Kripke's World

An introduction to modal logics via tableau systemss

O. Gasquet, A. Herzig, B. Saïd, F. Schwarzentruber

Institut de Recherche en Informatique de Toulouse - IRIT
Université de Toulouse
http://www.irit.fr/Lotrec
UNILOG 2010

Background: logic and reasoning

- Classical propositional logic (CPL)
- satisfiability problem decidable: NP-complete
- reasoning:

■ Hilbert-style axiomatics, natural deduction
■ Gentzen sequent systems, tableaux

- resolution

■ heuristic search: many SAT solvers
■ Classical predicate logic
■ satisfiability problem semi-decidable

- reasoning:

■ ...
■ resolution [OTTER, SPASS, etc.]
■ Higher-order logic
■ undecidable

- reasoning:
- Proof assistants [Isabelle, Coq, etc.]

Background and motivation

■ Modal logics

- variant: description logics (\Longrightarrow semantic web)
- infinitely many logics
- 'surprisingly often decidable'

■ NP < PSPACE < EXPTIME < NEXPTIME < EXPSPACE
■ reasoning:
■ Hilbert-style axiomatics, natural deduction

- Gentzen sequent systems
- resolution [Fariñas 83]
- translation to FOL and resolution [Fariñas and Herzig 88, Ohlbach 88; MSPASS]
■ methods based on SAT solvers for CPL [K-SAT, etc.]
- Tableaux

Idea: step-by-step introduction to modal logics via tableaux

From Tarski’s World to Kripke's World

- Tarski's World: introduction to predicate logic
- examples $=$ scenarios from geometry
- book + program

■ Kripke's World: introduction to modal logics

- examples $=$ modal logics
- reasoning $=$ try to construct models $=$ tableaux
- program: LoTREC, http://www.irit.fr/Lotrec
- book to come

Outline

Part 1: Theory
1 Modal logics

2 Reasoning problems

Part 2: Practice

3 LoTREC

4 Implementing logics

Part 1: Theory

1 Modal logics
■ Possible worlds models

- Classes of models
- Language
- Semantics

2 Reasoning problems
■ Validity and satisfiability in a class of models

- Outline of the tableaux method

Outline

1 Modal logics
■ Possible worlds models

- Classes of models
- Language
- Semantics

2 Reasoning problems
■ Validity and satisfiability in a class of models

- Outline of the tableaux method

What is a Kripke model?

- Possible worlds
= node
= states
- Valuation
$=$ labeling function
$=$ interpretation
- Accessibility relation
= labeled edges
$=$ transitions
- Model
= labeled graph
$=$ transition system

Kripke Model

Given: a set \mathcal{P} (propositional variables) and a set \mathcal{I} (indexes):
■ $M=(W, R, V)$

- W : nonempty set
- $R: \mathcal{I} \longrightarrow 2^{W \times W}$
- $V: W \longrightarrow 2^{\mathcal{P}}$
set of possible worlds accessibility relation valuation function
- Pointed model (M, w) where $w \in W$ is the actual world

Readings of R

- Alethic:
$w R u$ iff u is possible given the actual world w
- Temporal: $w R u$ iff u is in the future of w
- Epistemic:
$w R_{l} u$ iff u is possible for agent I at actual world w
■ Deontic:
$w R u$ iff u is an ideal counterpart of the actual world w
■ Dynamic:
$w R_{l} u$ iff u is a possible result of the execution of the program / action I in w

Readings of $R \Longrightarrow$ Properties of R

Readings of R

- Alethic:
$w R u$ iff u is possible given the actual world w
- Temporal: $w R u$ iff u is in the future of w
- Epistemic:
$w R_{l} u$ iff u is possible for agent I at actual world w
■ Deontic:
$w R u$ iff u is an ideal counterpart of the actual world w
- Dynamic:
$w R_{l} u$ iff u is a possible result of the execution of the program / action I in w

Readings of $R \Longrightarrow$ Properties of R

Defining a model in LoTREC

How to build a graph with two nodes:

- open a new logic (menu 'Logic')
- add a new rule ('Rules' tab):
- no conditions
- in the action part: createNewNode w createNewNode u link w u R add w P

■ edit the default strategy ('Strategies' tab):

- call the new rule (double click)

Outline

1 Modal logics

- Possible worlds models

■ Classes of models

- Language
- Semantics

2 Reasoning problems
■ Validity and satisfiability in a class of models

- Outline of the tableaux method

Classes of models

- A class of models can be defined by
- constraints on the accessibility relation
- constraints on the valuation
- Applications?

■ Mathematical properties?

Constraints on a single relation R

■ Singleton models:
$\{M: \operatorname{card}(W)=1\}$
■ Serial
'there is always a future' for all w exists u s.th. $w R u$

- Reflexive
'knowledge implies truth'
- Transitive
'future of future is future'
'I know what I know'
- Symmetric
- Euclidian
'I know what I don't know'
- Confluent (Church-Rosser)
- Equivalence

■ Universal
■...

Constraints involving several relations

- R_{I} included in R_{J}
- $R_{I}=R_{J} \cup R_{K}$
- $R_{J}=\left(R_{l}\right)^{-1}$
- $R_{J}=\left(R_{l}\right)^{*}$

■ $R_{I} \circ R_{J}=R_{J} \circ R_{I}$
(reflexive and transitive closure)
(permutation)

- Confluent

Constraints on the valuation V

■ names for worlds ('nominals'):
if $N \in V(w)$ and $N \in V(u)$ then $w=u$
\Longrightarrow hybrid logic

- R is hereditary (atomic propositions persist)
if $P \in V(w)$ and $w R u$ then $P \in V(u)$
\Longrightarrow intuitionistic logic

Closing under constraints in LoTREC

- Closing under reflexivity: condition: isNewNode w action: link w w R
- Observe:
capital first letter \Longrightarrow constant small first letter \Longrightarrow variable
■ Exercise: make R hereditary

