Kripke's World

An introduction to modal logics via tableau systemss

O. Gasquet, A. Herzig, B. Saïd, F. Schwarzentruber

Institut de Recherche en Informatique de Toulouse - IRIT Université de Toulouse http://www.irit.fr/Lotrec

UNILOG 2010

Background: logic and reasoning

- Classical propositional logic (CPL)
 - satisfiability problem decidable: NP-complete
 - reasoning:
 - Hilbert-style axiomatics, natural deduction
 - Gentzen sequent systems, tableaux
 - resolution
 - heuristic search: many SAT solvers
- Classical predicate logic
 - satisfiability problem semi-decidable
 - reasoning:
 - resolution [OTTER, SPASS, etc.]
- Higher-order logic
 - undecidable
 - reasoning:
 - Proof assistants [Isabelle, Coq, etc.]

Background and motivation

Modal logics

- variant: description logics (⇒ semantic web)
- infinitely many logics
- 'surprisingly often decidable'
 - NP < PSPACE < EXPTIME < NEXPTIME < EXPSPACE

reasoning:

- Hilbert-style axiomatics, natural deduction
- Gentzen sequent systems
- resolution [Fariñas 83]
- translation to FOL and resolution [Fariñas and Herzig 88, Ohlbach 88; MSPASS]
- methods based on SAT solvers for CPL [K-SAT, etc.]
- Tableaux

Idea: step-by-step introduction to modal logics via tableaux

From Tarski's World to Kripke's World

Tarski's World: introduction to predicate logic

- examples = scenarios from geometry
- book + program
- Kripke's World: introduction to modal logics
 - examples = modal logics
 - reasoning = try to construct models = tableaux
 - program: LoTREC, http://www.irit.fr/Lotrec
 - book to come

Outline

Part 1: Theory

- 1 Modal logics
- 2 Reasoning problems

Part 2: Practice

3 LoTREC

4 Implementing logics

Part 1: Theory

1 Modal logics

- Possible worlds models
- Classes of models
- Language
- Semantics

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Outline

1 Modal logics

Possible worlds models

- Classes of models
- Language
- Semantics

- Validity and satisfiability in a class of models
- Outline of the tableaux method

What is a Kripke model?

- Possible worlds
 - $= \mathsf{node}$
 - = states
- Valuation
 - = labeling function
 - = interpretation
- Accessibility relation
 - = labeled edges
 - = transitions
- Model
 - = labeled graph
 - = transition system

Language

Kripke Model

Given: a set \mathcal{P} (propositional variables) and a set \mathcal{I} (indexes):

- $\bullet M = (W, R, V)$
 - W: nonempty set • $R: \mathcal{I} \longrightarrow 2^{W \times W}$ • $V: W \longrightarrow 2^{\mathcal{P}}$

set of possible worlds accessibility relation valuation function

Pointed model (M, w)where $w \in W$ is the actual world

Readings of *R*

- Alethic:
 - wRu iff u is possible given the actual world w
- Temporal:
 - wRu iff u is in the future of w
- Epistemic:
 - $wR_I u$ iff *u* is possible for agent *I* at actual world *w*
- Deontic:
 - wRu iff u is an ideal counterpart of the actual world w
- Dynamic:
 - $wR_I u$ iff u is a possible result of the execution of the program / action I in w

Readings of $R \implies$ Properties of R

Readings of *R*

- Alethic:
 - wRu iff u is possible given the actual world w
- Temporal:
 - wRu iff u is in the future of w
- Epistemic:
 - $wR_I u$ iff *u* is possible for agent *I* at actual world *w*
- Deontic:
 - wRu iff u is an ideal counterpart of the actual world w
- Dynamic:
 - $wR_I u$ iff *u* is a possible result of the execution of the program / action *I* in *w*

Readings of $R \implies$ Properties of R

Defining a model in LoTREC

How to build a graph with two nodes:

- open a new logic (menu 'Logic')
- add a new rule ('Rules' tab):
 - no conditions
 - in the action part:
 - createNewNode w
 - createNewNode u
 - link w u R
 - add w P
- edit the default strategy ('Strategies' tab):
 - call the new rule (double click)

Outline

1 Modal logics

- Possible worlds models
- Classes of models
- Language
- Semantics

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Classes of models

A class of models can be defined by

- constraints on the accessibility relation
- constraints on the valuation
- Applications?
- Mathematical properties?

Constraints on a single relation *R*

Singleton models:
 {*M* : card(*W*) = 1}

Serial

'there is always a future' for all w exists u s.th. wRu

Reflexive

'knowledge implies truth'

Transitive

'future of future is future' 'I know what I know'

- Symmetric
- Euclidian 'I know what I don't know'
- Confluent (Church-Rosser)
- Equivalence
- Universal

. . .

Constraints involving several relations

- **R**_I included in R_J
- $\blacksquare R_I = R_J \cup R_K$
- $R_J = (R_I)^{-1}$
- $\blacksquare R_J = (R_I)^*$
- $\blacksquare R_I \circ R_J = R_J \circ R_I$
- Confluent

(reflexive and transitive closure) (permutation)

...

Constraints on the valuation V

- names for worlds ('nominals'): if $N \in V(w)$ and $N \in V(u)$ then w = u \implies hybrid logic
- *R* is hereditary (atomic propositions persist) if *P* ∈ *V*(*w*) and *wRu* then *P* ∈ *V*(*u*) ⇒ intuitionistic logic

Closing under constraints in LoTREC

- Closing under reflexivity: condition: isNewNode w action: link w w R
- Observe:
 - capital first letter \implies constant small first letter \implies variable
- Exercise: make R hereditary

Outline

1 Modal logics

Possible worlds models

- Classes of models
- Language
- Semantics

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Language

Boolean formulas

- atomic formulas = elements of \mathcal{P} (propositional variables)
- complex formulas: built using the Boolean connectors

$\neg A$	=	"not <i>A</i> "
$A \wedge B$	=	"A and <i>B</i> "
$A \lor B$	=	"A or <i>B</i> "
A ightarrow B	=	"if A then B"
$A\leftrightarrow B$	=	"A if and only if B"
$A \oplus B$	=	"either A or B"
$\oplus(A, B, C)$	=	"either A, or B, or C"

. . .

