under the noise assumption (2), the vector signals
N1[t], . . . ,Nm[t] are mutually independent. Hence we have:

RNN[τ ] =





RN1N1
[τ ]

. . .
RNmNm

[τ ]



 (5)

And for i = 1, . . . , m we have:

RNiNi
[τ ] = σ2 ĨL′ [τ ]

where ĨL′ [τ ] is the L′ × L′ matrix which contains ones on
the τ th superdiagonal if 0 ≤ τ < L′ or on the |τ |th subdi-
agonal if −L′ < τ ≤ 0 and zeros elsewhere 1. We see that
RNN[τ ] merely depends of σ2.

5. GENERAL BSS EQUATIONS

A two-steps BSS method (whitening and rotation) can be
classically derived from Eq. (3).

5.1. Whitening

First step consists in finding a whitening matrix. Ideally,
this is a N ×M matrix W such that W(AAH )WH = IN .
In the instantaneous case (L = 0, L′ = 1), W can be clas-
sically estimated from the eigenelements of the correlation
matrix of the observations [1, 8].

In the convolutive case, it appears that such a matrix W
cannot be computed in practice and we rather look for W
as a N × M matrix satisfying:

W(A B AH )WH = IN (6)

1We use by convention ĨL′ [0] = IL′ and ĨL′ [τ ] = 0L′ if |τ | ≥ L
′.



where B is a N ×N positive definite block-diagonal matrix
with n blocks of dimensions (L + L′). We assume for the
moment that the quantity ABAH can be retrieved from the
observations, this assumption is relaxed in Sections 6 and 7.

W can be computed from ABAH by standard sub-
space analysis like in [1]. We note [λ1 . . . λM ] the eigenval-
ues of ABAH , sorted in decreasing order, and [h1 . . .hM ]
the corresponding eigenvectors. With B being a definite
positive N ×N matrix and A being a full rank M ×N ma-
trix with M ≥ N , ABAH is positive semidefinite and has
exactly M -N zero eigenvalues [λN+1 . . . λM ]. Then, for
i = 1, . . . , N we can write: λi

−
1

2 hH
i ABAH λi

−
1

2 hi = 1
and W writes:

W =

[

h1√
λ1

, . . . ,
hN√
λN

]H

(7)

5.2. Rotation

Let B
1

2 denote an arbitrary square root matrix of B (B
1

2

exists because B is positive). We have B = B
1

2 (B
H

2 ),
where ·H

2 denotes the conjugate transpose of the square root
matrix. We note U the N × N matrix defined by:

U = WAB
1

2 (8)

It is shown in Section 5.3 that the sources may be retrieved
(up to a filter) from the knowledge of U and W. We now
show a method to retrieve U.

By definition of W, U is unitary (UUH = IN ). Fur-
thermore, B being definite we have:

WA = UB−
1

2 (9)

We define “whitened and noise-compensated” covariance
matrices R

XX
[t, τ ] such that:

R
XX

[t, τ ] = W [RXX[t, τ ] −RNN[t, τ ]] WH (10)

With Eq.’s (4) and (9) we have:

R
XX

[t, τ ] = WARSS[t, τ ]AH WH

= U (B−
1

2 RSS[t, τ ]B−
H

2 )UH (11)

B−
1

2 , B−
H

2 and RSS[t, τ ] are N×N block-diagonal matri-
ces with n blocks of dimension (L+L′)×(L+L′). Hence,
Eq. (11) shows that U block-diagonalizes R

XX
[t, τ ] for all

(t, τ) ∈ Z
2.