Outline

1 Modal logics

- Possible worlds models
- Classes of models
- Language
- Semantics

2 Reasoning problems
■ Validity and satisfiability in a class of models

- Outline of the tableaux method

Boolean formulas

■ atomic formulas $=$ elements of \mathcal{P} (propositional variables)

- complex formulas: built using the Boolean connectors

$$
\begin{array}{ll}
\neg A & =" \text { "not } A \text { " } \\
A \wedge B & =" A \text { and } B \text { " } \\
A \vee B & =" A \text { or } B \text { " } \\
A \rightarrow B & =" \text { if } A \text { then } B \text { " } \\
A \leftrightarrow B & =" A \text { if and only if } B " \\
A \oplus B & =" \text { either } A \text { or } B \text { " } \\
\oplus(A, B, C) & =\text { "either } A, \text { or } B, \text { or } C \text { " }
\end{array}
$$

Modal formulas

■ Temporal logic
$\mathrm{X} A=$ " A will be true at the next time point"
$\mathrm{FA}=$ " A will be true at some time point in the future"
$=$ " A will eventually be true"
$\mathrm{G} A=$ " A will be true at every time point in the future"
$=$ " A will be true henceforth"
$A U B=" A$ until B "
$A S B=" A$ since $B "$

- Dynamic logic

After, $A=$ " A will be true after every possible execution of program I"
Feasible, $A=$ " A will be true after some execution of program I"
(programs may be nondeterministic)

Modal formulas (ctd.)

- Epistemic and doxastic logic
$\operatorname{Bel}_{I} A=$ "agent $/$ believes that A "
$\mathrm{K}_{I} A=$ "agent $/$ knows that A "
$\hat{\operatorname{Bel}}_{I} A=$ "it is (doxastically) possible for agent I that A "
$\hat{\mathrm{K}}_{I} A=$ "it is (epistemically) possible for agent I that A "
- Deontic logic
$\mathrm{O}_{l} B=$ " A is obligatory for $I "$
$\mathrm{P}_{1} B=$ " A is permitted for $I "$
- Intuitionistic logic
$A \Rightarrow B=$ "A implies B " (like \rightarrow, but no excluded middle)
- Conditional logic

$$
A \Rightarrow B=\text { "A implies } B "(\Rightarrow \text { 'stronger' than } \rightarrow)
$$

"Un pour tous, tous pour un" [A. Dumas]

- An abstraction: necessity and possibility

$$
\begin{aligned}
& \diamond A=\mathrm{M} A=" A \text { is possible" } \\
& \square A=\mathrm{L} A=" A \text { is necessary" }
\end{aligned}
$$

- Multimodal version:
$\diamond_{I} A=\langle I\rangle A=" A$ is possible w.r.t. $I "$
$\square_{I} A=[I] A=\ldots$
where $I \in \mathcal{I}$ (set of parameters)
■ Common feature: Not truth-functional
- no f s.th. truthvalue $(\diamond A)=f($ truthvalue $(A))$

Duality

- Intuitively:
$\begin{array}{lll}\hat{\mathrm{K}}_{I} A & \leftrightarrow & \neg \mathrm{~K}, \neg A \\ \mathrm{P}_{I} A & \leftrightarrow & \neg \mathrm{O}_{I} \neg A \\ \mathrm{~F} A & \leftrightarrow & \neg \mathrm{G} \neg A \\ \text { After }_{I} A & \leftrightarrow & \neg \text { Feasible }_{I} \neg A\end{array}$
- Abstracting:
$\diamond A \quad \leftrightarrow \quad \neg \square \neg A$
$\square A \quad \leftrightarrow \quad \neg \diamond \neg A$
- Options:
- take both \diamond and \square as primitive
- take \diamond as primitive, and set $\square A \stackrel{\text { def }}{=} \neg \diamond \neg A$
- take \square as primitive, and set $\diamond A \stackrel{\text { def }}{=} \neg \square \neg A$

How define a language?

- Examples
- CardRed $\wedge \mathrm{K}_{\text {Ann }}$ CardRed $\wedge \mathrm{K}_{\text {Ann }} \neg \mathrm{K}_{\text {Bob }}$ CardRed
- DoorClosed \wedge [Open]DoorOpen
- $P \wedge \neg Q \wedge \square Q \wedge \diamond(P \wedge \square \neg Q)$

■ Language $=$ set of formulas

- Language is defined by BNF:
$A::=P|\neg A| A \wedge A|A \vee A| \diamond A|\square A|\langle I\rangle A|[I] A| \mathrm{K}_{I} A \mid \ldots$
where P ranges over \mathcal{P} and $/$ ranges over \mathcal{I}

How define a language in LoTREC?

- Formulas in LoTREC: prenex form
\Longrightarrow General schema: $\operatorname{op}\left(A_{1}, \ldots, A_{n}\right)$
$\neg A=\operatorname{not}(A)$
$A \wedge B=\operatorname{and}(A, B)$
$A \vee B=\operatorname{or}(A, B)$

$$
\begin{aligned}
\operatorname{Bel}_{I} A & =\operatorname{Bel}(I, A) \\
\mathrm{K}_{I} A & =\operatorname{Knows}(I, A) \\
\hat{\mathrm{K}}_{I} A & =\operatorname{Poss}(I, A) \\
& \cdots \\
A \mathrm{U} B & =\operatorname{Until}(A, B) \\
& \cdots \\
A \Rightarrow B & =\operatorname{ifThen}(A, B)
\end{aligned}
$$

- A LoTREC formula is
- a propositional variable $P \in \mathcal{P}$, or
- an expression of the form $\operatorname{op}\left(A_{1}, \ldots, A_{n}\right)$ where op is the name of a logical connector and the A_{i} are formulas or in \mathcal{I}
\Longrightarrow General schema: op $\left(\operatorname{Arg}_{1}, \ldots, \operatorname{Arg}_{n}\right)$, where $\operatorname{Arg}_{i} \in \mathcal{P} \cup \mathcal{I}$