Language

Modal formulas

Temporal logic

- XA = "A will be true at the*next*time point"
- FA = "A will be true at*some*time point in the future"
 - = "A will eventually be true"
- GA = "A will be true at *every* time point in the future"
 - = "A will be true henceforth"
- AUB = "A until B"
- ASB = "A since B"

Dynamic logic

- After $_{I}A = "A$ will be true after *every possible* execution of program I"
- Feasible $_{I}A = "A$ will be true after *some* execution of program I"

(programs may be nondeterministic)

Modal formulas (ctd.)

• Epistemic and doxastic logic

- $\operatorname{Bel}_I A =$ "agent I believes that A"
- $K_I A =$ "agent I knows that A"
- $\hat{Bel}_I A =$ "it is (doxastically) possible for agent I that A"
- $\hat{\mathrm{K}}_I A$ = "it is (epistemically) possible for agent I that A"

Deontic logic

- $O_I B = "A \text{ is obligatory for } I"$
- $P_I B = "A \text{ is permitted for } I"$
- Intuitionistic logic

 $A \Rightarrow B =$ "A implies B" (like \rightarrow , but no excluded middle)

Conditional logic

 $A \Rightarrow B =$ "A implies B" (\Rightarrow 'stronger' than \rightarrow)

...

"Un pour tous, tous pour un" [A. Dumas]

- An abstraction: necessity and possibility
 - $\Diamond A = MA = "A \text{ is possible"}$
 - $\Box A = LA = "A \text{ is necessary"}$
- Multimodal version:

 $\Diamond_I A = \langle I \rangle A = "A \text{ is possible w.r.t. } I"$ $\Box_I A = [I] A = \dots$ where $I \in \mathcal{I}$ (set of parameters)

Common feature: Not truth-functional

• no f s.th. $truthvalue(\Diamond A) = f(truthvalue(A))$

Duality

- Intuitively: $\hat{K}_{I}A \iff \neg K_{I}\neg A$ $P_{I}A \iff \neg O_{I}\neg A$ $FA \iff \neg G\neg A$ $After_{I}A \iff \neg Feasible_{I}\neg A$...
- Abstracting:
 - $\diamond A \leftrightarrow \neg \Box \neg A$
 - $\Box A \quad \leftrightarrow \quad \neg \Diamond \neg A$

Options:

- take both \diamondsuit and \square as primitive
- take \diamondsuit as primitive, and set $\Box A \stackrel{\text{def}}{=} \neg \diamondsuit \neg A$
- take \square as primitive, and set $\Diamond A \stackrel{\text{def}}{=} \neg \square \neg A$

How define a language?

Examples

- CardRed $\land K_{Ann}$ CardRed $\land K_{Ann} \neg K_{Bob}$ CardRed
- DoorClosed ∧ [Open]DoorOpen
- $P \land \neg Q \land \Box Q \land \diamondsuit (P \land \Box \neg Q)$
- Language = set of formulas

Language is defined by BNF:

 $A ::= P \mid \neg A \mid A \land A \mid A \lor A \mid \Diamond A \mid \Box A \mid \langle I \rangle A \mid [I]A \mid K_IA \mid \dots$

where P ranges over \mathcal{P} and I ranges over \mathcal{I}

How define a language in LoTREC?

- Formulas in LoTREC: prenex form \implies General schema: $op(A_1, \ldots, A_n)$
- $\neg A = not(A) \qquad \text{Bel}_{I}A = Bel(I,A) \\ A \land B = and(A,B) \qquad \text{K}_{I}A = Knows(I,A)$
- $A \lor B = or(A, B)$ $\hat{K}_I A = Poss(I, A)$
 - AUB = Until(A, B)

. . .

. . .

. . .

 $A \Rightarrow B = ifThen(A, B)$

A LoTREC formula is

. . .

- $lacksymbol{i}$ a propositional variable $P\in\mathcal{P}$, or
- an expression of the form *op*(*A*₁,...,*A_n*) where *op* is the name of a logical connector and the *A_i* are formulas or in *I*
- \implies General schema: $op(Arg_1, \ldots, Arg_n)$, where $Arg_i \in \mathcal{P} \cup \mathcal{I}$

Outline

1 Modal logics

- Possible worlds models
- Classes of models
- Language
- Semantics

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Language

Truth conditions

Atoms

- $M, w \Vdash P$ iff $P \in V(w)$
- Classical connectors
 - $M, w \Vdash A \land B$ iff $M, w \Vdash A$ and $M, w \Vdash B$
 - $M, w \Vdash A \lor B$ iff ...

• . . .

- Modal operators
 - $M, w \Vdash \Diamond A$ iff there exists u s.th. wRu and $M, u \Vdash A$
 - $M, w \Vdash \Box A$ iff for all u, if wRu then $M, u \Vdash A$

Truth conditions

Multi-modal operators

• $M, w \Vdash \langle I \rangle A$ iff there exists u s.th. $w R_I u$ and $M, u \Vdash A$

• . . .

