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Soft nonnegative matrix co-factorization
Nicolas Seichepine, Slim Essid, Cédric Févotte, and Olivier Cappé

Abstract—This work introduces a new framework for nonnega-
tive matrix factorization (NMF) in multisensor or multimodal data
configurations, where taking into account the mutual dependence
that exists between the related parallel streams of data is
expected to improve performance. In contrast with previous
works that focused on co-factorization methods —where some
factors are shared by the different modalities— we propose a
soft co-factorization scheme which accounts for possible local
discrepancies across modalities or channels. This objective is
formalized as an optimization problem where concurrent factor-
izations are jointly performed while being tied by a coupling term
that penalizes differences between the related factor matrices
associated with different modalities. We provide majorization-
minimization (MM) algorithms for three common measures of fit
—the squared Euclidean norm, the Kullback-Leibler divergence
and the Itakura-Saito divergence— and two possible coupling
variants, using either the ℓ1 or the squared Euclidean norm
of differences. The approach is shown to achieve promising
performance in two audio-related tasks: multimodal speaker
diarization using audiovisual data and audio source separation
using stereo data.

Index Terms—Nonnegative matrix factorization, co-
factorization, multimodal data, segmentation, source separation.

I. INTRODUCTION

F
ACTOR models have gained a lot of attention in the
machine learning and signal processing communities. In

particular, nonnegative matrix factorization (NMF) is a pow-
erful technique for nonnegative data analysis. For example,
it has shown excellent performance in tasks such as movie
ratings prediction [1] or spectrogram decomposition for source
separation [2]. Given a nonnegative matrix V , where every
column represents a data point, NMF consists in finding the
approximation

V ≈ WH (1)

where W and H are nonnegative matrices as well. In this
formulation, W acts as a dictionary of patterns representative
of the data while H contains the activation coefficients of these
patterns in V .

In some cases, data can be available in several modalities.
Consider for example the audio and visual streams of a video
or the images and accompanying text from Internet photo
databases. By extension, we can also use the different channels
of multichannel data, such as the left and right signals of a
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stereo recording, and analyze them in a multimodal fashion.
In such cases, it is desirable to exploit the mutual information
shared by the different modalities. As such, in the setting of
factor models, it has been assumed that the different modalities
share a common factor, usually the activation matrix H . In
other words, if V1 and V2 represent the two data modalities,
a co-factorization model of the form V1 ≈ W1H , V2 ≈ W2H
may be appropriate. This is in essence the approach taken in
various settings by previous papers [3]–[10]. The assumption
that the two modalities share the exact same activation matrix
H may be a too strong one. As such, in this article we
propose to relax this hard constraint and instead produce a
“soft” co-factorization such that V1 ≈ W1H1, V2 ≈ W2H2

and H1 ≈ H2. This new form of factorization will be shown
to model more adequately the data in two applications, audio-
visual speaker diarization and stereo audio source separation.
A related idea has been proposed in [11], that uses a coupling
penalty to identify dictionary entries that are shared across
the EEG recordings of distinct subjects. This paper considers
only the situation where the coupling penalty and all the
measures of fit are ℓ2 norms. We consider here more general
problems (Sections V and VI) that require the use of different
divergences as measures of fit and a ℓ1 norm as a coupling
term, and propose generic optimization algorithms to minimize
the resulting cost functionals.

The paper is organized as follows. The general framework
is presented in Section II and the algorithmic contribution is
detailed in Section III. The remaining sections are devoted
to evaluation with synthetic data experiments reported in
Section IV, while Section V and Section VI are devoted to,
respectively, multimodal speaker diarization using audiovisual
data and audio source separation using stereo data. This paper
significantly extends our previous conference contribution in
the following way: while [12] introduced a specific version
of soft co-factorization, results are presented here for distinct
measures of fit and the characteristics of produced algorithms
are precisely analyzed. The generality of the method is also
illustrated on a new problem —source separation.

II. OBJECTIVE CRITERION FOR SOFT CO-FACTORIZATION

A. Notations

V1 and V2 denote the matrices associated with respec-
tively the first and the second modality. V1 ∈ R

F1×N
+ and

V2 ∈ R
F2×N
+ ; F1 and F2 are possibly different, they corre-

spond to the dimensionality of the observations constituting
the matrices V1 and V2. N corresponds to the number of
observations. V1 is factorized as the product of nonnegative
matrices W1 ∈ R

F1×K1

+ and H1 ∈ R
K1×N
+ , whereas V2 is

factorized as the product of W2 ∈ R
F2×K2

+ and H2 ∈ R
K2×N
+ ,
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where K1 and K2 correspond to the ranks of the factorizations
for respectively the first and the second modality.

B. Nonnegative co-factorization

The first solution to solve jointly two NMF problems with
a shared factor (e.g.) H is to follow an alternate optimization
scheme. As a first step, the matrix H is updated considering
only the first problem, then used to update the matrix W2 in
the second problem. In a second step, problems are swapped:
H is updated considering the second problem, then used to
update W1. This kind of approach is widespread and used in
[9], [13], [14].

Another simple nonnegative matrix co-factorization scheme,
used in [15], consists in stacking vertically two matrices
V1 ∈ R

F1×N
+ and V2 ∈ R

F2×N
+ to form a new matrix

V ∈ R
(F1+F2)×N
+ . The matrix V is then factorized into the

product WH . Denoting by W1 the F1 first rows of W , and
W2 the F2 last rows of W , W1H and W2H are factorizations
for respectively V1 and V2, that share the same “activation”
matrix H .