Outline

1 Modal logics

- Possible worlds models
- Classes of models
- Language

■ Semantics

2 Reasoning problems
■ Validity and satisfiability in a class of models

- Outline of the tableaux method

Truth conditions

- Atoms
- $M, w \Vdash P$ iff $P \in V(w)$

■ Classical connectors
■ $M, w \Vdash A \wedge B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

- $M, w \Vdash A \vee B$ iff \ldots
- Modal operators
- $M, w \Vdash \diamond A$ iff there exists u s.th. $w R u$ and $M, u \Vdash A$

■ $M, w \Vdash \square A$ iff for all u, if $w R u$ then $M, u \Vdash A$

Truth conditions

■ Multi-modal operators

- $M, w \Vdash\langle I\rangle A$ iff there exists u s.th. $w R_{l} u$ and $M, u \Vdash A$
- Relation algebra operators
- $M, w \Vdash \diamond^{-1} A \quad$ iff there exists u s.th. $w R^{-1} u$ and $M, u \Vdash A$
- $M, w \Vdash\langle I \cup J\rangle A$ iff there exists u s.th. $w\left(R_{I} \cup R_{J}\right) u$ and $M, u \Vdash A$
- $M, w \Vdash\left\langle I^{*}\right\rangle A \quad$ iff there exists u s.th. $w\left(R_{l}\right)^{*} u$ and $M, u \Vdash A$

Truth conditions

- Temporal operators (linear time)
- $M, w \Vdash \mathrm{X} A \quad$ iff there exists u s.th. $w R u$ and $M, u \Vdash A$

■ $M, w \Vdash F A$ iff there exists n, u s.th. $w R^{n} u$ and $M, u \Vdash A$

■ $M, w \Vdash A U B$ iff there exists u s.th. $w R^{*} u$ and $M, u \Vdash B$ and $M, v \Vdash A$ for all v s.th. $\left(w R^{*} v\right.$ and $\left.v R^{+} u\right)$

Model checking

Given M, w, and A, do we have $M, w \Vdash A$?

■ Model checking problem

- can be solved in polynomial time for most modal logics

■ Model checking in LoTREC

- requires more LoTREC primitives \Longrightarrow later

Part 1: Theory

1 Modal logics
■ Possible worlds models

- Classes of models
- Language

■ Semantics

2 Reasoning problems

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Outline

1 Modal logics

- Possible worlds models
- Classes of models
- Language
- Semantics

2 Reasoning problems
■ Validity and satisfiability in a class of models

- Outline of the tableaux method

Validity and satisfiability in the set of all models

$\mathrm{K}=$ the set of all possible worlds models (Kripke)
■ A is valid in K iff for all M in K and all w in $M: M, w \Vdash A$
Example

- $\square(P \vee \neg P)$

■ $\square P \wedge \square Q \rightarrow \square(P \wedge Q)$

- A is satisfiable in K iff for some M in K and some w in M : $M, w \Vdash A$

Example

Validity and satisfiability in the set of all models

$\mathrm{K}=$ the set of all possible worlds models (Kripke)
■ A is valid in K iff for all M in K and all w in $M: M, w \Vdash A$
Example

- $\square(P \vee \neg P)$
- $\square P \wedge \square Q \rightarrow \square(P \wedge Q)$

■ A is satisfiable in K iff for some M in K and some w in M : $M, w \Vdash A$

Example

- P
- $P \wedge \neg \square P$
- $P \wedge \square \neg P$
- $\square P \wedge \neg \square \square P$

Validity and satisfiability in some class of models

$\mathcal{C}=$ some subset of K
■ A is valid in \mathcal{C} iff for all M in \mathcal{C} and all w in $M: M, w \Vdash A$ Example

■ $\square P \rightarrow P$ invalid in $\mathrm{K} \quad \square P, \neg P \longrightarrow P$

- $\square P \rightarrow P$ valid in the class of reflexive models $\square \neg P, \boxminus P$

■ $\diamond \diamond P \rightarrow \diamond P$ valid in transitive models

- A is satisfiable in \mathcal{C} iff for some M in \mathcal{C} and some w in M : $M, w \Vdash A$
Example
- $P \wedge \square \neg P$ is satisfiable in K
- $P \wedge \square \neg P$ is unsatisfiable in the class of reflexive models

Validity and satisfiability in some class of models

$\mathcal{C}=$ some subset of K
■ A is valid in \mathcal{C} iff for all M in \mathcal{C} and all w in $M: M, w \Vdash A$
Example

- $\square P \rightarrow P$ invalid in $\mathrm{K} \quad \square P, \neg P \longrightarrow P$
- $\square P \rightarrow P$ valid in the class of reflexive models

■ $\diamond \diamond P \rightarrow \diamond P$ valid in transitive models
■ A is satisfiable in \mathcal{C} iff for some M in \mathcal{C} and some w in M : $M, w \Vdash A$
Example

- $P \wedge \square \neg P$ is satisfiable in K
- $P \wedge \square \neg P$ is unsatisfiable in the class of reflexive models

Validity and satisfiability in some class of models

$\mathcal{C}=$ some subset of K
■ A is valid in \mathcal{C} iff for all M in \mathcal{C} and all w in $M: M, w \Vdash A$
Example

- $\square P \rightarrow P$ invalid in $\mathrm{K} \quad \square P, \neg P \longrightarrow P$
- $\square P \rightarrow P$ valid in the class of reflexive models

■ $\diamond \diamond P \rightarrow \diamond P$ valid in transitive models

- A is satisfiable in \mathcal{C} iff for some M in \mathcal{C} and some w in M : $M, w \Vdash A$
Example
- $P \wedge \square \neg P$ is satisfiable in K
- $P \wedge \square \neg P$ is unsatisfiable in the class of reflexive models

Examples

- Singleton models: $\{M: \operatorname{card}(W)=1\}$ valid: $\diamond A \rightarrow \square A$
- Reflexive models: KT
valid: $\square A \rightarrow A$
- Transitive models: K 4 valid: $\diamond \diamond A \rightarrow \diamond A$

■ Reflexive and transitive models: S4 valid:

■ Equivalence relation: S5 valid: $A \rightarrow \square \diamond A, \ldots$

Reasoning problems

■ Model checking Given M, w, and A do we have $M, w \Vdash A$?

