An analytical decomposition of trust in terms of mental attitudes
(work in progress)

Robert Demolombe1

1Institut de Recherche en Informatique de Toulouse

June 2012
Assumption (à la Castelfranchi et al.): the truster believes that \textbf{if} he has some particular goal, \textbf{then} this goal will be reached

Analysis of possible supports for trust:

- Empirical
 - truster’s observations
 - information from trusted sources
- Analytical
 - trust in something can be supported by trust in other things
Objective of this work: systematic analysis of the possible social relationships between the truster and the trustees

Method:

- formalization in modal logic
- no analysis of the logical properties of the involved modalities: belief, action, intention, obligation, ...
- trust has the form of conditional properties
Modalities and operators

\[\phi \Rightarrow \psi : \phi \text{ entails } \psi \]
\[Bel_i \phi : i \text{ believes } \phi \]
\[Goal_i \phi : i \text{'s goal is } \phi \]
\[Attempt_i \phi : i \text{ attempts to bring it about that } \phi \]
\[Int_i \phi : i \text{'s intention is to bring it about that } \phi \]
\[Obg \phi : \text{it is obligatory that } \phi \]
\[Forb \phi : \text{it is forbidden that } \phi \]
\[Forb \phi \overset{\text{def}}{=} Obg \neg \phi \]
\[Ask_{i,j} \phi : i \text{ asks } j \text{ to bring it about that } \phi \]
\[Commit_i (\phi \mid \psi) : i \text{ has committed himself to bring it about that } \phi \]
\[\text{if } \psi \text{ holds} \]
\[\square \phi : \phi \text{ holds now and always in the future} \]
\[\Diamond \phi : \phi \text{ will hold at some moment in the future} \]
\[\Diamond \phi \overset{\text{def}}{=} \neg \square \neg \phi \]
Logical properties

Bel_i obeys a K system

Properties of the conditionals (sufficient)

(EQUIV) Si ⊢ φ ↔ φ' et ⊢ ψ ↔ ψ', alors ⊢ (φ → ψ) → (φ' → ψ')

(PROPG) (φ_1 ∧ φ_2 ⇒ φ_3) → (φ_1 ∧ φ_2 ⇒ φ_1 ∧ φ_3)

(TRANS) (φ_1 ⇒ φ_2) ∧ (φ_2 ⇒ φ_3) → (φ_1 ⇒ φ_3)

(DIST) (φ_1 ∧ (φ_1 ⇒ φ_2) ∧ ψ) ⇒ (φ_2 ∧ ψ)

(MATIMP) (φ ⇒ ψ) → (φ → ψ)
Initial form of trust

i’s goal: to reach a state of affairs

Example: *i* believes that if he has no cash ($\neg \phi$) and his goal is to get cash ($\Diamond \phi$), then he will get cash ($\Diamond \phi$)

(F1) $Bel_i(\neg \phi \land Goal; \Diamond \phi \Rightarrow \Diamond \phi)$
Initial form of trust

i’s goal: to reach a state of affairs
Example: i believes that if he has no cash (¬φ) and his goal is to get cash (◊φ), then he will get cash (◊φ)
(F1) Bel; (¬φ ∧ Goal; ◊φ ⇒ ◊φ)

i’s goal: to maintain a state of affairs
Example: i believes that if his car works well (φ) and his goal is that it still works well (□φ), then it still works well (□φ)
(M1) Bel; (φ ∧ Goal; □φ ⇒ □φ)
Analysis of trust support
to reach
If there is some agent j who holds some property $Prop(j, \phi)$ such that:
(F2) $Bel_i((\neg \phi \land Goal_i \diamond \phi \Rightarrow \exists j Prop(j, \phi)) \land (\exists j Prop(j, \phi) \Rightarrow \diamond \phi))$
(F2) is a support for (F1)
(F1) $Bel_i((\neg \phi \land Goal_i \diamond \phi \Rightarrow \diamond \phi)$
because (F2) entails (F1)
Analysis of trust support
to reach
If there is some agent j who holds some property $Prop(j, \phi)$ such that:
(F2) $Bel_i((\neg \phi \land Goal_i \land \phi \Rightarrow \exists j Prop(j, \phi)) \land (\exists j Prop(j, \phi) \Rightarrow \Diamond \phi))$
(F2) is a support for (F1)
(F1) $Bel_i(\neg \phi \land Goal_i \land \phi \Rightarrow \Diamond \phi)$
because (F2) entails (F1)
to maintain
If there is no agent who holds some property $Prop'(j, \phi)$ such that:
(M2) $Bel_i((\phi \land Goal_i \land \Box \phi \Rightarrow \neg \exists j Prop'(j, \phi)) \land (\neg \exists j Prop'(j, \phi) \Rightarrow \Box \phi))$
(M2) is a support for (M1)
i’s assumption: the only way to change ϕ is that there is an agent j
such that $Prop'(j, \phi)$
Trust in ability