But it is also possible to link the two factorizations using a
coupling term. This gives the possibility to relax the “common
factor” hypothesis and to weight the relative importance of the
factorizations of the two modalities and the closeness between
the resulting factors.

C. Soft nonnegative co-factorization

Indeed, two NMF problems can be independently solved
by adding up the measures of fit corresponding to separate
problems and solving a similar optimization program. It is
then natural, if one knows that there exists some dependency
between H1 and H2, to take this dependency into account,
possibly by introducing an adapted penalization function P ,
hence the formulation of our co-factorization problem via the
following program:

min
W1,H1,W2,H2

C (W1, H1,W2,H2) =

D1(V1 |W1H1) + γD2(V2 |W2H2) + δP (H1, H2) ,

s.t. W1 ≥ 0, H1 ≥ 0, W2 ≥ 0, H2 ≥ 0, (2)

where D1 and D2 are measures of fit (also called divergences)
for the two modalities —which may differ in this framework—
and γ and δ are scalars, corresponding to weighting hyper-
parameters. We consider in the following only the situations
where H1 and H2 have the same dimensions, and where the
penalty P is used to account for a dependency between H1

and H2. Yet, this goes without loss of generality:

• the penalty could easily rather target a dependency be-
tween W1 and W2 for all data fitting measures that satisfy
D(V |WH) = D(V T |HTWT ) (as is the case for the
three divergences considered below);

• if H1 and H2 have different dimensions, the penalizing
function can readily ignore rows and columns of H1

that have no match in H2. We will thus equally use the
notations K , K1 and K2 in what follows.

D. Choices for D1, D2, P

We will consider here three distinct situations, where the
measures of fit D1 and D2 correspond to the sum over the
coefficients of compared matrices of the scalar Euclidean
distance, generalized Kullback-Leibler divergence and Itakura-
Saito divergence (see Table I). These three measures of fit are
the three most-used members of the β-divergence family; they
correspond respectively to β = 2, β = 1 and β = 0. They are
widely used in the NMF field [16], [17], and are well-suited
to address problems with distinct statistical properties: the Eu-
clidean distance can cope with Gaussian additive noise, while
the Kullback-Leibler divergence is appropriate for multinomial
distributions or Poisson noise and the Itakura-Saito divergence
fits Gamma multiplicative noise [18], [19].

E. Numerically stable objective function

In this section, we modify (2) so as to preserve its main
characteristics while avoiding spurious undesirable optima. To
illustrate the drawbacks of (2), we focus on the case where
P (H1, H2) = ‖H1 −H2‖ where ‖·‖ corresponds either to
the ℓ1 or ℓ2-squared norm. Firstly, there is a scale ambiguity
between matrices W1 and W2 on the one hand, and matrices
H1 and H2 on the other hand. Given α such that 0 < α < 1 we
have C (W1/α, αH1,W2/α, αH2) < C (W1, H1,W2, H2).
Any unconstrained algorithm will therefore lead to degenerate
solutions, where matrices H1 and H2 tend towards 0 while
matrices W1 and W2 grow infinitely in norm. Secondly, we
made no assumptions on the scales of matrices H1 and H2.
We only supposed that they were related, which means that we
need to rescale them prior to any comparison: the similarity
between H1 and H2 is here considered in terms of their shape
regardless of their scale.

The scale ambiguity can be solved by multiplying H1

and H2 respectively by the diagonal matrices Λ1 and Λ2 ∈
R
K×K in the penalty part [20]. Their k-th diagonal coeffi-

cients are λ1,k =
∑

f w1,fk and λ2,k =
∑

f w2,fk, where
w1,fk and w2,fk denote the coefficients of W1 and W2.
This in fact amounts to constraining the ℓ1-norm of the
columns of W1 and W2 to the unit, using a simple substitu-
tion: in the modified program (3) proposed below, we have
C (W1, H1,W2, H2) = C

(

Λ−1
1 W1,Λ1H1,Λ

−1
2 W2,Λ2H2

)

,
where by construction Λ−1

1 W1 and Λ−1
2 W2 have normalized

columns. The scale mismatch between H1 and H2 can also
be solved using a diagonal matrix S ∈ R

K×K , diag(S) =
(s1, . . . , sK), according to:

min
W1,H1,W2,H2,S

C (W1, H1,W2,H2, S) = D1(V1 |W1H1)

+ γD2(V2 |W2H2) + δ ‖Λ1H1 − SΛ2H2‖ ,

s.t. W1 ≥ 0, H1 ≥ 0, W2 ≥ 0, H2 ≥ 0, diag(S) ≥ 0. (3)

S is thus to be estimated along with the other factors. It will be
easily updated since its coefficients can be obtained in closed
form given H1 and H2 (see Section III). The obtained program
(3) is numerically stable, and we will propose an algorithm to
solve it.
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III. ALGORITHMS

A. General architecture

The objective function (3) has no known closed-form op-
timum, hence we must resort to an iterative algorithm. We
follow a block-coordinate descent approach where matrices
H1, H2, W1, W2 and S are sequentially updated. The update
rules for H1, H2, W1 and W2 are very similar while the
updates for S is different and somewhat simpler. We will
therefore give details here only for the updates of H1 and S. A
complete algorithm is given as an example in appendix for the
Kullback-Leibler divergence used with ℓ2 coupling, the com-
plete derivations for the various combinations of divergences
and coupling penalty are given in the supplementary material
available online1.