- Validity

Given A and $\mathcal{C} \quad$ is A valid in \mathcal{C} ?

- Satisfiability

Given A and $\mathcal{C} \quad$ does there exist M in \mathcal{C} and w in M :

$$
M, w \Vdash A ?
$$

- Model construction Given A and $\mathcal{C} \quad$ compute M in \mathcal{C} and w in M :

$$
M, w \Vdash A
$$

How can we solve them automatically?

Outline

1 Modal logics
■ Possible worlds models

- Classes of models
- Language
- Semantics

2 Reasoning problems

- Validity and satisfiability in a class of models
- Outline of the tableaux method

Classical logic [Beth]

Checking the satisfiability of a given formula A :
1 Try to find M and w by applying truth conditions
$■ M, w \Vdash A_{1} \wedge A_{2} \Longrightarrow$ add $M, w \Vdash A_{1}$, and add $M, w \Vdash A_{2}$
■ $M, w \Vdash A_{1} \vee A_{2} \Longrightarrow$ either add $M, w \Vdash A_{1}$, or add $M, w \Vdash A_{2}$ (nondeterministic)

- $M, w \Vdash \neg A_{1} \Longrightarrow$ don't add $M, w \Vdash A_{1}$!!
$■ M, w \Vdash \neg \neg A_{1} \quad \Longrightarrow$ add $M, w \Vdash A_{1}$
- $M, w \Vdash \neg\left(A_{1} \vee A_{2}\right) \Longrightarrow$ add $M, w \Vdash \neg A_{1}$ and add $M, w \Vdash \neg A_{2}$
- $M, w \Vdash \neg\left(A_{1} \wedge A_{2}\right) \Longrightarrow$ add $M, w \Vdash \neg A_{1}$ or add $M, w \Vdash \neg A_{2}$
\Longrightarrow tableau rules
2 apply while possible (saturation)
3 is M a model?
- NO if both $M, w \|-B$ and $M, w \| \neg B$ (closed tableau)
- ELSE M is a model for A (open tableau)
$W=\{w\}, R=\emptyset, V(w)=\{P: M, w \Vdash P\}$

Classical logic [Beth]

Checking the satisfiability of a given formula A :
1 Try to find M and w by applying truth conditions
$■ M, w \Vdash A_{1} \wedge A_{2} \Longrightarrow$ add $M, w \Vdash A_{1}$, and add $M, w \Vdash A_{2}$
■ $M, w \Vdash A_{1} \vee A_{2} \Longrightarrow$ either add $M, w \Vdash A_{1}$, or add $M, w \Vdash A_{2}$ (nondeterministic)

- $M, w \Vdash \neg A_{1} \Longrightarrow$ don't add $M, w \Vdash A_{1}$!!
$■ M, w \Vdash \neg \neg A_{1} \quad \Longrightarrow$ add $M, w \Vdash A_{1}$
- $M, w \Vdash \neg\left(A_{1} \vee A_{2}\right) \Longrightarrow$ add $M, w \Vdash \neg A_{1}$ and add $M, w \Vdash \neg A_{2}$
- $M, w \Vdash \neg\left(A_{1} \wedge A_{2}\right) \Longrightarrow$ add $M, w \Vdash \neg A_{1}$ or add $M, w \Vdash \neg A_{2}$
\Longrightarrow tableau rules
2 apply while possible (saturation)
3 is M a model?
- NO if both $M, w \Vdash B$ and $M, w \Vdash \neg B$ (closed tableau)
- ELSE M is a model for A (open tableau)

$$
W=\{w\}, R=\emptyset, V(w)=\{P: M, w \Vdash P\}
$$

Modal logic [Fitting]

Basic cases
■ $M, w \Vdash \diamond A$
\Longrightarrow add some new node u, add $w R u$, add $M, u \Vdash A$
$■ M, w \Vdash \square A$
\Longrightarrow for all node u s.th. $w R u$, add $M, u \Vdash A$

Apply truth conditions = build a labeled graph

- create nodes
- add links
- add formulas to nodes

Example

a node with the input formula

[] P \& <> Q \& <> (R v ~ P)

Example

$M, w \Vdash A \wedge B$ iff $M, w \Vdash A$ and $M, w \Vdash B$
A is $\square P$
$B \quad$ is $\quad \diamond Q \wedge \diamond(R \vee \neg P)$
[] P \& <> Q \& <> (R v ~ P)

Example

$M, w \Vdash A \wedge B$ iff $M, w \Vdash A$ and $M, w \Vdash B$
$\begin{array}{ll}A & \text { is } \quad \square P \\ B & \text { is } \diamond Q \wedge \diamond(R \vee \neg P)\end{array}$

$$
\begin{aligned}
& {[P \&<>Q \&<>(R v \sim P)} \\
& \text { [] } \\
& <>Q \&<>(R \vee \sim P)
\end{aligned}
$$

Example

$M, w \Vdash A \wedge B$ iff $M, w \Vdash A$ and $M, w \Vdash B$

$$
\begin{gathered}
{[] P \&<>Q \&<>(R \vee \sim P)} \\
{[] P} \\
<>Q \&<>(R \vee \sim P) \\
<>Q \\
<>(R \vee \sim P)
\end{gathered}
$$

Example

$M, w \Vdash \diamond A$ iff there is u s.th. $w R u$ and $M, u \Vdash A$

Example

$M, w \Vdash \square A$ iff for all u : if $w R u$ then $M, u \Vdash A$

Example

$M, w \Vdash A \vee B$ iff $M, w \Vdash A$ or $M, w \Vdash B$

Example

premodel 2

Example

A short history of tableaux

Handwritten proofs since 1950's
■ ... Sequent calculi [Beth, Gentzen]

- Tableaux calculi
(tableau proof $=$ sequent proof backwards)
- Kripke: explicit accessibility relation
- Smullyan, Fitting: uniform notation
- Single-step tableaux [Massacci]
$\sigma: \diamond A \Longrightarrow \sigma, n: A$
- Tableaux by graph rewriting [Castilho et al.]