Thus, U can be retrieved in theory from the block-
diagonalization of any matrix RXX[t, τ ], with the condition
that RXX[t, τ ] has distinct block eigenvalues (up to a uni-
tary matrix) to prevent from indeterminacy in the columns
U. As first introduced in [9], in practice an estimation of U
should rather be computed from the joint block-diagonalization
(JBD) of a set of K matrices {RXX[ti, τi],
i = 1...K}. JBD provides a more robust estimate of U with
respect to estimation errors on RXX[t, τ ] (see Sections 6

and 7) and reduces indeterminacies in the same way joint-
diagonalization does [1]. JBD provides a matrix UJBD

such that:
UJBD = UP (12)

where P is a N × N unitary matrix that models JBD inde-
terminacies. P is the product of a block-diagonal unitary
matrix with n blocks of dimension (L+L′)×(L+L′) with
a permutation matrix of these blocks. A Jacobi-like JBD
algorithm is presented in [10].

5.3. Retrieving the sources

In this Section we compute estimates of the sources (up to
unknown filters) from UJBD and W. We define the fol-
lowing column vector Ŝ[t] of dimension N :

Ŝ[t] = UH
JBD WX[t] (13)

Eq.’s (12), (9) and (3) yield:

Ŝ[t] = PH B−
1

2 S[t] + PH UH WN[t] (14)

Thus, if we denoise Ŝ[t] or neglect the noise contribution,
with the notation F = PH B−

1

2 we have:

Ŝ[t] ≈ FS[t] (15)

F is a N×N block-diagonal matrix with n blocks F1, . . . ,Fn

of dimensions (L+L′)×(L+L′). We decompose Ŝ[t] into
n subvectors of dimension (L + L′) such that

Ŝ[t] =
[

Ŝ1[t]
T , . . . , Ŝn[t]T

]T

and then with Eq. (15), for i = 1, . . . , n, we have:

Ŝi[t] = Fi Si[t] (16)

We recall that Si[t] = [si[t], . . . , si[t − (L + L′) + 1]]
T .

Hence, Eq. (16) means that each component of Ŝi[t] is a FIR
filtered version of the ith source si[t]. The coefficients of
the filters are contained in corresponding rows of Fi. Then,
for each source si[t], we retrieve (L + L′) filtered versions
of si[t]. Thus, a further blind SIMO system identification
[11] step is required to estimate the original sources instead
of filtered versions of them. However we will not deal with
this problem in this paper. Note that this filtering arises from
the indeterminacy of B as defined in Eq. (6) and the from
JBD indeterminacies modeled by P.

We have shown in this Section that provided the statis-
tics RXX[t, τ ], σ2 and W (computed from some matrix of
the form ABAH with B block-diagonal positive definite),
we are able to recover some estimates of the sources up to
unknown FIR filters. We now show that previous works
[2–4] can be interpreted as practical implementations of the
general equations of this section in the stationary ergodic
case (Section 6) and in the non-stationary case (Section 7).



6. PRACTICAL IMPLEMENTATION FOR
STATIONARY ERGODIC SOURCES

The stationary case is presented in [2], in the noiseless case.
In this section the noise is taken into account. When the
sources are assumed stationary, we haveRSS[t, τ ] = RSS[τ ]
and RXX[t, τ ] = RXX[τ ]. Furthermore when the signals
are also ergodic with length T , the covariance matrix of X[t]
is classically estimated by:

R
XX

[τ ] =
1

T − τ

T
∑

t=1

X[t]X[t + τ ]H

(We use bold capital letters when dealing with estimates.)
Eq. (4) becomes, for τ = 0:

RXX[0] = ARSS[0]AH + σ2 IM (17)

Thus, with similar subspace analysis as in Section 5.1, the
M −N smallest eigenvalues of RXX[0] equal σ2. Then, in
practice an estimate σ̂2 of σ2 can be computed as the aver-
age value of the M − N smallest eigenvalues of R

XX
[0].

W is computed like in Section 5.1, using B = RSS[0].
Indeed, with Eq. (17) we have then:

ABAH ≈ R
XX

[0] − σ̂2 IM

Finally, like for SOBI [1], an estimate of U is then com-
puted from the JBD of a set of whitened and noise compen-
sated matrices R

XX
(τ) corresponding to several arbitrary

lags.

7. PRACTICAL IMPLEMENTATION FOR
NON-STATIONARY SOURCES

We now consider the non-stationary case.