The updates for S only depend on the soft co-factorization
penalty and not on the data fit terms. The update rule for S
can thus be obtained in closed-form given the other matrices,
with formulas that depend on the choice of the coupling norm
(we consider below the case of the squared ℓ2 and ℓ1 norms).

In contrast, updating H1 requires to optimize a criterion
that depends jointly on the divergence D1 and on the soft
co-factorization penalty. We chose to update H1 using a
majorization-minimization (MM) approach [17], [21]. The
main idea of MM algorithms is the following: i) first build
an upper bound of the original objective function, easier to
minimize and tight to the original objective function at the
current iterate; ii) then minimize it. Minimizing this upper
bound will bring a decrease in the original objective function:
MM algorithms have not necessarily the best convergence
speed, but they ensure that the objective function is strictly
decreasing. With either a squared ℓ2 norm or a ℓ1 norm, the
coupling term ‖Λ1H1 − SΛ2H2‖ is both convex and separable
with respect to the coefficients h1,kn of H1. The upper bound
of (3), required by the MM algorithm, is therefore built as
follows:

• majorize the data-fitting term D1(V1 |W1H1) with a
convex separable auxiliary function;

• add the coupling term as is;
• the resulting functional is convex and separable, and turns

out to be amenable to optimization in closed-form.

B. Auxiliary function for the data-fitting term

The auxiliary function for the data-fitting term D1 is de-
noted by G(H1|H̃1). H̃1 is the current iterate, where the
auxiliary function is built. This function is minimized with
respect to H1, its minimizer gives the next iterate. G(H1|H̃1)
is specific for each data-fitting term, but can be built in
a systematic way, majorizing convex parts using Jensen’s
inequality and concave parts with their tangents [17]. The
majorants for the considered measures of fit are given in
Table I.

C. Squared ℓ2 penalization

1) Update rule for S: The coupling term corresponds here
to ‖Λ1H1 − SΛ2H2‖

2
2; it can be easily minimized, yielding

1http://plato-tsi.telecom-paristech.fr/publi/26108/

Itakura-Saito divergence DIS (x|y) = x
y
− log (x/y)− 1

G(H1|H̃1) =
K1
∑

k=1

N
∑

n=1

(

ψ1,kn

h1,kn
+ φ1,knh1,kn

)

+ cst.

where ψ1,kn =
∑F1

f=1

(

h̃2
1,knw1,fkv1,fn

(
∑

K
κ=1

w1,fκh̃1,κn)
2

)

and φ1,kn =
∑F1

f=1

(

w1,fk
∑

K
κ=1

w1,fκh̃1,κn

)

Kullback-Leibler divergence DKL (x|y) = x log (x/y)− x+ y

G(H1|H̃1) =
K1
∑

k=1

N
∑

n=1

(

−ψ1,kn log h1,kn + λ1,kh1,kn
)

+ cst.

where ψ1,kn =
∑F1

f=1

(

h̃1,knw1,fkv1,fn
∑

K
κ=1

w1,fκ h̃1,κn

)

Euclidean distance DE(x, y) =
1

2
(x− y)2

G(H1|H̃1) =
K1
∑

k=1

N
∑

n=1

(

ψ1,knh
2

1,kn
− 2φ1,knh1,kn

)

+ cst.

where ψ1,kn =
∑F1

f=1

(

w1,fk(
∑K

κ=1
w1,fκh̃1,κn)

h̃1,kn

)

and φ1,kn =
∑F1

f=1
w1,fkv1,fn

Table I
AUXILIARY FUNCTIONS FOR D1(V1 |W1H1) AND ASSOCIATED

NOTATIONS.

the following updates for the coefficients of S:

sk =

λ1,k

N
∑

n=1
h1,knh2,kn

λ2,k

N
∑

n=1
h2
2,kn

(4)

2) Update rule for H1: In this case the penalized MM
majorant is smooth and convex hence minimizing the auxiliary
function for the whole objective functional (auxiliary function
for the data-fitting term plus coupling term) is easy. For each
measure of fit, one can show, using the strict convexity of the
penalized majorant and the limits of its derivative towards 0+

and +∞, that the derivative on R
∗

+ admits a unique zero. From
a practical viewpoint, finding this zero amounts to solving
algebraic equations, of degree one for the Euclidean distance,
degree two for the Kullback-Leibler divergence and degree
three for the Itakura-Saito divergence. Details are given in
supplementary materials.

D. ℓ1 case

1) Update rule for S: The coupling term corresponds
here to ‖Λ1H1 − SΛ2H2‖1; we must therefore minimize a
convex continuous piecewise linear function w.r.t. S. Since
the function is piecewise linear, two situations can occur: first,
the function is identically minimized on a nontrivial segment,
and each value of sk chosen on this segment cancels the
derivative; we can decide to retain an extremity of this segment
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—therefore a point of change of slope of the function— as an
update rule. Second, the minimum is reached precisely at a
point of change of slope. Consequently, finding an optimal
value of the function can be done as follows:

• compute critical values r̃j =
λ1,kh1,kj

λ2,kh2,kj
that correspond to

the points of change of slope; sort them and store the
permutation S associated with the sorting process;

• look for nc = min

{

n, 2
n
∑

j=1

h2,kS(j) ≥
N
∑

j=1

h2,kj

}

;

• the new value of sk is r̃S(nc).