Nowadays: automated provers
■ fast: FaCT [Horrocks], LWB [Heuerding, Jäger et col.], K-SAT [Giunchiglia\&Sebastiani]

- generic: TWB [Abate\&Goré], LoTREC

Part 2: Practice

3 LoTREC
■ Language

- Rules
- Strategies
- Tableau notation

■ Do the algorithms do the right thing?
4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K ${ }_{n}$
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

A short history of LoTREC

■ before 2000: theoretical bases (Luis Fariñas del Cerro, Olivier Gasquet, Andreas Herzig)

- David Fauthoux [2000]
- rewriting kernel
- event-based implementation
- K, KT, KB

■ Mohamad Sahade [2002-2005]

- loopchecking
- more logics: S4, K4, ...
- general completeness and termination proofs
- Bilal Saïd [2006-2010]
- LTL, PDL...
- Confluence \& commutative patterns
- Model checking
- graph rewriting basis \& their theoretical properties
- GUI, full web accessibility, step-by-step run,...

The black box

Outline

3 LoTREC
■ Language

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL

■ Suggestions

User-defined language

Atomic propositions

- Any constant symbol $=$ Capital_1st_letter_words

Formulas

- Prefix notation (but can be displayed in infix form)
- Priority and associativity to avoid printing parentheses

Example (definition)			
name	arity	display	
not	1	\sim_{-}	
and	2	\mathcal{E}_{-}	
\ldots			
nec	1	[]$-$	
pos	1	$<>-$	
\ldots			

Example (usage)

- pos P
displayed: <>P
- and not Q not P displayed: $\sim \mathrm{Q} \& \sim \mathrm{P}$

Outline

3 LoTREC

- Language

■ Rules

- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}
- KT

■ KD

- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

On paper

Truth conditions

as Graph rewriting rules Structural constraints

$M, w \Vdash A \wedge B$ iff
$M, w \Vdash A$ and $M, w \Vdash B$

On paper

Truth conditions

$+$
 Structural constraints
 as Graph rewriting rules

$M, w \Vdash \diamond A$ iff
$\exists u$ s.th. $w R u$ and
$M, u \Vdash A$

On paper

Truth conditions

as Graph rewriting rules
 Structural constraints

Model is reflexive

In LoTREC

Graph rewriting rule as "if Conditions ... then Actions"

Rule And
hasElement node and variable A variable B
add node variable A
add node variable B
End

In LoTREC

Graph rewriting rule as "if Conditions ... then Actions"

> Rule Pos
> hasElement node1 pos variable A
createNewNode node2
link node1 node2 R
add node2 variable A
End

In LoTREC

Graph rewriting rule as "if Conditions ... then Actions"

Rule ReflexiveEdges
isNewNode node
link node node R
End

Semantics of rules: the basic idea

Apply rule to a graph $G=$ apply to every formula in every node \Longrightarrow strategies get more declarative
\Longrightarrow proofs get easier
Tableau rules expand directed graphs by

- adding links
- adding nodes
- adding formulas
- duplicating the graph

$$
\begin{aligned}
\operatorname{rule}(G) & =\left\{G_{1}, \ldots, G_{n}\right\} \\
\operatorname{rule}\left(\left\{G_{1}, \ldots, G_{n}\right\}\right) & =\operatorname{rule}\left(G_{1}\right) \cup \ldots \cup \operatorname{rule}\left(G_{n}\right)
\end{aligned}
$$

Managing graph copies: depth-first

Managing graph copies: depth-first

Managing graph copies: depth-first

Managing graph copies: depth-first

Managing graph copies: depth-first

Outline

3 LoTREC

- Language
- Rules

■ Strategies

- Tableau notation

■ Do the algorithms do the right thing?
4 Implementing logics

- Classical logic
- Modal logic K

■ Multi-modal logic K ${ }_{n}$

- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

Why a strategy?

- Apply rules in order:

Strategy performOnce
Stop
And
Or

- Saturation:

Strategy CPL_strat	$\frac{\text { Strategy K_strat }}{\text { repeat }}$
Stop	$\underline{\text { repeat }}$
NotNot	CPL
And	Pos
Or	Nec
end	

Semantics of strategies

■ block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

Example
Strategy CPL
Stop
And
Or
Not_Not
...

Semantics of strategies

■ block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

- repeat block end repeat until no rule applicable (saturation)

Example
Strategy K

```
repeat
    CPL
    Pos
    Nec
end
```

For simple logics: repeat and blocks are sufficient!

Semantics of strategies

■ block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

- repeat block end
repeat until no rule applicable (saturation)
- firstRule block end
apply first applicable rule, then stop (unfair!) cf. higher-order proof assistants

Example
repeat
firstRule
rule1
rule2 x
rule1 is always applicable rule2 is applicable
BUT never applied!
end
end

Semantics of strategies

■ block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

- repeat block end repeat until no rule applicable (saturation)
- firstRule block end apply first applicable rule, then stop (unfair!) cf. higher-order proof assistants
- allRules block end
exactly as a "block", but needed inside firstRule
Example firstRule
rule1
allRules
rule2
rule3
end
rule4
end

Semantics of strategies

■ block: rule1 ... rulen ... anotherStrategy ... apply all applicable rules in order then stop

- repeat block end repeat until no rule applicable (saturation)
- firstRule block end apply first applicable rule, then stop (unfair!) cf. higher-order proof assistants
- allRules block end exactly as a "block", but needed inside firstRule
- applyOnce rule apply the rule on only one occurrence

Outline

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL

■ Suggestions

Tableau definition

The set of tableaux for formula A with strategy S is the set of graphs obtained by applying the strategy S to an initial single-node graph whose root contains only A.