(F2) \(Bel_i((\neg \phi \land Goal_i \Diamond \phi \Rightarrow \exists j Prop(j, \phi)) \land (\exists j Prop(j, \phi) \Rightarrow \Diamond \phi)) \)

Ability

\(Able_j \phi \overset{\text{def}}{=} \text{Attempt}_j \phi \Rightarrow \Diamond \phi \)

Trust in ability: \(Bel_i \text{Able}_j \phi \)

\(Prop_1(j, \phi) \overset{\text{def}}{=} \text{Attempt}_j \phi \land (\text{Attempt}_j \phi \Rightarrow \Diamond \phi) \)
Trust in ability

(F2) $Bel_i((\neg \phi \land Goal_i \Diamond \phi \Rightarrow \exists j Prop(j, \phi)) \land (\exists j Prop(j, \phi) \Rightarrow \Diamond \phi))$

Ability

$Able_j \phi \overset{\text{def}}{=} Attempt_j \phi \Rightarrow \Diamond \phi$

Trust in ability: $Bel_i Able_j \phi$

$Prop_1(j, \phi) \overset{\text{def}}{=} Attempt_j \phi \land (Attempt_j \phi \Rightarrow \Diamond \phi)$

i’s belief:

$\exists j (Attempt_j \phi \land Able_j \phi) \Rightarrow \Diamond \phi$

If $Prop(j, \phi)$ is $Prop_1(j, \phi)$, (F2) holds
Trust in ability

\[(M2)\]
\[\text{Bel}_i((\phi \land \text{Goal}_i \Box \phi \Rightarrow \neg \exists j \text{Prop}'(j, \phi)) \land (\neg \exists j \text{Prop}'(j, \phi) \Rightarrow \Box \phi))]\]

Ability

\[\text{Prop}'_1(j, \phi) \overset{\text{def}}{=} \text{Attempt}_j \neg \phi \land (\text{Attempt}_j \neg \phi \Rightarrow \Diamond \neg \phi)\]
Trust in ability

(M2)
\[Bel_i((\phi \land \text{Goal}_i \square \phi \Rightarrow \neg \exists j \text{Prop'}(j, \phi)) \land (\neg \exists j \text{Prop'}(j, \phi) \Rightarrow \square \phi)) \]

Ability

\[\text{Prop'}_1(j, \phi) \overset{\text{def}}{=} \text{Attempt}_j \neg \phi \land (\text{Attempt}_j \neg \phi \Rightarrow \Diamond \neg \phi) \]

Logical properties:
\[\vdash \exists j \text{Prop'}_1(j, \phi) \rightarrow \Diamond \neg \phi \]
\[\vdash \square \phi \rightarrow \neg \exists j \text{Prop'}_1(j, \phi) \]

i’s belief:
\[\neg \exists j(\text{Attempt}_j \neg \phi \land \text{Able}_j \neg \phi) \Rightarrow \square \phi \]

If \text{Prop'}(j, \phi) is \text{Prop'}_1(j, \phi), (M2) holds
Active

j’s intention triggers j’s action

\[\text{Active}_j \phi \overset{\text{def}}{=} \text{Int}_j \phi \Rightarrow \text{Attempt}_j \phi \]

\[\text{Prop}_2(j, \phi) \overset{\text{def}}{=} \text{Int}_j \phi \land (\text{Int}_j \phi \Rightarrow \text{Attempt}_j \phi) \land \text{Able}_j \phi \]
Active

j’s intention triggers j’s action

\[Active_j \phi \overset{\text{def}}{=} Int_j \phi \rightarrow \text{Attempt}_j \phi \]

\[Prop_2(j, \phi) \overset{\text{def}}{=} Int_j \phi \land (Int_j \phi \Rightarrow \text{Attempt}_j \phi) \land \text{Able}_j \phi \]

Logical property:

\[\vdash \exists j Prop_2(j, \phi) \rightarrow \Diamond \phi \]

i’\'s belief:

\[\exists j (Int_j \phi \land Active_j \phi \land \text{Able}_j \phi) \Rightarrow \Diamond \phi \]
Active

\[Prop'_2(j, \phi) \overset{\text{def}}{=} \text{Int}_j \neg \phi \land (\text{Int}_j \neg \phi \Rightarrow \text{Attempt}_j \neg \phi) \land \text{Able}_j \neg \phi \]