7.1. Whitening

We have ∀t ∈ Z:

RXX[t, 0] = ARSS[t, 0]AH + σ2 IM (18)

Eq. (18) is similar to Eq. (17) and W could be estimated like
in Section 6, provided an estimate of RXX[t, 0]. However,
because of the non-stationarity, RXX[t, 0] varies with time
and it cannot be estimated by ergodic formula. Nonethe-
less, with Eq. (3) and with the noise being stationary and
independent of the sources, we have:

1

T

T
∑

t=1

X[t]X[t]H ≈ A
1

T

T
∑

t=1

S[t]S[t]H AH + σ2 IM

In practice, if the realizations of the source signals are decor-
related, in the sense that 1

T

∑T

t=1 s[t] s[t]H is close to diago-

nality 2, 1
T

∑T

t=1 S[t]S[t]H is close to block-diagonality. In

that case, we can choose B = 1
T

∑T

t=1 S[t]S[t]H , estimate
σ2 like in Section 6 and then W like in Section 5.1.

At this step, estimates of σ2 and W are available and
we now focus on the estimation of RXX[t, τ ] in the next
two subsections.

2For example this is often the case for audio signals with a large number
of samples.

7.2. Locally stationary sources

When the sources are supposed to be non-stationary but lo-
cally stationary and ergodic, the covariance RXX[t, τ ] can
be estimated locally on subintervals of the observations, if
necessary with the use of a smoothing window. This is
the approach of [3] which is the generalization of [5] to
convolutive mixtures. However, these papers use a non-
orthogonal BSS algorithm in the sense that A is estimated
without prewhitening.

7.3. Time-frequency approach

We now consider the case when the assumption of local sta-
tionarity is not compliant with the sources. In this context,
time-frequency (t-f) signal representations are very useful
tools to deal with non-stationary signals. We show in this
subsection that the key Eq. (4) has a strictly equivalent for-
mulation in the t-f plane, introducing Spatial Wigner-Ville
Spectrum (SWVS). In practice, the SWVS is approximated
by Cohen’s class Spatial Time-Frequency Distributions
(STFDs) and then the separation problem comes down to
the work in [4] (in the noiseless case).

7.3.1. Spatial Wigner-Ville Spectrum

The discrete-time/continuous-frequency auto-Wigner-Ville
Spectrum (WVS) of a discrete-time scalar signal x[t] is de-
fined for t ∈ Z and for f ∈ [− 1

2 , 1
2 ] by [12]:

WVSxx[t, f) = 2

+∞
∑

τ=−∞

E{x[t + τ ] x?[t − τ ]} e−j4πfτ

where ·? denotes “conjugate”. We define the cross-WVS of
two scalar signals x[t] and y[t] by:

WVSxy[t, f) = 2

+∞
∑

τ=−∞

E{x[t + τ ] y?[t − τ ]} e−j4πfτ

Hence, the SWVS of the vector signal x[t] is defined by:

SWVSxx[t, f) = 2

+∞
∑

τ=−∞

E{x[t + τ ]xH [t − τ ]} e−j4πfτ

= 2

+∞
∑

τ=−∞

Rxx[t + τ,−2 τ ] e−j4πfτ (19)

7.3.2. Time-frequency formulation of the problem

With Eq’s. (4) and (19) we have then:

SWVSXX[t, f) =

ASWVSSS[t, f)AH + SWVSNN[t, f) (20)

Similarly to Eq. (10), we define SWVSXX[t, f) as:

SWVS
XX

[t, f) =

W [SWVSXX[t, f) − SWVSNN[t, f)] WH (21)



And similarly to Eq. (11), we have:

SWVS
XX

[t, f) =

U (B−
1

2 SWVS
SS

[t, f)B−
H

2 )UH (22)

Thus, U can be estimated by JBD of a set of SWVS matri-
ces {SWVSXX[ti, fi), i = 1...K} instead of a set of co-
variance matrices {RXX[ti, τi], i = 1...K}.