- Notation: $S(A)$

Remark
our tableau = "tableau branch" in the literature (sounds odd to call a graph a branch)

Open or Closed?

- A node is closed iff it contains "FALSE" (unless...)
- A tableau is closed iff it has a closed node

■ A set of tableaux is closed iff all its elements are closed

An open tableau is a premodel
\Longrightarrow build a model

Outline

3 LoTREC

- Language
- Rules
- Strategies
- Tableau notation

■ Do the algorithms do the right thing?
4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic Kn
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

Formal properties

To be proved for each strategy S :

- Termination

For every $A, S(A)$ terminates.

- Soundness

If $S(A)$ is closed then A is unsatisfiable.

- Completeness

If $S(A)$ is open then A is satisfiable.

In general. . .

■ Soundness proofs: easy (we just apply truth conditions)

- Termination proofs: not so easy (case-by-case)
- Completeness proofs...
- ... for fair strategies: standard techniques work "in most cases" but fair strategies do not terminate in general
- ... for terminating strategies: difficult rigorous proofs rare even for the basic modal logics! reason: strategy $=$ imperative programming

In general. . .

BUT soundness + termination is practically sufficient (e.g. when experimenting with a logic):

■ given: class of models \mathcal{C}, strategy S, formula A

- apply strategy S to A
- take an open tableau and build pointed model (M, w)
- check if M in desired class of models

■ check if $M, w \Vdash A$

A general termination theorem

[O. Gasquet et al., AIML 2006]

- IF for every rule ρ :
the RHS of ρ contains strict subformulas of its LHS AND
some restriction on node creation
- THEN
for every formula A:
the tableaux construction terminates

Another general termination theorem

[O. Gasquet et al., AIML 2006]

- IF for every rule ρ :
the RHS of ρ contains subformulas of its LHS
AND
some restriction on node creation
AND
some loop testing in the strategy
- THEN
for every formula A :
the tableaux construction terminates

Part 2: Practice

3 LoTREC
■ Language

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics
■ Classical logic

- Modal logic K

■ Multi-modal logic K_{n}

- KT

■ KD

- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL

■ Suggestions

How to get LoTREC

2)
 Webstart

■ or, Download \Longrightarrow Executable to get LoTREC_2.0.zip

- unzip
- run file run.bat

Outline

3 LoTREC
■ Language

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K

■ Multi-modal logic K_{n}

- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

How to proceed

CPL: Classical Propositional Logic
1 From the task pane, open:
Open Predefined logic \Longrightarrow Others \Longrightarrow CPL
2 Run with
Build Models
3 Why these results?

- Predefined formula
- Predefined Main strategy

4 Review the logic definition: Connectors, Rules...
5 Change the formula
6 Re-run...

Adding " \leftrightarrow "

What about formulas with " \leftrightarrow " connector?

1 Save as CPL locally as "CPL_complete.xml'
2 Add to Connectors:

name	arity	display	priority
equiv	2	$__{-}^{\langle-\rangle}$	0 (lowest)

3 Add to Rules:
Equiv, and NotEquiv
4 Call them in the strategy
5 Try some formulas...

Outline

3 LoTREC
■ Language

- Rules
- Strategies

■ Tableau notation

- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic

■ Modal logic K

- Multi-modal logic Kn
- KT

■ KD

- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From CPL to K

■ Here: minimal set of connectors \neg, \wedge, \square only

- Rules of CPL
- Rule for $\neg \square A$:
- for every $\neg \square A$ at every node w :
create a successor u and add $\neg A$ to it
■ Rule for $\square A$:
■ for every $\square A$ at every w, and for every R-successor u of w : add A to u

■ Strategy: saturate with all the rules...

Rules

- Rule NotNec
hasElement w pos variable a
createNewNode u
link w u R
add u variable a
- Rule Nec
hasElement w nec variable a
isLinked w u R
add u variable a

Strategies

1 Continue with your "CPL_complete.xml', or
Open Predefined logic \Longrightarrow Others \Longrightarrow CPL_complete
2 Add the nec connector
3 Add the rules Nec and NotNec
4 Add a new strategy KStrategy which calls repeatedly CPLStrategy and then the rules Pos and Nec
5 Test with [] P \& $<>Q \&<>(R \vee \sim P)$
i.e. and nec P and pos Q pos or R not P

6 Test with other formulas...

Outline

3 LoTREC
■ Language

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K

■ Multi-modal logic K_{n}

- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From K To K n

■ Replace the connector $\square_{\text {_ }}$ by [-]-

- Change all the predefined formulae

■ Change the modal rules: Nec and NotNec

```
Rule Nec_K
    hasElement w nec variable a
    isLinked w u R
    add u variable a
```


How to proceed

1 From the task pane, open:
Open Predefined logic \Longrightarrow Others \Longrightarrow Multimodal-K
2 Check $\neg[1] P \wedge \neg[2] \neg P, \ldots$

Description logic ALC

■ Notational variant:

- write R instead of I ('atomic role')
- write A instead of P ('atomic concept')
- write C instead of A ('complex concept')
- write Π instead of \wedge
- write \sqcup instead of \vee
- write $\forall R$.C instead of $[I] A$
- write $\exists R$. C instead of $\langle I\rangle A$

■ In LoTREC: change connectors and rules appropriately
■ Test concept satisfiability:
$\exists R .\left(A \sqcap A^{\prime}\right) \sqcap \forall R . \neg A$

- Test concept inclusion:
$C_{1} \sqsubseteq C_{2}$ iff $C_{1} \sqcap \neg C_{2}$ unsatisfiable

Outline

3 LoTREC
■ Language

- Rules
- Strategies

■ Tableau notation

- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K

■ Multi-modal logic K_{n}

- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From K to KT

Accessibility relation R is reflexive
$■$ Aim: close all tableaux for $\square P \wedge \neg P \quad$ (negation of axiom T)
■ Idea ${ }_{1}$: integrate reflexivity into the truth condition
■ $M, w \Vdash \square A$ iff $M, w \Vdash A$, and $M, u \Vdash A$ for every u that is accessible from w via R

■ Idea ${ }_{2}$: explicitly add reflexive edges to the graphs

From K to KT, ctd.