- Relation algebra operators
 - $M, w \Vdash \Diamond^{-1}A$ iff there exists u s.th. $wR^{-1}u$ and $M, u \Vdash A$
 - $M, w \Vdash \langle I \cup J \rangle A$ iff there exists u s.th. $w(R_I \cup R_J)u$ and $M, u \Vdash A$
 - $M, w \Vdash \langle I^* \rangle A$ iff there exists u s.th. $w(R_I)^* u$ and $M, u \Vdash A$

Truth conditions

Temporal operators (linear time)

- $M, w \Vdash XA$ iff there exists u s.th. wRu and $M, u \Vdash A$
- $M, w \Vdash FA$ iff there exists n, u s.th. $w \mathbb{R}^n u$ and $M, u \Vdash A$

$$A \xrightarrow[w]{} A \xrightarrow[w]{} A$$

• $M, w \Vdash A \cup B$ iff there exists u s.th. $w R^* u$ and $M, u \Vdash B$ and $M, v \Vdash A$ for all v s.th. $(wR^*v \text{ and } vR^+u)$

• . . .

Model checking

Given *M*, *w*, and *A*, do we have $M, w \Vdash A$?

- Model checking problem
 - can be solved in polynomial time for most modal logics
- Model checking in LoTREC
 - requires more LoTREC primitives ⇒ later

Part 1: Theory

1 Modal logics

- Possible worlds models
- Classes of models
- Language
- Semantics

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Outline

1 Modal logics

- Possible worlds models
- Classes of models
- Language
- Semantics

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Validity and satisfiability in the set of all models

 $\mathsf{K}=\mathsf{the}\ \mathsf{set}\ \mathsf{of}\ \mathsf{all}\ \mathsf{possible}\ \mathsf{worlds}\ \mathsf{models}\ (\mathsf{K}\mathsf{ripke})$

• A is valid in K iff for all M in K and all w in M: $M, w \Vdash A$

Example

$$\Box(P \lor \neg P) \Box P \land \Box Q \to \Box(P \land Q)$$

• A is satisfiable in K iff for some M in K and some w in M: $M, w \Vdash A$

Example

 $\blacksquare \Box P \land \neg \Box \Box P$

Validity and satisfiability in the set of all models

K = the set of all possible worlds models (Kripke)

• A is valid in K iff for all M in K and all w in M: $M, w \Vdash A$

Example

$$\square(P \lor \neg P) \squareP \land \squareQ \to \square(P \land Q)$$

• A is satisfiable in K iff for some M in K and some w in M: $M, w \Vdash A$

Example

Validity and satisfiability in some class of models

 $\mathcal{C} = \text{some subset of } \mathsf{K}$

• A is valid in C iff for all M in C and all w in M: $M, w \Vdash A$ Example

• $\Box P \rightarrow P$ invalid in K $\Box P, \neg P \longrightarrow P$

• $\Box P \rightarrow P$ valid in the class of reflexive models

• $\Diamond \Diamond P \rightarrow \Diamond P$ valid in transitive models

• A is satisfiable in C iff for some M in C and some w in M: $M, w \Vdash A$

Example

- $P \land \Box \neg P$ is satisfiable in K
- $P \land \Box \neg P$ is unsatisfiable in the class of reflexive models

A is valid in C iff $\neg A$ is unsatisfiable in C

Validity and satisfiability in some class of models

 $\mathcal{C} = \text{some subset of } \mathsf{K}$

• A is valid in C iff for all M in C and all w in M: $M, w \Vdash A$ Example

• $\Box P \rightarrow P$ invalid in K $\Box P, \neg P \longrightarrow P$

• $\Box P \rightarrow P$ valid in the class of reflexive models

□¬ _{P,} <u>P</u>

• $\Diamond \Diamond P \rightarrow \Diamond P$ valid in transitive models

• A is satisfiable in C iff for some M in C and some w in M: $M, w \Vdash A$

Example

- $P \land \Box \neg P$ is satisfiable in K
- $P \land \Box \neg P$ is unsatisfiable in the class of reflexive models

Validity and satisfiability in some class of models

 $\mathcal{C} = \text{some subset of } \mathsf{K}$

• A is valid in C iff for all M in C and all w in M: $M, w \Vdash A$ Example

• $\Box P \rightarrow P$ invalid in K $\Box P, \neg P \longrightarrow P$

• $\Box P \rightarrow P$ valid in the class of reflexive models

• $\Diamond \Diamond P \rightarrow \Diamond P$ valid in transitive models

• A is satisfiable in C iff for some M in C and some w in M: $M, w \Vdash A$

Example

- $P \land \Box \neg P$ is satisfiable in K
- $P \land \Box \neg P$ is unsatisfiable in the class of reflexive models

A is valid in C iff $\neg A$ is unsatisfiable in C

- Singleton models: {M : card(W) = 1} valid: ◇A → □A
- Reflexive models: KT valid: $\Box A \rightarrow A$
- Transitive models: K4 valid: $\Diamond \Diamond A \rightarrow \Diamond A$
- Reflexive and transitive models: S4 valid: ...
- Equivalence relation: S5 valid: $A \rightarrow \Box \diamondsuit A, \ldots$

...

Reasoning problems

- Model checking Given M, w, and A do we have M, w ⊢ A ?
- Validity Given A and C is A valid in C ?
- Satisfiability
 Given A and C

does there exist M in C and w in M: $M, w \Vdash A$?

Model construction
 Given A and C

compute M in C and w in M: $M, w \Vdash A$

How can we solve them automatically?