Logical property:
\[\vdash \exists j Prop'_2(j, \phi) \rightarrow \Diamond \neg \phi \]

i’s belief:
\[\neg \exists j (\text{Int}_j \neg \phi \land \text{Active}_j \neg \phi \land \text{Able}_j \neg \phi) \Rightarrow \Box \phi \]
Intention adoption
Norms fulfillment
To achieve
If j believes that he is obliged to do something, then he intends to do that thing
\[
\text{Obey}_j \phi \overset{\text{def}}{=} \text{Bel}_j \text{OblInt}_j \phi \Rightarrow \text{Int}_j \phi
\]
\[
\text{Prop}_{3.1}(j, \phi) \overset{\text{def}}{=} \text{Bel}_j \text{OblInt}_j \phi \land (\text{Bel}_j \text{OblInt}_j \phi \Rightarrow \text{Int}_j \phi) \land \\
\text{Active}_j \phi \land \text{Able}_j \phi
\]
Intention adoption
Norms fulfillment
To achieve
If \(j \) believes that he is obliged to do something, then he intends to do that thing

\[
\text{Obey}_j \phi \overset{\text{def}}{=} \text{Bel}_j \text{OblInt}_j \phi \Rightarrow \text{Int}_j \phi
\]

\[
\text{Prop}_{3.1}(j, \phi) \overset{\text{def}}{=} \text{Bel}_j \text{OblInt}_j \phi \land (\text{Bel}_j \text{OblInt}_j \phi \Rightarrow \text{Int}_j \phi) \land \text{Active}_j \phi \land \text{Able}_j \phi
\]

Logical property:
\(\vdash \exists j \text{Prop}_{3.1}(j, \phi) \rightarrow \lozenge \phi \)

\(i \)'s belief:
\(\exists j (\text{OblInt}_j \phi \land \text{Obey}_j \phi \land \text{Active}_j \phi \land \text{Able}_j \phi) \Rightarrow \lozenge \phi \)
Norms fulfillment and institutional power

If i asks j to bring it about that ϕ, then j believes that it is obligatory that he adopts the intention to bring it about that ϕ

Example: policeman i asks j to stop his car

$$\text{InstPower}_{i,j}\phi \overset{\text{def}}{=} \text{Ask}_{i,j}\phi \Rightarrow \text{Bel}_j\text{OblInt}_j\phi$$

$$\text{Prop}_{4.1}(j, \phi) \overset{\text{def}}{=} \text{Ask}_{i,j}\phi \land (\text{Ask}_{i,j}\phi \Rightarrow \text{Bel}_j\text{OblInt}_j\phi) \land \text{Obey}_j\phi \land \text{Active}_j\phi \land \text{Able}_j\phi$$
Norms fulfillment and institutional power
If \(i \) asks \(j \) to bring it about that \(\phi \), then \(j \) believes that it is obligatory that he adopts the intention to bring it about that \(\phi \)
Example: policeman \(i \) asks \(j \) to stop his car
\[
\text{InstPower}_{i,j}\phi \overset{\text{def}}{=} \text{Ask}_{i,j}\phi \Rightarrow \text{Bel}_j\text{OblInt}_j\phi
\]
\[
\text{Prop}_{4.1}(j,\phi) \overset{\text{def}}{=} \text{Ask}_{i,j}\phi \land (\text{Ask}_{i,j}\phi \Rightarrow \text{Bel}_j\text{OblInt}_j\phi) \land \text{Obe}_{j}\phi \land \text{Act}_{i}\phi \land \text{Able}_{j}\phi
\]
Logical property:
\[
\vdash \exists j\text{Prop}_{4.1}(j,\phi) \rightarrow \diamond \phi
\]
i’s belief:
\[
\exists j(\text{Ask}_{i,j}\phi \land \text{Obe}_{j}\phi \land \text{InstPower}_{i,j}\phi \land \text{Act}_{i}\phi \land \text{Able}_{j}\phi) \Rightarrow \diamond \phi
\]
Norms fulfillment
To maintain

