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Equation numbers refer to those in the main paper. All equations here are appended with an A-.

1 Connection to group LASSO and reweighted `1-minimization

In this section, we comment on how the λ-optimized cost function C(W,H) in (21) is related to group
LASSO [1] and reweighted `1-minimization [2]. By using Lagrange multiplers, it can be shown that the
optimization of C(W,H) over H is equivalent to the following non-convex minimization problem over H:

minimize
H

∑
k

log(f(wk) + f(hk) + b))

subject to H ≥ 0, Dβ(V|WH) ≤ δ (A-1)

The equivalence can be formalized as follows: For a particular c in (21), there is a corresponding δ > 0 in the
optimization in (A-1). We focus on `1-ARD where f(x) = ‖x‖1. Then the objective is concave in H. One
natural way to solve (A-1) iteratively is to use an MM procedure by upper bounding the objective function
with its tangent (first-order Taylor expansion) at the current iterate H. This yields the following convex
program

minimize
H

∑
k,n

hkn∑
f wfk +

∑
n′ h̃kn′ + b

subject to H ≥ 0, Dβ(V|WH) ≤ δ (A-2)

The notation h̃kn denotes the parameter hkn at the previous iteration. Note that if β = 2, Dβ(V|WH) is
(one-half) the square of the Frobenius norm of V−WH and so the optimization problem in (A-2) is in fact
a quadratically-constrained `1-minimization problem, which can be solved efficiently. Furthermore, defining
the weights

θk ,
1∑

f wfk +
∑
n′ h̃kn′ + b

, (A-3)

we see that the objective function in (A-2) is
∑
k θk

∑
n hkn. This linear combination in the objective

reinforces that wk and hk are intimately tied together; if ‖wk‖1 is small, then weight assigned to the entire
kth row of H, namely θk, would be large. This penalizes the kth row of H heavily, thus forcing its `1 norm
to go toward zero at the next iteration. Note that this is also the intuition and interpretation behind the
success of the reweighted `1-minimization by Candès et al. [2]. However, for our Bayesian model, only K
distinct weights (the θk’s) are required for the KN elements in H. Each row of H (a group) is assigned a
single weight θk and all the elements in a particular row of H are penalized equally, while different rows are
penalized differently. As in group Lasso [1], this has the effect of sparsifying the matrix H row-wise (and the
matrix W column-wise).
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2 Detailed derivation of `1-ARD for β-NMF

In this algorithm, we assume that W and H have Exponential priors as in (13) and thus, the regularizer can
be expressed as

R1(H) ,
∑
k

1

λk
f(hk) =

∑
kn

1

λk
hkn. (A-4)

We will derive the updates for two separate cases: β < 1 and β ≥ 1. For β < 1, we do not need to modify
the auxiliary function F (H|H̃) , G(H|H̃) +R1(H) to get a simple update rule. Indeed, for this case, it can
be seen from Table 1 that

F (H|H̃) =
∑
kn

hkn

(
1

φ
qkn +

1

λk

)
− pknh̃kn
φ(β − 1)

(
hkn

h̃kn

)β−1

. (A-5)

Differentiating F (H|H̃) w.r.t. hkn and setting the result to zero yields the update rule

hkn = h̃kn

(
pkn

qkn + φ/λk

)1/(2−β)

. (A-6)

Note that the exponent 1/(2− β) corresponds to the β < 1 case in the definition of γ(β) in (11). For β ≥ 1,
we need to leverage on Lemma 1. Setting ν = hkn/h̃kn in Lemma 1, we can conclude that for β ≥ 1,

hkn

h̃kn
− 1 ≤ 1

β

[(
hkn

h̃kn

)β
− 1

]
. (A-7)

In other words,

1

λk
hkn ≤

1

βλk
h̃kn

(
hkn

h̃kn

)β
+ cst. (A-8)

As in the β ≥ 2 case in `2-ARD, we replace the regularizer R1(H) in (A-4) with the upper bound in (A-8).
Zeroing the gradient of the resulting auxiliary function yields

hkn = h̃kn

(
pkn

qkn + φ/λk

)γ(β)
. (A-9)

We omit the details. We emphasize that the update in (A-9) holds for all β with the exponent γ(β) defined
in (11). Hence, the only difference vis-à-vis the MM update rule for β-NMF in (10) is that there is an
additional 1/λk term in the denominator in (32).