2) Update rule for H1: It is no more possible to consider
the derivative of the auxiliary function for the whole objec-
tive function, as an absolute value |λ1,kh1,kn − skλ2,kh2,kn|
is used in the coupling term. However, for all considered
measures of fit, one can still show that 0 belongs to the
subdifferential of the auxiliary function for a unique value of
R
∗

+, with the same arguments. From a practical viewpoint, a
logical disjunction must be considered to find this value. The
absolute value results in a term sign (λ1,kh1,kn − skλ2,kh2,kn)
in the subdifferential. The change of sign occurs for h1 = hc =
skλ2,kh2,kn

λ1,k
and we have:

• if the values of the subdifferential are negative at the left
of hc and positive at the right of hc, hc is the solution
no matter what measure of fit is used;

• otherwise, replace in the canceling equation associ-
ated with the considered measure of fit the expression
sign (λ1,kh1,kn − skλ2,kh2,kn) by 1 if the subdifferential
has positive values in h+

c , by −1 if the subdifferential has
negative values in h−

c , and solve it accordingly.

The above results in a simple algebraic equation, of degree one
for the Euclidean distance or the Kullback-Leibler divergence,
and degree two for the Itakura-Saito divergence, hence no extra
difficulties are to be expected after the logical disjunction. It
should be noted that this logical disjunction corresponds to a
conditional projection, meaning that if the values of H1 and
H2 are “close enough”, the algorithm will naturally make them
equal.

E. Discussion of the implementation

1) Permutation insensitivity: Given two matrices W1 and
H1 and a permutation S of the set {1, . . . ,K1} we can
build matrices W̃1 and H̃1 by applying S to the rows of
H1 and the columns of W1. We have W1H1 = W̃1H̃1, so
that for any measure of fit D and a matrix V1 we have
D(V1 |W1H1) = D(V1 | W̃1H̃1). However, given another

matrix H2, we generally have ‖H1 −H2‖ 6=
∥

∥

∥
H̃1 −H2

∥

∥

∥
.

Therefore, if a “natural” matching order exists between ma-
trices H1 and H2, the optimization of the objective function
(3) will naturally return solutions where the rows of matrices
H1 and H2 are in the rightful order: permutations of the rows
do not affect the measures of fit, but increase the penalty term
if they match rows that are not alike. Consequently, it is not
necessary to have specific knowledge of the structure of the
addressed problem, and random initializations are perfectly
feasible.

2) Numerical concerns: one iteration of the algorithm con-
sists in updating the different factor matrices. If V1 ∈ R

F1×N

and V2 ∈ R
F2×N , updating H1 or H2 costs respectively

O (F1KN) or O (F2KN). The same analysis stands for
the updates of W1 and W2. However, the updates of S are
different: although they cost only O (KN) while using a
ℓ2 penalty, the use of a ℓ1 norm involves the sorting of an
array of size K × N along its second dimension, therefore
resulting in a complexity of O (KN logN). For standard
problems, we clearly have logN ≤ min (F1, F2) and we can
thus consider that the global complexity of one iteration is
O (max (F1, F2)KN).

As a hint, a Matlab implementation on a modern computer
(Core 2 Duo, 6 Gb of RAM) requires 100 seconds to perform
1000 iterations —generally enough to reach convergence—
with K = 5, F1 = F2 = 200 and N = 104.

3) Hyper-parameters adjustment: modeling the rightful
link between two modalities, well-suited for a particular prob-
lem, implies to chose the hyper-parameters γ and δ. These
parameters should in principle only depend on the nature of
the considered problem, not on the dimensions F1, F2, K and
N . If there is primarily no other choice than using a training
set to adjust these parameters, it has been found that it is easy
to develop efficient heuristics, that consist in conserving the
balance between the distinct terms of the objective function,
to adjust these parameters when changing the dimensions of
the problem [22].

IV. EXPERIMENTS WITH SYNTHETIC DATA

To illustrate the potential of the approach, we first consider
experiments on synthetic data. These data are generated as fol-
lows: the first step consists in building H1 and H2 ∈ R

2×240.
Their rows are made of irregular patterns of zeros and ones,
artificially chosen to illustrate similar global behaviors in both
modalities with some local discrepancies; the first row of H1

and the first row of H2 can respectively be observed in the
first and the second column of Figure 1 (dashed lines). To
generate W1 and W2 ∈ R

20×2, each coefficient has been
chosen following a uniform distribution on [1, 11]. In order to
focus on the effects induced by the coupling term, the values
of W1 and W2 are considered to be known in this experiment
and are thus not updated during the training.

We first illustrate the impact of the hyper-parameter δ while
using a ℓ1 penalty. We can see in Figure 1 that activation
patterns for the first modality (continuous line, left column)
returned by the algorithm move away from the associated
ground truth and get closer to both the ground truth and the
activation patterns of the second modality (right column) when
the coupling parameter δ is increased. Conversely, activation
patterns for the second modality move closer to activation
patterns for the first modality. It should also be noted that
activation patterns for both modalities quickly become equal

for high values of δ, as an effect of the conditional projection
mentioned in Section III.

The same observations can be made while using a ℓ2 penalty
in Figure 2. However, the behavior with respect to the values of
δ is different: the observed distortion is far more progressive;



5

changes can be observed even for low values of δ, and even
high values of δ do not result in numerical equality of H1 and
H2.