Outline

1 Modal logics

- Possible worlds models
- Classes of models
- Language
- Semantics

2 Reasoning problems

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Classical logic [Beth]

Checking the satisfiability of a given formula A: **1** Try to find M and w by applying truth conditions $\blacksquare M, w \Vdash A_1 \land A_2 \implies \text{add } M, w \Vdash A_1, \text{ and add } M, w \Vdash A_2$ • $M, w \Vdash A_1 \lor A_2 \implies$ either add $M, w \Vdash A_1$, or add $M. w \Vdash A_2$ (nondeterministic) $\blacksquare M, w \Vdash \neg A_1 \implies \text{don't add } M, w \Vdash A_1 !!$ $\blacksquare M, w \Vdash \neg \neg A_1 \implies \text{add } M, w \Vdash A_1$ • $M, w \Vdash \neg (A_1 \lor A_2) \implies \text{add } M, w \Vdash \neg A_1 \text{ and add}$ $M. w \Vdash \neg A_2$ $\blacksquare M, w \Vdash \neg (A_1 \land A_2) \implies \text{add } M, w \Vdash \neg A_1 \text{ or add}$ $M. w \Vdash \neg A_2$

\implies tableau rules

- 2 apply while possible (saturation)
- is *M* a model?
 - NO if both $M, w \Vdash B$ and $M, w \Vdash \neg B$ (closed tableau)
 - ELSE *M* is a model for *A* (open tableau) $W = \{w\}, R = \emptyset, V(w) = \{P : M, w \Vdash P\}$

Classical logic [Beth]

Checking the satisfiability of a given formula A: **1** Try to find M and w by applying truth conditions $M, w \Vdash A_1 \land A_2 \implies$ add $M, w \Vdash A_1$, and add $M, w \Vdash A_2$ • $M, w \Vdash A_1 \lor A_2 \implies$ either add $M, w \Vdash A_1$, or add $M. w \Vdash A_2$ (nondeterministic) $\blacksquare M, w \Vdash \neg A_1 \implies \text{don't add } M, w \Vdash A_1 \parallel$ $\blacksquare M, w \Vdash \neg \neg A_1 \implies \text{add } M, w \Vdash A_1$ • $M, w \Vdash \neg (A_1 \lor A_2) \implies \text{add } M, w \Vdash \neg A_1 \text{ and add}$ $M. w \Vdash \neg A_2$ $\blacksquare M, w \Vdash \neg (A_1 \land A_2) \implies \text{add } M, w \Vdash \neg A_1 \text{ or add}$ $M, w \Vdash \neg A_2$

 \implies tableau rules

- 2 apply while possible (saturation)
- 3 is *M* a model?
 - NO if both $M, w \Vdash B$ and $M, w \Vdash \neg B$ (closed tableau)

• ELSE *M* is a model for *A* (open tableau)

$$W = \{w\}, R = \emptyset, V(w) = \{P : M, w \Vdash P\}$$

Modal logic [Fitting]

Basic cases

- *M*, *w* ||- ◇*A*
 - \implies add some new node *u*, add *wRu*, add *M*, *u* dash A
- $\blacksquare M, w \Vdash \Box A$

 \implies for all node *u* s.th. *wRu*, add *M*, *u* \Vdash *A*

Apply truth conditions = build a labeled graph

- create nodes
- add links
- add formulas to nodes

a node with the input formula

$M, w \Vdash A \land B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

$$\begin{array}{lll} A & \text{is} & \Box P \\ B & \text{is} & \diamond Q \land \diamond (R \lor \neg P) \end{array}$$

$M, w \Vdash A \land B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

$\begin{array}{ll} A & \text{is} & \Box P \\ B & \text{is} & \diamond Q \land \diamond (R \lor \neg P) \end{array}$

$M, w \Vdash A \land B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

 $M, w \Vdash \Diamond A$ iff there is u s.th. wRu and $M, u \Vdash A$

 $M, w \Vdash \Box A$ iff for all u: if wRu then $M, u \Vdash A$

 $M, w \Vdash A \lor B$ iff $M, w \Vdash A$ or $M, w \Vdash B$

A short history of tableaux

Handwritten proofs since 1950's

- ... Sequent calculi [Beth, Gentzen]
- Tableaux calculi (tableau proof = sequent proof backwards)
- Kripke: explicit accessibility relation
- Smullyan, Fitting: uniform notation
- Single-step tableaux [Massacci] $\sigma : \Diamond A \implies \sigma, n : A$
- Tableaux by graph rewriting [Castilho et al.]

Nowadays: automated provers

- fast: FaCT [Horrocks], LWB [Heuerding, Jäger et col.], K-SAT [Giunchiglia&Sebastiani]
- generic: TWB [Abate&Goré], LoTREC

Part 2: Practice

- 3 LoTREC
 - Language

Rules

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?
- 4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - **S**4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions

Rules

A short history of LoTREC

- before 2000: theoretical bases (Luis Fariñas del Cerro, Olivier Gasquet, Andreas Herzig)
- David Fauthoux [2000]
 - rewriting kernel
 - event-based implementation
 - K, KT, KB
- Mohamad Sahade [2002-2005]
 - loopchecking
 - more logics: S4, K4, ...
 - general completeness and termination proofs
- Bilal Saïd [2006-2010]
 - LTL, PDL...
 - Confluence & commutative patterns
 - Model checking
 - graph rewriting basis & their theoretical properties
 - GUI, full web accessibility, step-by-step run,...

...

Outline

3 LoTREC

Language

Rules

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?
- 4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - **S**4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions

User-defined language

Atomic propositions

Rules

- Any constant symbol = Capital_1st_letter_words
- Formulas
 - Prefix notation (but can be displayed in infix form)
 - Priority and associativity to avoid printing parentheses

Example (definition)		
name	arity	display
not	1	~ _
and	2	_ & _
nec	1	[] _
pos	1	<> _

Example (usage)

- pos P displayed: <> P
- and not Q not P displayed: ~ Q & ~ P

Outline

3 LoTREC

Language

Rules

Rules

- Strategies
- Tableau notation
- Do the algorithms do the right thing?
- 4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - **S**4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions

Rules

In LoTREC

Graph rewriting rule as "if Conditions ... then Actions"

Rule And

hasElement node and variable A variable B

<u>add</u> node <u>variable</u> A <u>add</u> node <u>variable</u> B End

<u>Rule</u> Pos

hasElement node1 pos variable A

createNewNode node2 link node1 node2 R add node2 variable A

End

In LoTREC

Graph rewriting rule as "if Conditions ... then Actions"

Rule ReflexiveEdges

Rules

<u>isNewNode</u> node

<u>link</u> node node R <u>End</u>

Semantics of rules: the basic idea

Apply rule to a graph G = apply to every formula in every node

- \implies strategies get more declarative
- \implies proofs get easier

Rules

Tableau rules expand directed graphs by

- adding links
- adding nodes
- adding formulas
- duplicating the graph

$$\mathit{rule}(G) = \{G_1, \ldots, G_n\}$$

 $\mathit{rule}(\{G_1, \ldots, G_n\}) = \mathit{rule}(G_1) \cup \ldots \cup \mathit{rule}(G_n)$

Language

Strategies

Tableau notation

Do the algorithms do the right thing?