3 Alternative updates for `2-ARD

In this appendix, we provide an alternative set of updates for `2-ARD for the special and important cases
β = 0, 1, 2 without recourse to further upper bounding F (H|H̃) = φ−1G(H|H̃) + R2(H) using another
auxiliary function J(H|H̃). Note that these are not the updates we employ in the actual `2-ARD.

β = 0: In this case, using the definition of G(H|H̃) in Table 1 and R2(H) in (22) yields

F (H|H̃) =
∑
kn

1

φ
qknhkn +

1

φ
pknh̃kn

(
h̃kn
hkn

)
+

1

2λk
h2kn. (A-10)

Note that h̃kn is the estimate of hkn at the previous iteration and pkn and qkn are defined in (9). Finding
the gradient w.r.t. hkn and setting it to zero gives

1

φ
qkn −

1

φ
pkn

(
h̃kn
hkn

)2

+
1

λk
hkn = 0. (A-11)
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Hence, we solve the following cubic equation in hkn:

φ

λk
h3kn + qknh

2
kn − pknh̃2kn = 0. (A-12)

We can check graphically from the signs of the coefficients of the cubic that there always exists a nonnegative
solution to (A-12). In fact, there is either one real positive root or three real roots comprising two negative
roots and one positive root. The positive root is to be chosen.

β = 1: In this case, we have

F (H|H̃) =
∑
kn

1

φ
qknhkn −

1

φ
pknh̃kn log

(
hkn

h̃kn

)
+

1

2λk
h2kn. (A-13)

Hence, doing exactly the same as in the above, we see that minimizer of F (H|H̃) is given by the positive
solution to the following quadratic equation:

φ

λk
h2kn + qknhkn − pknh̃kn = 0. (A-14)

The discriminant q2kn + 4pknφ/λk > 0 so there are two real roots. It can be verified using the quadratic
formula that one of these two roots is positive and the other is negative. Naturally, the positive one is chosen
as the minimizer of F (H|H̃).

β = 2: This case is the simplest since the regularizer R2(H) “fits” nicely with the auxiliary function
G(H|H̃) (both consist of terms linear in h2kn). We have

F (H|H̃) =
∑
kn

1

2φ
qknh̃kn

(
hkn

h̃kn

)2

− 1

φ
pknhkn +

1

2λk
h2kn. (A-15)

Thus, the minimizer of F (H|H̃) is given by the formula:

hkn = pkn

(
qkn

h̃kn
+

φ

λk

)−1

. (A-16)

4 Estimating both a and b using the method of moments

Assume that
vfn ∼ p(vfn|v̂fn) (A-17)

where the density p denotes the noise model governed by the scale parameter β. We have that

E[vfn|v̂fn] = v̂fn (A-18)

var[vfn|v̂fn] = φv̂2−βfn (A-19)

The relation in (A-18) means that
E[vfn] = E[v̂fn] (A-20)

by the law of iterated expectations. Consider the second moment:

E[v2fn|v̂fn] = var[vfn|v̂fn] + E[vfn|v̂fn]2 (A-21)

= φv̂2−βfn + v̂2fn (A-22)

By taking expectations of (A-22) with respect to v̂fn, we have

E(E[v2fn|v̂fn]) = E[φv̂2−βfn + v̂2fn] (A-23)
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Now using the law of iterated expectations and linearity of expectation, the left-hand-side of (A-23) is exactly
E[v2fn], hence we have

E[v2fn] = φE[v̂2−βfn ] + E[v̂2fn] (A-24)

By the law of large numbers, we have that the empirical moments are close to the population moments:

µ̂V :=
1

FN

∑
f,n

vfn ≈ E[vfn] (A-25)

ξ̂V :=
1

FN

∑
f,n

v2fn ≈ E[v2fn] (A-26)

So we can use the empirical moments as proxies for E[vfn] and E[v2fn]. It remains to compute E[v̂2−βfn ] for

β = 0, 1, 2. Clearly, for β = 2, E[v̂2−βfn ] = E[1] = 1. For β = 1, E[v̂2−βfn ] we have