7.3.3. Estimation of the Spatial Wigner-Ville Spectrum

We now deal with the estimation of SWVSXX[t, f) based
on one realization of X[t] only. The SWVS can be inter-
preted as:

SWVSXX[t, f) = E{DWV
XX

[t, f)}

where DWV
XX

[t, f) is the Spatial Wigner-Ville Distribution,
defined for a discrete-time signal x[t] by:

DWV
xx

[t, f) = 2
+∞
∑

τ=−∞

x[t + τ ]x[t − τ ]H e−j4πfτ

Thus, the Spatial Wigner-Ville Distribution is a rough ap-
proximation of the SWVS based on one realization of the
signals only. It is shown in [12, 13] that smoothed Wigner-
Ville Distributions, i.e., Cohen’s class Time-Frequency Dis-
tributions (TFDs), yield better estimators of the WVS. For a
given smoothing kernel φ[t, f) we denote the STFD of x(t):

Dφ
xx

[t, f)
def
=

+∞
∑

u=−∞

∫ 1

2

v=−
1

2

φ[u − t, v − f)DWV
xx

[u, v) dv

φ[t, f) is chosen of unit energy such that the SWVS and
STFDs have same magnitude. Thus, given the estimates Ŵ

and σ̂2, in practice Eq.’s (22) and (21) become:

D
φ
XX

[t, f) ≈ U(B−
1

2 Dφ
ss[t, f)B−

H

2 )UH (23)

where

D
φ
XX

[t, f)
def
= Ŵ

(

D
φ
XX

[t, f) −Dσ̂
NN

[t, f)
)

ŴH

Dσ̂
NN

[t, f) denotes the estimation of SWVSNN[t, f), de-
duced from RNN[τ ] with Eq. (19) but where RNN[τ ] is re-
placed by its estimate given by Eq. (5) where σ is replaced
by σ̂. Eq. (23) is the equation [4] starts from, in the noiseless
case.

However, Dφ
SS

[t, f) is only an estimate of SWVSSS[t, f)
and thus it appears that it is not block-diagonal for every t-f
location (as opposed to SWVSSS[t, f)). Hence, we can-
not block-diagonalize any matrix D

φ
XX

[t, f) corresponding
to any t-f location. Prior to the JBD of the set of matrices
{Dφ

XX
[ti, fi), i = 1 . . .K}, we need to find blindly (i.e.,

from the observations only) the set of locations {(ti, fi), i =

1 . . .K}, for which D
φ
SS

[t, f) is block-diagonal.

7.3.4. Single block auto-terms selection

In [8], in the instantaneous case, it is proposed to search
for sources single auto-terms t-f locations. Indeed, it is
shown that diagonal matrices D

φ
SS

[t, f) are very likely to
have only one non-zero diagonal entry and a criterion is pro-
posed to select corresponding t-f locations from the obser-
vations. The interest of sources STFD matrices with only
one non-zero diagonal entry is also emphasized in [14]. We
propose to generalize the criterion in [8] to the convolutive
case by searching for single block auto-terms.

We then look for t-f locations (t, f) such that Dφ
SS

[t, f)
is block-diagonal with only one non-zero diagonal block,
relying on the observations only. These t-f locations are
referred to as single block auto-terms locations. Let [t0, f0)
be a single block auto-term location. One diagonal block
only is non-zero in D

φ
SS

[t, f) and thus [t0, f0) satisfies:

maxi ‖Dφ
SiSi

[t0, f0)‖F = ‖Dφ
SS

[t0, f0)‖F

where ‖ · ‖F denotes Frobenius norm.
Furthermore, B−

1

2 being block-diagonal, [t0, f0) satis-
fies:

C[t0, f0)
def
=

maxi ‖B−
1

2

i D
φ
SiSi

[t0, f0)B
−

H

2

i ‖F

‖B−
1

2 D
φ
SS

[t0, f0)B−
H

2 ‖F

= 1

(24)
We show now how C[t0, f0) can be computed from the

observations only. Let us define an arbitrary block eigen
decomposition of D

φ
XX

[t0, f0) such that:

D
φ
XX

[t0, f0) = V[t0,f0) E[t0,f0) V
H
[t0,f0)

where V[t0,f0) is a N × N unitary matrix and E[t0,f0) is
a block-diagonal matrix with n blocks of dimension (L +
L′) × (L + L′). With Eq. (23) we have then:

B−
1

2 D
φ
SS

[t0, f0)B
−

H

2 = E[t0,f0) Q[t0,f0)

where Q[t0,f0) is a unitary N × N matrix which models
block-diagonalization indeterminacies. Q[t0,f0) is the prod-
uct of a block-diagonal unitary matrix with a permutation
matrix of these blocks. Thus, since Frobenius norm is un-
changed under unitary matrix multiplication, ∀(t, f) Eq. (24)
writes:

C[t, f) =
maxi ‖ [E[t,f)]i ‖F

‖E[t,f)‖F

(25)

where E[t,f) is the block-diagonal matrix provided by any

arbitrary block eigen decomposition of D
φ
XX

[t, f) and
[E[t,f)]i denotes the ith (L+L′)× (L+L′) diagonal block
of E[t,f).

Ideally single block auto-terms t-f locations satisfy
C[t, f) = 1. However in practice matrices D

φ
SS

[t, f) can
never be strictly block-diagonal. Hence, single block auto-
terms t-f locations should be selected as C[t, f) ≥ 1 − ε,
with ε close to zero. [8] propose an optimal selection which
consist in selecting C[t, f) local maxima. UJBD is then
computed by JBD of the matrices D

φ
XX

[t, f) corresponding
to the selected t-f locations.
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7.3.5. Selection performance

The performance of our selection criterion is evaluated on
a mixture of n = 2 analytic sources of length T = 256
with m = 3 observations. One source is a linear chirp, the
other is a sine frequency modulated signal. The convolutive
mixing is arbitrarily chosen as:

H[z] =

[

1 + 0.8z−1 + 0.5z−2 0.8 + 0.7z−1 + 0.4z−2

0.9 + 0.4z
−1 + 0.6z

−2 1 + 0.9z
−1 + 0.3z

−2

0.7 + 0.6z
−1 + 0.5z

−2 0.8 + 0.3z
−1 + 0.6z

−2

]

TFDs are Reduced Interference Distributions with Bessel
kernel [12]. On first plot of Fig. 1, we draw for t = 0, . . . , T−
1 and f = 0, 1

T
, . . . , 0.5 − 1

T
the following measure of

“block-diagonality” of D
φ
SS

[t, f):

BD[t, f) =

∑n

i=1 ‖D
φ
SiSi

[t, f)‖F

‖Dφ
SS

[t, f)‖F

On second plot of Fig. 1 we draw criterion C[t, f). We see
that maxima of C[t, f) match with maxima of BD[t, f).
This means that 1) most block-diagonal matrices D

φ
SS

[t, f)
have indeed only one non-zero diagonal block 2) the crite-
rion C[t, f) identifies efficiently these matrices, relying on
the observations only.

8. CONCLUSIONS

We have shown that previous works [2–4] admit a unified
presentation in the sense that these papers consider differ-
ent implementations of the general equations we provide in
the stochastic context. In particular, in the non-stationary
case, we showed that the STFDs used in [4] can be inter-
preted as estimates of the SWVS. Due to this approxima-
tion the STFD of the vector signal S[t] is not block-diagonal
for any t-f location. Hence, we proposed an efficient cri-
terion to select t-f locations where the sources STFDs are
block-diagonal, relying on the observations only. The matri-
ces D

φ
XX

[t, f) corresponding to the selected locations enter

JBD. However, the sources can only be estimated up to un-
known filters because of the indeterminacies in the whiten-
ing and the JBD. However this estimation may be sufficient
for many audio applications such as speech recognition or
indexation.
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