\[Prop'_{3.1}(j, \phi) \overset{\text{def}}{=} Bel_j \neg \text{ObgInt}_j \neg \phi \land (Bel_j \neg \text{ObgInt}_j \neg \phi \Rightarrow \text{Int}_j \neg \phi) \land \]
\[\text{Active}_j \neg \phi \land \text{Able}_j \neg \phi \]
Norms fulfillment
To maintain
\[\text{Prop}'_{3.1}(j, \phi) \overset{\text{def}}{=} \text{Bel}_j \text{OblInt}_j \neg \phi \land (\text{Bel}_j \text{OblInt}_j \neg \phi \Rightarrow \text{Int}_j \neg \phi) \land \text{Active}_j \neg \phi \land \text{Able}_j \neg \phi \]
Logical property:
\[\vdash \exists j \text{Prop}'_{3.1}(j, \phi) \rightarrow \lozenge \neg \phi \]
\(i\)'s belief:
\[\neg \exists j (\text{Bel}_j \text{OblInt}_j \neg \phi \land \text{Obey}_j \neg \phi \land \text{Active}_j \neg \phi \land \text{Able}_j \neg \phi) \Rightarrow \Box \phi \]
\[\neg \exists j \text{Prop}'_{3.1}(j, \phi) : \text{no agent who fulfills the norms believes that} \]
\(\text{ObglInt}_j \neg \phi \)
\[\text{Prop}''_{3.1}(j, \phi) \overset{\text{def}}{=} \text{Bel}_j \text{ForbInt}_j \neg \phi \land (\text{Bel}_j \text{ForbInt}_j \neg \phi \Rightarrow \text{Int}_j \neg \phi) \land \text{Active}_j \neg \phi \land \text{Able}_j \neg \phi \]
\[\neg \exists j \text{Prop}'_{3.1}(j, \phi) : \text{no agent who violates the norms believes that} \]
\(\text{ForbInt}_j \neg \phi \)
Contract
To achieve
If i asks to a taxi driver j to commit himself to bring i at the airport in a context where i commits himself to pay the taxi driver, then the taxi driver j adopts the intention to bring i at the airport

$\text{Contract}_{i,j}(\phi, \psi) \overset{\text{def}}{=} \text{Ask}_{i,j}\text{Commit}_j(\phi \mid \text{Commit}_i\psi) \Rightarrow \text{Int}_j\phi$

$\text{Prop}_{3.2}(j, \phi) \overset{\text{def}}{=} \text{Ask}_{i,j}\text{Commit}_j(\phi \mid \text{Commit}_i\psi) \land$

$(\text{Ask}_{i,j}\text{Commit}_j(\phi \mid \text{Commit}_i\psi) \Rightarrow \text{Int}_j\phi) \land$

$\text{Active}_j\phi \land \text{Able}_j\phi$
Contract

To achieve

If i asks to a taxi driver j to commit himself to bring i at the airport in a context where i commits himself to pay the taxi driver, then the taxi driver j adopts the intention to bring i at the airport

$Contract_{i,j}(\phi, \psi) \overset{\text{def}}{=} \text{Ask}_{i,j}\text{Commit}_j(\phi \mid \text{Commit}_i\psi) \Rightarrow \text{Int}_j\phi$

$Prop_{3.2}(j, \phi) \overset{\text{def}}{=} \text{Ask}_{i,j}\text{Commit}_j(\phi \mid \text{Commit}_i\psi) \land$

$(\text{Ask}_{i,j}\text{Commit}_j(\phi \mid \text{Commit}_i\psi) \Rightarrow \text{Int}_j\phi) \land$

$Active_j\phi \land Able_j\phi$

Logical property:

$\vdash \exists j Prop_{3.2}(j, \phi) \rightarrow \Diamond \phi$

i’s belief:

$\exists j(\text{Ask}_{i,j}\text{Commit}_j(\phi \mid \text{Commit}_i\psi) \land Contract_{i,j}(\phi, \psi) \land Active_j\phi \land Able_j\phi) \Rightarrow \Diamond \phi$
To maintain

\[
\begin{align*}
\text{Prop}_3.2(j, \phi) & \overset{\text{def}}{=} \exists k (\text{Ask}_{j,k} \text{Commit}_k (\neg \phi \mid \text{Commit}_j \psi) \land \\
& (\text{Ask}_{j,k} \text{Commit}_k (\neg \phi \mid \text{Commit}_j \psi) \Rightarrow \text{Int}_k \neg \phi) \land \\
& \text{Active}_k \neg \phi \land \text{Able}_k \neg \phi
\end{align*}
\]

Example: i’s goal is not be killed and j asks to some mafia member to kill i
To maintain

\[Prop'_{3.2}(j, \phi) \overset{\text{def}}{=} \exists k (\text{Ask}_{j,k} \text{Commit}_k(\neg \phi \mid \text{Commit}_j \psi) \land \text{Active}_k \neg \phi \land \text{Able}_k \neg \phi) \]

Example: \(i \)'s goal is not be killed and \(j \) asks to some mafia member to kill \(i \)