E[v̂fn] =
∑
k

E [wfkhkn] = K E[wfkhkn] (A-27)

for every k = 1, . . . ,K since the random variables gk , wfkhkn are identically distributed. For β = 0,

E[v̂2−βfn ] reduces to the power E[v̂2fn]. We have

E[v̂2fn] = var[v̂fn] + (E[v̂fn])2 (A-28)

By the i.i.d. assumption of the random variables gk = wfkhkn for k = 1, . . . ,K, we have

var[v̂fn] = K var[wfkhkn] = K
(
E[w2

fkh
2
kn]− (E[wfkhkn])2

)
(A-29)

where (A-29) holds for every k = 1, . . . ,K. Thus, using Eq. (A-27),

E[v̂2fn] = K
[
E[w2

fkh
2
kn] + (K − 1)(E[wfkhkn])2

]
. (A-30)

Now, using conditional independence of wfk and hkn given λk and the tower property, we have

E[wfkhkn] = E[E[wfkhkn|λk]] = E [E [wfk|λk]E [hkn|λk]] , (A-31)

and
E[w2

fkh
2
kn] = E[E[w2

fkh
2
kn|λk]] = E[E[w2

fk|λk]E[h2kn|λk]], (A-32)

which remained to be assessed under our specific prior assumptions.

Half Normal model

E [wfk|λk] = E [hkn|λk] =

√
2λk
π

(A-33)

E[w2
fk|λk] = E[h2kn|λk] = λk (A-34)

so

E[wfkhkn] = E
[

2λk
π

]
=

2b

π(a− 1)
(A-35)

E[w2
fkh

2
kn] = E[λ2k] =

b2

(a− 1)(a− 2)
. (A-36)
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As a result, for the Half Normal model, the first moment is

E[v̂fn] =
2Kb

π(a− 1)
=: ψHN(a, b,K), (A-37)

and the second moment is

E[v̂2fn] = K

[
b2

(a− 1)(a− 2)
+ (K − 1)

4b2

π2(a− 1)2

]
(A-38)

=
Kb2

(a− 1)(a− 2)

[
1 +

4(K − 1)(a− 2)

π2(a− 1)

]
=: γHN(a, b,K). (A-39)

Hence, using (A-20) and (A-24), we can estimate a and b as the solutions to the simultaneous equations

µ̂V = ψHN(â, b̂, K), (A-40)

ξ̂V =


(φ+ 1) γHN(â, b̂, K) β = 0

φψHN(â, b̂, K) + γHN(â, b̂, K) β = 1

φ+ γHN(â, b̂, K) β = 2

. (A-41)

Note that if a is fixed as in our experiments, we only need to solve for b in (A-40).

Exponential model

E [wfk|λk] = E [hkn|λk] = λk (A-42)

E[w2
fk|λk] = E[h2kn|λk] = 2λ2k (A-43)

so

E[wfkhkn] = E[λ2k] =
b2

(a− 1)(a− 2)
(A-44)

E[w2
fkh

2
kn] = E[4λ4k] =

4b4

(a− 1)(a− 2)(a− 3)(a− 4)
. (A-45)

As a result, for the Exponential model, the first moment is

E[v̂fn] =
Kb2

(a− 1)(a− 2)
=: ψExp(a, b,K), (A-46)

and the second moment is

E[v̂2fn] = K

[
4b4

(a− 1)(a− 2)(a− 3)(a− 4)
+ (K − 1)

b4

(a− 1)2(a− 2)2

]
(A-47)

=
Kb4

(a− 1)(a− 2)(a− 3)(a− 4)

[
4 +

(K − 1)(a− 3)(a− 4)

(a− 1)(a− 2)

]
=: γExp(a, b,K). (A-48)

Hence, using (A-20) and (A-24), we can estimate a and b as the solutions to the simultaneous equations

µ̂V = ψExp(â, b̂, K), (A-49)

ξ̂V =


(φ+ 1) γExp(â, b̂, K) β = 0

φψExp(â, b̂, K) + γExp(â, b̂, K) β = 1

φ+ γExp(â, b̂, K) β = 2

. (A-50)

Note that if a is fixed as in our experiments, we only need to solve for b in (A-49).
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