We finally observe the impact of the weighting hyper-
parameter γ in Figure 3. With a constant weight for the
coupling term (ℓ1 norm here), lower values for γ are expected
to put more emphasis on the data fitting term for the first
modality. And indeed, although activation patterns H1 and H2

returned by the algorithm stay equal, one can observe that the
common value moves closer to the ground truth values of the
first modality when γ decreases.

It is possible, with these properties, to chose objective
functions that will, given some prior knowledge, embody
arbitrary links between H1 and H2.
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Figure 1. Influence of a ℓ1 coupling: left and right columns correspond
respectively to the first and the second modality. Continuous lines are the
activation patterns returned by the algorithm, while dashed lines correspond
to the ground truth. For simplicity, only one row per modality is displayed.
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Figure 2. Influence of a ℓ2 coupling (same display conventions as in
Figure 1).
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Figure 3. Influence of the weighting parameter γ (same display conventions
as in Figure 1).

V. APPLICATION TO MULTIMODAL SPEAKER DIARIZATION

A. Introduction

Given an audio or video recording, the speaker diariza-

tion task consists in finding “who speaks when” in a non-
supervised fashion [23]. This amounts to grouping homoge-
neous content segments, where a given person speaks without
being interrupted. Beyond the audio modality, speaker diariza-
tion systems can take advantage of other streams of data that
may be available at the same time, such as subtitles or an
associated visual track. The joint exploitation of two or more
modalities corresponds to multimodal speaker diarization [24],
[25].

We consider here the specific case of professionally edited

videos, where the intervention of a director (or an editor)
results in a relationship between the final audio and video
tracks: the editor will select among available multiview video
tracks, at each time, the images that best illustrate the audio
content. This generally results in showing onscreen the current
speaker. If an audio feature matrix Vaudio is available, where
each column is characteristic of the voice of a given speaker,
and a video feature matrix Vvideo where each column is
characteristic of the onscreen appearance of a given person, it
will be possible to use the soft coupling algorithm presented in
Section III to perform the multimodal speaker diarization task,
exploiting the relationship between audio and video tracks.

B. Co-factorization to perform multimodal speaker diarization

Interpreting NMF as a part-based representations [26], a
factorization of Vaudio will return a matrix Wa formed with the
characteristic audio templates of the speakers, and a matrix Ha

where each row corresponds to the activations (interventions)
of a given speaker. In a similar way, a factorization of Vvideo
will return a matrix Wv formed with the characteristic video

templates of the speakers, and a matrix Hv where each row
corresponds to the activations (onscreen appearances) of a
given speaker.
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The matrices Wa and Wv have no reason to be similar,
and can have different dimensions, depending on the building
process of Vaudio and Vvideo. But each row of Ha should
have a match in Hv, since onscreen appearances and verbal
interventions have been supposed to be related. The soft

coupling is particularly appropriate here since the relationship
between rows of Ha and rows in Hv simply consists in a
correlation: no equality can be expected, as the director might
also choose from time to time to show onscreen a person who
is not the current speaker.

To build representative matrices Vaudio and Vvideo, we use
the approach of [20], with some slight modifications for the
audio matrix Vaudio: histograms are built using an aggregation
window of 2 seconds, and hidden Markov models are trained
with 50 states per speaker. In the end, each column of Vaudio
consists of histograms of audio states, inferred from short-
term Mel Frequency Cepstral Coefficients. The idea is similar
for Vvideo, where each column corresponds to a histogram
of visual words. The visual words are PHOW features [27]
extracted within bounding boxes on faces and clothing areas
in the frames.

The Kullback-Leibler divergence is chosen as a measure of
fit: Vaudio and Vvideo are, by construction, histogram data, and
the Kullback-Leibler divergence is well-suited for multinomial
distributions [18], [19]. We also choose to use a ℓ1 norm as
a penalty, since it favors sparsity of H1 − H2 (see Section
IV) that corresponds well to our hypothesis: rows of Ha

and Hv are generally equal and sometimes very different.
The multimodal speaker diarization is achieved directly by
optimizing the following objective:

min
Wa,Ha,Wv,Hv ,S

C (Wa, Ha,Wv,Hv, S) =

DKL(Vvideo |WvHv)

+ γDKL(Vaudio |WaHa) + δ ‖ΛaHa − SΛvHv‖1 ,

s.t. Wa ≥ 0, Ha ≥ 0, Wv ≥ 0, Hv ≥ 0, diag(S) ≥ 0. (5)

C. Data

To evaluate the performance of this approach we considered
the Canal9 political debates database video database [28].
Each video tallies with a broadcast where a moderator and
different guests debate a political question. Both the guests and
the background vary over different broadcasts. We consider the
33 first available videos, and test the diarization on 8-minute
long video segments. One segment is used per video, that starts
at 3 minutes and 30 seconds after the beginning of the show
to avoid the opening credits.

Using our soft coupling algorithm implies identifying cor-
rect settings for γ, δ and K . We consider that the number of
speakers Q is known, which is often the case for TV contents,
which include subtitles or teletext, and we use K = Q for
Vaudio and K = Q + 1 for Vvideo. This leaves a component
available for wide shots that do not clearly feature a single
person. Using K = Q + 1 has also been tested for Vaudio
but has proven to be harmful: in practice, the algorithm tends
to use the additional component to “split” a speaker with a

varied tone rather than to model background noise. Hence,
only the Q first components of Hv are coupled with the
components of Ha. There is also no need to use a training set
to decide the value of γ, and we immediately decide to use
γ = 5. This choice is consistent with both the impact of this
parameter observed in IV and the intention to give priority to
the audio track: we want to obtain speaker diarization results
supported by the video track rather than an onscreen person
spotting factorization supported by the audio track. However,
the parameter δ must be trained with a separate dataset, and
we have randomly selected for this purpose 10 development
videos 2 among the 33 available. We retained here the value
δ = 0.1.