Logical property:

\[\vdash \exists j Prop'_{3.2}(j, \phi) \rightarrow \Diamond \neg \phi \]

\(i \)'s belief:

\[\neg \exists j Prop'_{3.2}(j, \phi) \rightarrow \Box \phi \]
Altruism
If j believes that i’s goal is ϕ, then j adopts the intention to bring it about that ϕ
Example: i is an old man who wants to find some help to cross the road and j is aware of i’s goal

$Altruis_{j,i}\phi \overset{\text{def}}{=} Bel_j(\neg \phi \land \text{Goal}_i \diamond \phi) \Rightarrow Int_j \phi$

$Prop_{3.3}(j, \phi) \overset{\text{def}}{=} Bel_j(\neg \phi \land \text{Goal}_i \diamond \phi) \land$

$(Bel_j(\neg \phi \land \text{Goal}_i \diamond \phi) \Rightarrow Int_j \phi) \land$

$Active_{j} \phi \land Able_{j} \phi$
Altruism

If j believes that i’s goal is ϕ, then j adopts the intention to bring it about that ϕ

Example: i is an old man who wants to find some help to cross the road and j is aware of i’s goal

$Altruis_{ij}\phi \overset{\text{def}}{=} Bel_j(\neg \phi \land \text{Goal}_i \Diamond \phi) \Rightarrow Int_j \phi$

$Prop_{3.3}(j, \phi) \overset{\text{def}}{=} Bel_j(\neg \phi \land \text{Goal}_i \Diamond \phi) \land$

$(Bel_j(\neg \phi \land \text{Goal}_i \Diamond \phi) \Rightarrow Int_j \phi) \land$

$Active_j \phi \land Able_j \phi$

Logical property:

$\vdash \exists j Prop_{3.3}(j, \phi) \rightarrow \Diamond \phi$

i’s belief:

$\exists j (Bel_j(\neg \phi \land \text{Goal}_i \Diamond \phi) \land Altruis_{ij}\phi \land Active_j \phi \land Able_j \phi) \Rightarrow \Diamond \phi$

i believes that if there is some altruist agent, his goal ϕ will be reached
Perversion

\[Pervert_{j,i}\phi \stackrel{\text{def}}{=} Bel_j(\neg\phi \land \text{Goal}_i \diamond \phi) \Rightarrow Int_j \neg\phi \]

\[j \text{ intends to prevent } i \text{ to reach his goal} \]

\[Prop'_{3.3}(j, \phi) \stackrel{\text{def}}{=} Bel_j(\neg\phi \land \text{Goal}_i \diamond \phi) \land \]

\[(Bel_j(\neg\phi \land \text{Goal}_i \diamond \phi) \Rightarrow Int_j \neg\phi) \land \]

\[\text{Active}_j \neg\phi \land \text{Able}_j \neg\phi \]
Perversion

\[\text{Pervert}_{j,i} \phi \overset{\text{def}}{=} \text{Bel}_j(\neg \phi \land \text{Goal}_i \diamond \phi) \Rightarrow \text{Int}_j \neg \phi \]

\(j \) intends to prevent \(i \) to reach his goal

\[\text{Prop}^{'}_{3.3}(j, \phi) \overset{\text{def}}{=} \text{Bel}_j(\neg \phi \land \text{Goal}_i \diamond \phi) \land \]
\[(\text{Bel}_j(\neg \phi \land \text{Goal}_i \diamond \phi) \Rightarrow \text{Int}_j \neg \phi) \land \]

\(\text{Active}_j \neg \phi \land \text{Able}_j \neg \phi \)

Logical property:

\[\vdash \exists j \text{Prop}^{'}_{3.3}(j, \phi) \rightarrow \diamond \neg \phi \]

\(i \)'s belief:

\[\neg \exists j (\text{Bel}_j(\neg \phi \land \text{Goal}_i \diamond \phi) \land \text{Pervert}_{j,i} \phi \land \text{Active}_j \neg \phi \land \text{Able}_j \neg \phi) \Rightarrow \diamond \phi \]

\(i \) believes that if there is no pervert agent the state of affairs \(\phi \) will be maintained
Summary

Initial trust definition:

- to reach a state of affairs
- to maintain a state of affairs

Analysis of possible trust supports:

- Action and ability
- Intention and "activeness"
 - Obligation and obedience (norms fulfillment)
 - Request and contract fulfillment (mutual interest)
 - Altruism

Duality: to reach vs to maintain

- there is a "good" agent
- there is no "bad" agent
Formalization
The proposed axiomatic of conditionals is sufficient to prove that each property $Prop_1$, $Prop_2$, $Prop_3$, ... logically entails $Prop$