Managing graph copies: depth-first

Rules

Strategies

Rules

Tableau notation

Do the algorithms do the right thing?

Managing graph copies: depth-first

Tableau notation

Language

Rules

Strategies

Do the algorithms do the right thing?

Managing graph copies: depth-first

Tableau notation

Strategies

Language

Rules

Managing graph copies: depth-first

3 LoTREC

Language

Rules

Rules

Strategies

- Tableau notation
- Do the algorithms do the right thing?
- 4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - **S**4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions

Why a strategy?

 Apply rules in order: <u>Strategy</u> performOnce Stop And Or

Saturation:

<u>Strategy</u> CPL_strat	<u>Strategy</u> K_strat
<u>repeat</u>	<u>repeat</u>
Stop	CPL
NotNot	Pos
And	Nec
Or	end
end	

Semantics of strategies

block: rule1 ... rulen ... anotherStrategy ...
apply all applicable rules in order then stop

Example

<u>Strategy</u> CPL Stop And Or Not_Not

• • •

Strategies

Rules

Semantics of strategies

- block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop
- repeat block end repeat until no rule applicable (saturation)

Example

<u>Strategy</u> K

<u>repeat</u>

CPL

Pos

Nec

<u>end</u>

For simple logics: <u>repeat</u> and blocks are sufficient!

Strategies

Rules

Semantics of strategies

- block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop
- repeat block end repeat until no rule applicable (saturation)
- <u>firstRule</u> block <u>end</u> apply first applicable rule, then stop (unfair!) cf. higher-order proof assistants

Example

<u>repeat</u>		
firstRule		
rule1		
rule2	х	
end		
end		

rule1 is always applicable rule2 is applicable BUT never applied!

Semantics of strategies

- block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop
- repeat block end
 repeat until no rule applicable (saturation)
- <u>firstRule</u> block <u>end</u> apply first applicable rule, then stop (unfair!) cf. higher-order proof assistants
- <u>allRules</u> block <u>end</u> exactly as a "block", but needed inside <u>firstRule</u>
- Example <u>firstRule</u> rule1 <u>allRules</u> rule2 rule3 <u>end</u> rule4
 - end

Semantics of strategies

- block: rule1 ... rulen ... anotherStrategy ...
 apply all applicable rules in order then stop
- repeat block end
 repeat until no rule applicable (saturation)
- <u>firstRule</u> block <u>end</u> apply first applicable rule, then stop (unfair!) cf. higher-order proof assistants
- <u>allRules</u> block <u>end</u> exactly as a "block", but needed inside <u>firstRule</u>
- applyOnce rule apply the rule on only one occurrence

3 LoTREC

Language

Rules

- Rules
- Strategies

Tableau notation

- Do the algorithms do the right thing?
- 4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - **S**4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions

```
Language
```

Strategies

Tableau notation

Tableau definition

The set of tableaux for formula A with strategy S is the set of graphs obtained by applying the strategy S to an initial single-node graph whose root contains only A.

■ Notation: *S*(*A*)

Rules

Remark

our tableau = "tableau branch" in the literature (sounds odd to call a graph a branch)

Open or Closed?

- A node is closed iff it contains "FALSE" (unless...)
- A tableau is closed iff it has a closed node
- A set of tableaux is closed iff all its elements are closed

An open tableau is a premodel \implies build a model

3 LoTREC

Language

Rules

- Rules
- Strategies
- Tableau notation

Do the algorithms do the right thing?

- 4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - **S**4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions

Strategies

Fableau notatior

Do the algorithms do the right thing?

Formal properties

To be proved for each strategy S:

- Termination
 For every A, S(A) terminates.
- Soundness
 If S(A) is closed then A is unsatisfiable.
- Completeness
 - If S(A) is open then A is satisfiable.

In general...

Tableau notation

- Soundness proofs: easy (we just apply truth conditions)
- Termination proofs: not so easy (case-by-case)

Strategies

Completeness proofs...

Rules

Language

- ... for fair strategies: standard techniques work "in most cases"
 - but fair strategies do not terminate in general
- ... for terminating strategies: difficult rigorous proofs rare even for the basic modal logics! reason: strategy = imperative programming

```
Language Rules Strategies Tableau notation Do the algorithms do the right thing?
```

 $\mathsf{BUT}\xspace$ soundness + termination is practically sufficient (e.g. when experimenting with a logic):

- given: class of models C, strategy S, formula A
- apply strategy S to A
- take an open tableau and build pointed model (M, w)
- check if *M* in desired class of models
- check if $M, w \Vdash A$

A general termination theorem

[O. Gasquet et al., AIML 2006]

 IF for every rule ρ: the RHS of ρ contains strict subformulas of its LHS AND some restriction on node creation

THEN

for every formula A:

the tableaux construction terminates

Another general termination theorem

[O. Gasquet et al., AIML 2006]

Rules

 IF for every rule ρ: the RHS of ρ contains subformulas of its LHS AND some restriction on node creation AND some loop testing in the strategy
 THEN for every formula A:

the tableaux construction terminates

Part 2: Practice

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?
- 4 Implementing logics
 - Classical logic
 - Modal logic K
 - Multi-modal logic K_n
 - KT
 - KD
 - **S**4
 - Intuitionistic logic LJ
 - Model checking in LoTREC
 - PDL
 - Suggestions

How to get LoTREC

- or, Download ⇒ Executable to get LoTREC_2.0.zip
 - unzip
 - run file run.bat

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

Classical logic

- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- **S**4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

How to proceed

CPL: Classical Propositional Logic

- I From the task pane, open: Open Predefined logic ⇒ Others ⇒ CPL
- 2 Run with Build Models
- 3 Why these results?
 - Predefined formula
 - Predefined Main strategy
- 4 Review the logic definition: Connectors, Rules. . .
- 5 Change the formula
- 6 Re-run...