1 Save Monomodal-K as Monomodal-KT
2 Idea ${ }_{1}$: add new rule
Rule NecT
hasElement w nec variable a
add w variable a
3 Idea 2 : add new rule
Rule Reflexive_edges_for_R
isNewNode w
link W W R
4 Call new rule in the strategy
5 Check $P \wedge \square \neg P, P \wedge \square \square \neg P, \ldots$

Outline

3 LoTREC
■ Language

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K

■ Multi-modal logic K_{n}

- KT

■ KD

- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From K to KD

Accessibility relation R is serial
$■$ Aim: close all tableaux for $\square P \wedge \square \neg P \quad$ (negation of axiom D)
■ Naive idea: just add edges
Rule makeSerial
isNewNode w (match a node)
createNewNode u
link w u R
\Longrightarrow will loop

From K to KD , ctd.

Accessibility relation R is serial
■ Idea: add edges only when needed and not created elsewhere Rule makeSerial
hasElement w nec variable a
hasNotElement w not nec variable b
createNewNode u
link w u R

- Call rule makeSerial in the strategy

■ Check $\square P \wedge \square \neg P \ldots \Rightarrow$ sound but suboptimal

- avoid too many successor nodes: apply makeSerial only once
applyOnce makeSerial

From K to KD, ctd.

Accessibility relation R is serial
■ Idea: add edges only when needed and not created elsewhere Rule makeSerial
hasElement w nec variable a
hasNotElement w not nec variable b
createNewNode u
link w u R

- Call rule makeSerial in the strategy

■ Check $\square P \wedge \square \neg P \ldots \Longrightarrow$ sound but suboptimal
■ avoid too many successor nodes: apply makeSerial only once applyOnce makeSerial

Outline

3 LoTREC
■ Language

- Rules
- Strategies

■ Tableau notation

- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}
- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From KT to S4

■ Accessibility relation R is reflexive and transitive $(\mathrm{S} 4=\mathrm{KT} 4)$

- Aim: close all tableaux for $\square P \wedge \neg \square \square P$
(negation of axiom 4)
- Idea ${ }_{1}$: integrate reflexivity and transitivity into the truth condition
$■ M, w \Vdash \square A$ iff $M, w \Vdash A$, and $M, u \Vdash \square A$ for every u that is accessible from w via R

■ Idea ${ }_{2}$: ...

From KT to S4, ctd.

1 Save Monomodal-KT as Monomodal-S4
2 Copy/Paste rule Nec , and rename it as Nec4
3 Idea ${ }_{1}$:
Rule Nec4
hasElement node nec R variable a
isLinked node node' R
add node' nec R variable a
4 Check $\neg(\square P \rightarrow \square \square P)$, i.e. $\square P \wedge \neg \square \square P$
5 Test $\square \neg \square P$

Taming S4

■ LoTREC loops on input formula $\square \neg \square P$!
■ Execute step-by-step ('Step By Step' instead of 'Build Premodels' button)

■ Observe: if no clash wasn't found after 2 nodes, there is no chance to find it later \Longrightarrow no need to create successors for nodes that are included in an ancestor!

- hypothesis: nodes have been locally saturated before checking for loops

Taming S4, ctd.

- Add the rule loopTest (cf. predefined S4_Optimal)

Rule loopTest
isNewNode node' (required for local activation)
isAncestor node node'
contains node node'
mark node' CONTAINED
link node' node Loop (optional, highlights the inclusion)

- Call rule loopTest in the strategy
- guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT

■ Run again.

Taming S4, ctd.

■ Add the rule loopTest (cf. predefined S4_Optimal)
Rule loopTest
isNewNode node' (required for local activation)
isAncestor node node'
contains node node'
mark node' CONTAINED
link node' node Loop
(optional, highlights the inclusion)

- add condition to rule NotNec:
hasElement node not nec A
isNotMarked node CONTAINED
- Call rule loopTest in the strategy
- guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT

Taming S4, ctd.

■ Add the rule loopTest (cf. predefined S4_Optimal)
Rule loopTest
isNewNode node' (required for local activation)
isAncestor node node'
contains node node'
mark node' CONTAINED
link node' node Loop
(optional, highlights the inclusion)

- add condition to rule NotNec:
hasElement node not nec A
isNotMarked node CONTAINED

■ Call rule loopTest in the strategy

- guarantee that nodes are saturated before loopchecking: call loopTest after the CPL rules and rule NecT

■ Run again...