D. Results

The tests are made as follows: for each video, we run the
algorithm with 15 random initializations. Each initialization
will lead to a different result, and we keep only the result
associated with the lowest final value of the objective function.
We now have one solution to the speaker diarization problem
for each video, which is given by the rows of Ha. Each
row is rescaled to the interval [0, 1], then thresholded using
a limit of 0.5: we consider that a person speaks at a given
time if the associated activation coefficient is strong enough.
The resulting diarization can now be compared to the ground
truth, using the NIST scoring script for speaker diarization
evaluation [29]. This returns a Diarization Error Rate (DER),
which approximately corresponds to the fraction of speaker
time that is not attributed to the right speaker. Lower is
therefore better.

The comparison is made:

1) with an algorithm that performs a NMF of only the audio
track (“Audio only”);

2) with an alternative algorithm using a hard coupling of
audio and video tracks (“Hard”);

3) with the LIUM algorithm [?], [30] algorithm using a
completely different approach (“LIUM”).

Note that, because of the additive form of the objective
function, the hard coupling is strictly equivalent to performing
a NMF of a matrix Vstacked, formed by the vertical concate-
nation of Vvideo and γVaudio, which has been done here.

In contrast to our soft co-factorization method, the hard
coupling does not allow to use a number of components that
differs for the audio and video terms, and we then do the
test twice, using first K = Q then K = Q + 1. The LIUM
algorithm is extensively described in [30]; it relies on Gaussian
mixture models and hierarchical agglomerative clustering. To
ensure a fair comparison, we slightly modified this algorithm
to take into account the fact that the number of speakers is
known, and stop the clustering at the right step. Results are
presented in Table II for the 23 test videos.

The following conclusions can be drawn: firstly, a hard
coupling gives better results if the factorization is made using
Q + 1 components. Secondly, using the video brings useful

2Videos 06-11-15, 06-06-07, 05-11-23, 05-10-12, 06-04-19, 06-02-08, 06-
10-18, 06-11-29, 05-12-07 and 06-10-04.
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Method Audio Hard Hard Soft LIUM
only K = Q K = Q+ 1 coupling

Mean DER 21.4 25.1 18.9 16.8 8.0
Table II

MEAN DER OF THE DIFFERENT METHODS (TEST SET). LOWER VALUES

INDICATE BETTER PERFORMANCE.

information; this information is better exploited with the pro-
posed soft-coupling algorithm. Finally, the LIUM algorithm,
using classical methods, clearly yields the best results.

It is however possible to introduce more prior knowledge
into the objective function (5). Thus, we introduced supple-
mentary the ℓ1 smoothing penalties

βsa

K
∑

k=1

N
∑

n=2

∣

∣λkha,kn − λkha,k(n−1)

∣

∣

and

βsv

K
∑

k=1

N
∑

n=2

∣

∣λkhv,kn − λkhv,k(n−1)

∣

∣

for, respectively, the audio and video activation patterns. These
penalties support a temporal regularity of the activations in
matrices Ha and Hv, essentially by encouraging activation co-
efficients that are consecutive in time to be close to each other
(possibly equal [31]). We used βsv = 0.01 and βsa = 0.2 after
tests on the training set. The results using this soft coupling,
smoothed algorithm are presented in Table III. We observe

Method Modified soft LIUM
coupling

Mean DER 12.8 8.0
Proportion of best score 9/23 14/23

Table III
RESULTS FOR A MODIFIED VERSION OF THE SOFT COUPLING ALGORITHM.

a noticeable improvement, even though the performance of
the LIUM algorithm is not reached. We also mention the
number of videos for which each algorithm gives the best
solution: this illustrates that the differences between the LIUM
algorithm and the proposed one mainly comes from some odd
situations where the soft coupling totally fails. Indeed, the soft
coupling method gives the best results for nearly half of the
tested videos, but the average DER is still distinct from the
average DER for the LIUM algorithm. This comes from videos
where the speaking time is shared very unequally between the
distinct speakers: the soft coupling methods tends to ignore
the speaker with the lowest speaking time, and to “reuse” the
freed component to “split” another speaker with a varied tone
over two components, yielding very high DER. Still, regardless
of further improvements that could be made to the objective
function, the soft coupling is a method that gives good results
the major part of the time.

VI. APPLICATION TO STEREO SOURCE SEPARATION

As a second illustration of the proposed soft co-factorization
paradigm, we now turn to a stereo source separation example.