Adding "↔"

What about formulas with " \leftrightarrow " connector?

1 Save as CPL locally as "CPL_complete.xml"

Add to Connectors:namearitydisplaypriorityequiv2_<->_0 (lowest)

3 Add to *Rules*:

Equiv, and NotEquiv

- 4 Call them in the strategy
- 5 Try some formulas. . .

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

Classical logic

Modal logic K

- Multi-modal logic K_n
- KT
- KD
- **S**4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From CPL to K

- Here: minimal set of connectors \neg , \land , \Box only
- Rules of CPL
- Rule for $\neg \Box A$:
 - for every ¬□A at every node w: create a successor u and add ¬A to it
- Rule for $\Box A$:
 - for every □A at every w, and for every R-successor u of w: add A to u
- Strategy: saturate with all the rules...

Rule NotNec

hasElement w pos variable a

createNewNode u

<u>link</u> w u R

add u variable a

<u>Rule</u> Nec

hasElement w nec variable a

isLinked w u R

add u variable a

Strategies

Continue with your "CPL_complete.xml", or

 $\textit{Open Predefined logic} \Longrightarrow \textit{Others} \Longrightarrow \textit{CPL}_{-}\textit{complete}$

- 2 Add the nec connector
- 3 Add the rules Nec and NotNec
- 4 Add a new strategy KStrategy which calls repeatedly CPLStrategy and then the rules Pos and Nec
- 5 Test with [] P & <> Q & <> (R v ~ P) i.e. and nec P and pos Q pos or R not P
- 6 Test with other formulas...

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- **S**4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From K To K_n

- Replace the connector \Box_- by $[_-]_-$
- Change all the predefined formulae
- Change the modal rules: Nec and NotNec

 Rule Nec_K
 Rule Nec_Multimodal_K

 hasElement w nec variable a
 hasElement w nec variable r

 isLinked w u R
 variable a

 add u variable a
 isLinked w u variable r

 add u variable a
 add u variable a

How to proceed

 From the task pane, open: *Open Predefined logic* ⇒ Others ⇒ Multimodal-K

 Check ¬[1]P ∧ ¬[2]¬P, ...

Description logic ALC

Notational variant:

- write R instead of I ('atomic role')
- write A instead of P ('atomic concept')
- write C instead of A ('complex concept')
- write \sqcap instead of \land
- write \sqcup instead of \lor
- write $\forall R.C$ instead of [I]A
- write $\exists R.C$ instead of $\langle I \rangle A$
- In LoTREC: change connectors and rules appropriately
- Test concept satisfiability: $\exists R.(A \sqcap A') \sqcap \forall R. \neg A$

. . .

```
• Test concept inclusion:

C_1 \sqsubseteq C_2 iff C_1 \sqcap \neg C_2 unsatisfiable
```

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- **S**4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From K to KT

Accessibility relation R is reflexive

- Aim: close all tableaux for $\Box P \land \neg P$ (negation of axiom T)
- Idea1: integrate reflexivity into the truth condition
 - $M, w \Vdash \Box A$ iff $M, w \Vdash A$, and $M, u \Vdash A$ for every u that is accessible from w via R
- Idea2: explicitly add reflexive edges to the graphs

From K to KT, ctd.

- 1 Save Monomodal-K as Monomodal-KT
- 2 Idea1: add new rule
 - <u>Rule</u> NecT
 - hasElement w nec variable a
 - add w variable a
- 3 Idea₂: add new rule
 - <u>Rule</u> Reflexive_edges_for_R
 - <u>isNewNode</u> w
 - <u>link</u> w w R
- 4 Call new rule in the strategy
- **5** Check $P \land \Box \neg P$, $P \land \Box \Box \neg P$, ...

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT

KD

- **S**4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From K to KD

Accessibility relation R is serial

- Aim: close all tableaux for $\Box P \land \Box \neg P$ (negation of axiom D)
- Naive idea: just add edges
 Rule makeSerial

<u>isNewNode</u> w

(match a node)

<u>createNewNode</u> u

<u>link</u> w u R

 \implies will loop

From K to KD, ctd.

Accessibility relation R is serial

Idea: add edges only when needed and not created elsewhere <u>Rule</u> makeSerial

hasElement w nec variable a

<u>hasNotElement</u> w not nec <u>variable</u> b

<u>createNewNode</u> u

<u>link</u> w u R

- Call rule makeSerial in the strategy
- Check $\Box P \land \Box \neg P \ldots \Longrightarrow$ sound but suboptimal

avoid too many successor nodes: apply makeSerial only once applyOnce makeSerial
From K to KD, ctd.

Accessibility relation R is serial

Idea: add edges only when needed and not created elsewhere <u>Rule</u> makeSerial

hasElement w nec variable a

<u>hasNotElement</u> w not nec <u>variable</u> b

<u>createNewNode</u> u

<u>link</u> w u R

- Call rule makeSerial in the strategy
- Check $\Box P \land \Box \neg P \ldots \Longrightarrow$ sound but suboptimal
- avoid too many successor nodes: apply makeSerial only once applyOnce makeSerial

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- **S**4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From KT to S4

- Accessibility relation R is reflexive and transitive (S4 = KT4)
- Aim: close all tableaux for $\Box P \land \neg \Box \Box P$

(negation of axiom 4)

- Idea1: integrate reflexivity and transitivity into the truth condition
 - $M, w \Vdash \Box A$ iff $M, w \Vdash A$, and $M, u \Vdash \Box A$ for every u that is accessible from w via R

∎ Idea₂: . . .

From KT to S4, ctd.

- 1 Save Monomodal-KT as Monomodal-S4
- 2 Copy/Paste rule Nec, and rename it as Nec4
- 3 Idea₁:

<u>Rule</u> Nec4 <u>hasElement</u> node nec R <u>variable</u> a isLinked node node' R

add node' nec R variable a

4 Check $\neg (\Box P \rightarrow \Box \Box P)$, i.e. $\Box P \land \neg \Box \Box P$ 5 Test $\Box \neg \Box P$

Taming S4

- LoTREC loops on input formula □¬□P!
- Execute step-by-step ('Step By Step' instead of 'Build Premodels' button)
- Observe: if no clash wasn't found after 2 nodes, there is no chance to find it later

 \implies no need to create successors for nodes that are included in an ancestor!

hypothesis: nodes have been locally saturated before checking for loops

Taming S4, ctd.

Add the rule loopTest (cf. predefined S4_Optimal)

<u>Rule</u> loopTest

<u>isNewNode</u> node'

isAncestor node node'

contains node node'

<u>mark</u> node' CONTAINED

<u>link</u> node' node Loop

add condition to rule NotNec:

<u>hasElement</u> node not nec A <u>isNotMarked</u> node CONTAINED (required for local activation)

(optional, highlights the inclusion)

• Call rule loopTest in the strategy

 guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT

Run again...

Taming S4, ctd.

Add the rule loopTest (cf. predefined S4_Optimal)

<u>Rule</u> loopTest

<u>isNewNode</u> node'

<u>isAncestor</u> node node'

contains node node'

<u>mark</u> node' CONTAINED

<u>link</u> node' node Loop

add condition to rule NotNec:

<u>hasElement</u> node not nec A

isNotMarked node CONTAINED

(required for local activation)

(optional, highlights the inclusion)

 Call rule loopTest in the strategy
 guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT

Run again...

. . .

Taming S4, ctd.

Add the rule loopTest (cf. predefined S4_Optimal)

<u>Rule</u> loopTest

<u>isNewNode</u> node'

isAncestor node node'

contains node node'

<u>mark</u> node' CONTAINED

<u>link</u> node' node Loop

(required for local activation)

(optional, highlights the inclusion)

add condition to rule NotNec:

hasElement node not nec A

isNotMarked node CONTAINED

Call rule loopTest in the strategy

 guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT

Run again...

. . .

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- **S**4

Intuitionistic logic LJ

- Model checking in LoTREC
- PDL
- Suggestions

From S4 to intuitionistic logic LJ

Accessibility relation *R* is reflexive, transitive, and *hereditary*

Truth conditions:

 $M, w \Vdash A \rightarrow B$ iff $M, u \nvDash A$ or $M, u \Vdash B$ for all u s.th. wRu $M, w \Vdash \neg A$ iff $M, u \nvDash A$ for all u s.th. wRu

• not valid: $\neg \neg A \leftrightarrow A$; $\neg (A \land B) \leftrightarrow \neg A \lor \neg B$; ...

tableau method requires signed formulas

- in LoTREC: define connectors sTrue and sFalse
- Rules for conjunction:

Rule sTrueAnd

hasElement w sTrue and variable a variable b

add w sTrue variable a

add w sTrue variable b

Rule sFalseAnd

hasElement w sFalse and variable a variable b

<u>duplicate</u> copiedgraph

add w sFalse variable a

add copiedgraph.w sFalse variable b

From S4 to intuitionistic logic LJ

Accessibility relation *R* is reflexive, transitive, and *hereditary*

Truth conditions:

 $M, w \Vdash A \rightarrow B$ iff $M, u \nvDash A$ or $M, u \Vdash B$ for all u s.th. wRu $M, w \Vdash \neg A$ iff $M, u \nvDash A$ for all u s.th. wRu

• not valid: $\neg \neg A \leftrightarrow A$; $\neg (A \land B) \leftrightarrow \neg A \lor \neg B$; ...

- tableau method requires signed formulas
- In LoTREC: define connectors sTrue and sFalse

Rules for conjunction:

<u>Rule</u> sTrueAnd

hasElement w sTrue and variable a variable b

add w sTrue variable a

add w sTrue variable b

Rule sFalseAnd

hasElement w sFalse and variable a variable b

<u>duplicate</u> copiedgraph

add w sFalse variable a

add copiedgraph.w sFalse variable b

From S4 to intuitionistic logic LJ

- Accessibility relation R is reflexive, transitive, and hereditary
- Truth conditions:
 - $M, w \Vdash A \rightarrow B$ iff $M, u \not\vDash A$ or $M, u \Vdash B$ for all u s.th. wRu
 - $M, w \Vdash \neg A$ iff $M, u \not\vDash A$ for all u s.th. wRu
- not valid: $\neg \neg A \leftrightarrow A$; $\neg (A \land B) \leftrightarrow \neg A \lor \neg B$; ...
 - tableau method requires signed formulas
 - In LoTREC: define connectors sTrue and sFalse
- Rules for conjunction:

Rule sTrueAnd

 $\underline{\texttt{hasElement}}$ w sTrue and $\underline{\texttt{variable}}$ a $\underline{\texttt{variable}}$ b

add w sTrue variable a

add w sTrue variable b

<u>Rule</u> sFalseAnd

hasElement w sFalse and variable a variable b

 $\underline{duplicate}$ copiedgraph

 \underline{add} w sFalse $\underline{variable}$ a

add copiedgraph.w sFalse variable b

From S4 to intuitionistic logic LJ, ctd.