A. Methodology

We consider a two by two problem in which two sources
have to be estimated from two sensors in a reverberant environ-
ment. Our approach may however be extended to an arbitrary
number of sources and sensors, including overdetermined or
underdetermined scenarios. In the time domain the mixing
model is

xl(t) = s1(t) + s2(t) (6)

xr(t) = a1 ∗ s1(t) + a2 ∗ s2(t) (7)

where the indices l and r refer to left and right channels.
We assume that we can include the room responses from the
sources to the first channel in the source signals themselves in
order to lift ambiguities. Under the narrow-band assumption
(i.e., assuming that reverberation times are smaller than the
length of analysis window), the mixing model may be written
in the short-time Fourier transform (STFT) domain as

xl,fn = s1,fn + s2,fn (8)

xr,fn = a1,fs1,fn + a2,fs2,fn (9)

where the indices f and n refer to frequency and time frame,
respectively. In this model, the convolution is essentially rep-
resented by frequency-dependent linear instantaneous mixing
models. In [32], [33], the sources are modeled by a Gaussian
composite model (GCM) that writes

sj,fn ∼ Nc(0, [WjHj ]fn). (10)

This is a latent factor model that has proven very efficient in
audio settings [32], [33]. Under this assumption, the negative
log-likelihood of the sources writes − log p(|Sj |

2|WjHj) =
DIS(|Sj |2|WjHj) + cst., where |Sj |2 denotes the power
spectrogram of source sj .

In this paper, we propose to relax the assumption that the
source activation matrices Hj are the same in both channels.
Our hope is that this increased flexibility in the model may
mitigate the point-source and narrow-band assumptions that
may be erroneous in some real-world settings. As such, we
assume instead that the contribution of source j to channel l
is Hl,j and that its contribution to channel r is Hr,j , and we
will enforce that Hl,j ≈ Hr,j . With these assumptions, the
negative log-likelihood of the left channel writes

− log p(Xl|W1,W2, Hl,1, Hl,2) =

DIS(Vl|W1Hl,1 +W2Hl,2) + cst. (11)

where Xl is the STFT of xl and Vl = |Xl|
2 is its power

spectrogram. The negative log-likelihood of the right channel
writes

− log p(Xr|A1, A2,W1,W2, Hr,1, Hr,2) =

DIS(Vr |A1W1Hr,1 +A2W2Hr,2) + cst. (12)

where A1 and A2 are the diagonal matrices with coef-
ficients {|a1,f |2}f and {|a2,f |2}f , respectively. We pro-
pose in this article to estimate the parameters θ =
{A1, A2,W1,W2, Hr,1, Hr,2, Hl,1, Hl,2} by optimizing the
sum of the log-likelihoods of both channels. This is suboptimal
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as compared to optimizing the joint likelihood but was found
to be an easier and still viable approach in [33]. Denoting
Wl = [W1,W2], Wr = [A1W1, A2W2], Hl = [HT

l,1, H
T
l,2]

T

and Hr = [HT
r,1, H

T
r,2]

T , our approach boils down to mini-
mizing the following objective function

C(θ) = DIS(Vl|WlHl) +DIS(Vr|WrHr) (13)

subject to Hl ≈ Hr. As such, it defines a soft nonnegative
matrix co-factorization problem. A particularity is that Wl and
Wr are not independent and share a specific structure, since
they both depend, by construction, on W1 and W2. The MM
framework can readily handle this specificity, and the details
are skipped for brevity.

B. Experimental setup

In this section we report evaluation results for both the soft
coupling algorithm, corresponding to Equation (13), and the
hard coupling algorithm obtained by enforcing the constraint
Hl = Hr.

We consider the publicly available Signal Separation Eval-
uation Campaign (SiSEC) 2011 noisy speech development
dataset [34]. This dataset is made up of mixtures of speech
and real-world background noise; the background noise is
recorded in three different environments (subway, cafeteria
and square), and recordings are made with varying positions
of the microphones. We use only the stereophonic mixtures,
made up of two sources (speech and noise), and recorded with
two sensors, which leaves us with ten recordings3. Though
the hyperparameter δ and the number of components K are
optimized with the available data, the use of the development

dataset ensures a fair comparison with other algorithms.
After the source separation, the sources are reconstructed

with a standard Wiener filtering, and we compute the resulting
Signal to Distortion Ratio (SDR) for each source, using
the evaluation script given for the 2011 Signal Separation
Evaluation Campaign [35]. This gives 20 scores that can be
compared4 to the algorithms that processed exactly the same
data during the campaign. Three algorithms are available, these
algorithms will simply be denoted by algorithm 5, algorithm
6 and algorithm 8, to keep the notations used online.

C. Results

The tests are made as follows: the algorithms corresponding
to soft and hard coupling are randomly initialized 25 times.
Among these 25 runs, we keep the “best” run, corresponding
to the initialization leading to the lowest value of the optimized
objective function. This process is repeated for different values
of K (8, 15, 25) both for the soft and the hard coupling
algorithms. It is also repeated for different values of δ (0.01,
0.1, 1 and 10) for the soft coupling algorithm. We then retain
the parameters that give the best results in terms of average
SDR, which is possible because we use the development set.

3dev_Ca1_Ce_A, dev_Ca1_Ce_B, dev_Ca1_Co_A, dev_Ca1_Co_B,
dev_Sq1_Ce_A, dev_Sq1_Ce_B, dev_Sq1_Co_A, dev_Sq1_Co_B,
dev_Su1_Ce_A and dev_Su1_Ce_B.

4Results are available online:
http://www.irisa.fr/metiss/SiSEC11/noise/results_dev.html.

This way, we obtain K = 15 and δ = 1. The results for these
values are summarized in Table IV: the SDR are averaged
over the 20 computed scores, and the third column refers to
the proportion of results for which a given algorithm offers
the best solution.

We can immediately draw two conclusions: firstly, both
algorithms perform reasonably well compared to existing
solutions, even though the best results are achieved by al-
gorithm 8. Secondly, the soft coupling algorithm yields a
slight improvement over the hard coupling algorithm. We can
interpret this improvement as follows: the flexibility of the soft
coupling algorithm has been used to relax an hypothesis made
by the hard coupling algorithm. With the right parameters,
the soft coupling consequently models more accurately the
behavior of the sources in each channel, and leads to a better
separation.

Algorithm Average SDR (dB) Best result

Hard coupling 3,2 5/20
Soft coupling 3,7 5/20
Algorithm 5 3,3 4/20
Algorithm 6 3,2 1/20
Algorithm 8 4,2 5/20

Table IV
RESULTS FOR AN “UNASSISTED” SOURCE-SEPARATION TASK.

It should be noted that the flexibility of the soft coupling
algorithm is not optimally exploited while fixing once and for
all the hyper-parameter δ. When it comes to source separation,
we can imagine situations where a sound engineer can select
the best value specifically for each recording, or where an
automatic setting is used: although the dataset is not wide
enough to conclude definitely, it seems that low values of δ
are better-suited for large reverberant recording environments.
This would not be possible with the hard coupling algorithm,
since this algorithm offers no way to control the coupling.

VII. CONCLUSIONS

The soft co-factorization paradigm introduced in this paper
is suitable to address the numerous problems where two (or
more) modalities or data channels are assumed to be related
through similar factors. It is able to leverage the dependencies
that exist among the related parallel streams of data being
analyzed while accounting for possible local discrepancies,
essentially by relaxing the too rigid constraint that common

factors are imposed. This paradigm can be instantiated using
many different measures of fit and coupling penalties, and
algorithms can be readily built for the most classic ones
following the process presented in Section III. Depending on
the nature of the problem, the setting of one or two hyper-
parameters is required, which is a difficulty but proves to be
useful when it comes to adapting the model to a particular
configuration.

The multiple possible choices offer full control over the
relationship that one wants to model (as was illustrated using
synthetic data). The soft co-factorization paradigm is there-
fore very generic, and can easily apply to every situation
where the common factor assumption cannot be made and
where an explicit modeling of the differences between related

http://www.irisa.fr/metiss/SiSEC11/noise/results_dev.html
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factors would be complex. To illustrate this potential, we
have addressed two challenging applications, namely source
separation and multimodal speaker diarization. In both cases,
we rapidly obtained reasonable results using our soft coupling
paradigm.

Further work could consist in examining to what extent the
proposed method could be adapted in a probabilistic frame-
work and brought closer to [36], [37], which modeled other
type of dependencies between modalities in a probabilistic
fashion.

APPENDIX

We present here the equations and the algorithm to solve (3)
with a Kullback-Leibler divergence and a ℓ2 coupling term.

A. Minimization w.r.t. H1 and H2

Adding the coupling term to the auxiliary function given
in Table I for the Kullback-Leibler divergence, and taking
derivatives w.r.t. hq,kn q ∈ {1, 2}, for hq,kn > 0, we get
the following system of equations, canceling the derivatives:

{

−ψ1,kn

h1,kn
+ λ1,k − 2δskλ1,kλ2,kh2,kn + 2δλ2

1,kh1,kn = 0
−ψ2,kn

h2,kn
+ λ2,k − 2δskλ1,kλ2,kh1,kn + 2δs2kλ

2
2,kh2,kn = 0

(14)
These quadratic equations can be solved in closed form w.r.t.
h1,kn (resp. h2,kn); the unique positive solution corresponds
to the update rule.

B. Minimization w.r.t. W1 and W2

Auxiliary functions can be found w.r.t. W1 and W2 as w.r.t.
H1 and H2. We use the notation Θq to designate the matrix
with coefficients θq,fk, where:











θq,fk = wq,fk

(

∑

n

hq,kn

(

vq,fn∑

n
wq,fkhq,kn

))

σq,k =
∑

n

hq,kn

With the coupling term added to the auxiliary function, we get
the following system of equations, canceling the derivatives:











































−θ1,fk

w1,fk
+ σ1,k+

2δ
∑

n

h1,kn

((

∑

p

w1,pk

)

h1,kn − skλ2,kh2,kn

)

= 0

−θ2,fk

w2,fk
+ σ2,k+

2δ
∑

n

skh2,kn

((

∑

p

w2,pk

)

skh2,kn − λ1,kh1,kn

)

= 0

Considering these equations for f1 6= f2, one obtains:

wq,f1k =
wq,f2kθq,f1k

θq,f2k
, q ∈ {1, 2} . (15)

We can therefore rewrite the system as:














































−θ1,fk

w1,fk
+ σ1,k − 2δskλ2,k

∑

n

h1,knh2,kn

+2δw1,fk

(

∑

p

θ1,pk
θ1,fk

)

(

∑

n

h2
1,kn

)

= 0

−θ2,fk

w2,fk
+ σ2,k − 2δskλ1,k

∑

n

h1,knh2,kn+

+2δs2kw2,fk

(

∑

p

θ2,pk
θ2,fk

)

(

∑

n

h2
2,kn

)

= 0

(16)

These separable quadratic equations can be solved in closed
form w.r.t. w1,fk (resp. w2,fk); the unique positive solution
corresponds to the update rule.

C. Algorithm

Algorithm 1 KL-NMF with soft ℓ2-coupling
do

• update S according to equation (4)
• update H1 and H2 according to equation (14)
• compute one row of W1 according to equation (16)
• deduce other rows using Θ1 and equation (15)
• do the same for W2 and Θ2

until convergence
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