Rules for implication:

<u>Rule</u> sFalseImp

hasElement w sFalse imp variable a variable b

isNotMarked w CONTAINED

<u>createNewNode</u> u

<u>link</u> w u R

add u sTrue variable a

<u>add</u> u sFalse <u>variable</u> b

<u>Rule</u> sTrueImpActual

hasElement w sTrue imp variable a variable b

add w sFalse variable a

add copiedgraph.w sTrue variable b

 $\underline{\text{duplicate}} \text{ copiedgraph}$

<u>Rule</u> sTrueImpPropagation

<u>hasElement</u> w sTrue imp <u>variable</u> a <u>variable</u> b isLinked w u R

From S4 to intuitionistic logic LJ, ctd.

• Rule for true atoms (implements hereditary *R*):

```
Rule sTrueAtom
      hasElement w sTrue variable a
      isAtomic variable a
      isLinked w u R
      add u sTrue variable a
Test:
  ((P \rightarrow Q) \rightarrow P) \rightarrow P
Test:
  \neg \neg P \rightarrow P
  P \rightarrow \neg \neg P
   P \lor \neg P
   . . .
improve: use three signs...
```

(Pierce's formula)

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- **S**4
- Intuitionistic logic LJ

Model checking in LoTREC

- PDL
- Suggestions

Model checking

Given M_0 , w_0 , and A_0 ... do we have M_0 , $w_0 \Vdash A_0$?

1. build model M_0 with root w_0 in LoTREC

<u>createNewNode</u> w0, <u>createNewNode</u> u, <u>link</u> w0 u R, <u>add</u> u P, <u>add</u> u Q,

. . .

2. add formula A_0 to be checked to root note w_0 add w_0 is It True pec not P (add as dumm

add w0 isItTrue nec not P (add as dummy connector)

3. top-down: decomposition of A_0

<u>hasElement</u> w isItTrue not <u>variable</u> A <u>add</u> w isItTrue <u>variable</u> A

<u>hasElement</u> w isItTrue nec <u>variable</u> A <u>isLinked</u> w u R add u isItTrue variable A

. . .

Model checking, ctd.

4. bottom-up: build truth value of A_0

hasElement w isItTrue variable A

<u>isAtomic</u> <u>variable</u> A

hasElement w variable A

markExpression w isItTrue variable A Yes

hasElement w isItTrue nec variable A

<u>isLinked</u> w u R

isMarkedExpression u isItTrue variable A No

markExpression w isItTrue nec variable A No

hasElement w isItTrue nec variable A

<u>isLinked</u> w u R

isMarkedExpressionInAllChildren w isItTrue variable A R Yes

markExpression w isItTrue nec variable A Yes

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- **S**4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

Propositional Dynamic Logic PDL

Language: complex programs Π, complex formulas A

 $\Pi ::= I \mid A? \mid \Pi; \Pi \mid \Pi \cup \Pi \mid \Pi^*$

$$A ::= P \mid \neg A \mid A \land A \mid A \lor A \mid \langle \Pi \rangle A \mid [\Pi] A$$

where ${\it P}$ ranges over ${\cal P}$ and ${\it I}$ ranges over ${\cal I}$

 Interpretation of complex programs and formulas: defined by mutual recursion

$$R_{A?} = \{ \langle w, w \rangle : M, w \Vdash A \}$$

$$R_{\Pi_1;\Pi_2} = R_{\Pi_1} \circ R_{\Pi_2}$$

$$R_{\Pi_1 \cup \Pi_2} = R_{\Pi_1} \cup R_{\Pi_2}$$

$$\blacksquare R_{\Pi^*} = (R_{\Pi})^*$$

• $M, w \Vdash \langle \Pi \rangle A$ iff there is w' such that $wR_{\Pi}w'$ and $M, w' \Vdash A$

PDL: taming the Kleene star

- Problem: how to handle transitive closure?
- Solution: postpone
 - $M, w \Vdash [\Pi^*]A$ iff $M, w \Vdash A \land [\Pi][\Pi^*]A$
- in LoTREC:

```
Rule Nec_Star
```

hasElement w nec star variable Pi variable A add w variable A add w nec variable Pi nec star variable Pi

```
variable A
```

```
Rule Pos_Star
hasElement w pos star variable Pi variable A
add w or variable A pos variable Pi pos ...
termination: use looptesting
   Observe: these rules don't add subformulas
   ...but 'almost' subformulas (Fischer-Ladner closure)
```

PDL: taming the Kleene star

- Problem: how to handle transitive closure?
- Solution: postpone
 - $M, w \Vdash [\Pi^*]A$ iff $M, w \Vdash A \land [\Pi][\Pi^*]A$
- in LoTREC:

```
Rule Nec_Star
```

```
hasElement w nec star variable Pi variable A
```

```
add w variable A
```

```
add w nec variable Pi nec star variable Pi
```

```
variable A
```

```
Rule Pos_Star
hasElement w pos star variable Pi variable A
add w or variable A pos variable Pi pos ...
termination: use looptesting
```

- Observe: these rules don't add subformulas
- ... but 'almost' subformulas (Fischer-Ladner closure)

PDL: taming the Kleene star, ctd.

A problem:

- execute $\langle I^* \rangle P$ step-by-step
- always choose the graph where the fulfillment of $\langle I^* \rangle P$ is postponed
- observe: terminates by looptest, but ⟨*I**⟩*P* not fulfilled ⇒ premodel cannot be transformed into a model of ⟨*I**⟩*P*
- Solution: check whether are all eventualities are fulfilled
 ⇒ use model checking, v.s.

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_n
- KT
- KD
- **S**4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL

It is up to you...

- S5; K +Universal operator
- Confluence
- LTL
- ...

Thank you!