Outline

3 LoTREC
■ Language

- Rules
- Strategies

■ Tableau notation

- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K

■ Multi-modal logic K_{n}

- KT
- KD
- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

From S4 to intuitionistic logic LJ

- Accessibility relation R is reflexive, transitive, and hereditary
- Truth conditions:
$M, w \Vdash A \rightarrow B$ iff $M, u \Vdash A$ or $M, u \Vdash B$ for all u s.th. $w R u$ $M, w \Vdash \neg A$ iff $M, u \Vdash A$ for all u s.th. $w R u$
- tableau method requires signed formulas

■ in LoTREC: define connectors sTrue and sFalse

- Rules for conjunction:

Rule sTrueAnd
hasElement w sTrue and variable a variable b
add w sTrue variable a
add w sTrue variable b
Rule sFalseAnd
hasElement w sFalse and variable a variable b
duplicate copiedgraph
add w sFalse variable a

From S4 to intuitionistic logic LJ

- Accessibility relation R is reflexive, transitive, and hereditary
- Truth conditions:
$M, w \Vdash A \rightarrow B$ iff $M, u \Vdash A$ or $M, u \Vdash B$ for all u s.th. $w R u$ $M, w \Vdash \neg A$ iff $M, u \Vdash A$ for all u s.th. $w R u$
■ not valid: $\neg \neg A \leftrightarrow A ; \neg(A \wedge B) \leftrightarrow \neg A \vee \neg B ; \ldots$
- tableau method requires signed formulas
- in LoTREC: define connectors sTrue and sFalse

Rule sTrueAnd

hasElement w sTrue and variable a variable b
add w sTrue variable
add w sTrue variable b

Rule sFalseAnd

hasElement w sFalse and variable a variable b

duplicate copiedgraph

add w sFalse variable a

From S4 to intuitionistic logic LJ

- Accessibility relation R is reflexive, transitive, and hereditary
- Truth conditions:
$M, w \Vdash A \rightarrow B$ iff $M, u \Vdash A$ or $M, u \Vdash B$ for all u s.th. $w R u$
$M, w \Vdash \neg A$ iff $M, u \Vdash A$ for all u s.th. $w R u$
■ not valid: $\neg \neg A \leftrightarrow A ; \neg(A \wedge B) \leftrightarrow \neg A \vee \neg B ; \ldots$
- tableau method requires signed formulas

■ in LoTREC: define connectors sTrue and sFalse

- Rules for conjunction:

Rule sTrueAnd
hasElement w sTrue and variable a variable b
add w sTrue variable a
add w sTrue variable b
Rule sFalseAnd
hasElement w sFalse and variable a variable b
duplicate copiedgraph
add w sFalse variable a
add copiedgraph.w sFalse variable b

From S4 to intuitionistic logic LJ, ctd.

- Rules for implication:

Rule sFalseImp
hasElement w sFalse imp variable a variable b isNotMarked w CONTAINED
createNewNode u
link w u R
add u sTrue variable a
add u sFalse variable b
Rule sTrueImpActual
hasElement w sTrue imp variable a variable b
add w sFalse variable a
add copiedgraph.w sTrue variable b
duplicate copiedgraph
Rule sTrueImpPropagation
hasElement w sTrue imp variable a variable b
isLinked w u R

From S4 to intuitionistic logic LJ, ctd.

- Rule for true atoms (implements hereditary R):

Rule sTrueAtom
hasElement w sTrue variable a
isAtomic variable a
isLinked w u R
add u sTrue variable a
■ Test:
$((P \rightarrow Q) \rightarrow P) \rightarrow P$
(Pierce's formula)

- Test:
$\neg \neg P \rightarrow P$
$P \rightarrow \neg \neg P$
$P \vee \neg P$

■ improve: use three signs. . .

Outline

3 LoTREC
■ Language

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K

■ Multi-modal logic K_{n}

- KT

■ KD

- S4
- Intuitionistic logic LJ

■ Model checking in LoTREC

- PDL

■ Suggestions

Model checking

Given M_{0}, w_{0}, and $A_{0} \ldots$ do we have $M_{0}, w_{0} \Vdash A_{0}$?

1. build model M_{0} with root w_{0} in LoTREC
$\frac{\text { createNewNode }}{\text { createNewNode }}$ w,
link w0 u R,
ladd u P,
add u Q,
2. add formula A_{0} to be checked to root note w_{0} add w0 isItTrue nec not P (add as dummy connector)
3. top-down: decomposition of A_{0}
hasElement w isItTrue not variable A add w isItTrue variable A
hasElement w isItTrue nec variable A
isLinked w u R
add u isItTrue variable A

Model checking, ctd.

4. bottom-up: build truth value of A_{0}
```
hasElement w isItTrue variable A
isAtomic variable A
hasElement w variable A
markExpression w isItTrue variable A Yes
hasElement w isItTrue nec variable A
isLinked w u R
isMarkedExpression u isItTrue variable A No
markExpression w isItTrue nec variable A No
hasElement w isItTrue nec variable A
isLinked w u R
isMarkedExpressionInAllChildren w isItTrue variable A R Yes
```

markExpression w isItTrue nec variable A Yes

Outline

3 LoTREC
■ Language

- Rules
- Strategies

■ Tableau notation

- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}
- KT

■ KD

- S4
- Intuitionistic logic LJ
- Model checking in LoTREC
- PDL
- Suggestions

Propositional Dynamic Logic PDL

■ Language: complex programs Π, complex formulas A

$$
\begin{gathered}
\Pi::=I|A ?| \Pi ; \Pi|\Pi \cup \Pi| \Pi^{*} \\
A::=P|\neg A| A \wedge A|A \vee A|\langle\Pi\rangle A \mid[\Pi] A
\end{gathered}
$$

where P ranges over \mathcal{P} and $/$ ranges over \mathcal{I}
■ Interpretation of complex programs and formulas: defined by mutual recursion

- $R_{A ?}=\{\langle w, w\rangle: M, w \Vdash A\}$
- $R_{\Pi_{1} ; \Pi_{2}}=R_{\Pi_{1}} \circ R_{\Pi_{2}}$
- $R_{\Pi_{1} \cup \Pi_{2}}=R_{\Pi_{1}} \cup R_{\Pi_{2}}$
- $R_{\Pi^{*}}=\left(R_{\Pi}\right)^{*}$

■ $M, w \Vdash\langle\Pi\rangle A$ iff there is w^{\prime} such that $w R_{\Pi} w^{\prime}$ and $M, w^{\prime} \Vdash A$

PDL: taming the Kleene star

■ Problem: how to handle transitive closure?

- Solution: postpone

■ $M, w \Vdash\left[\Pi^{*}\right] A$ iff $M, w \Vdash A \wedge[\Pi]\left[\Pi^{*}\right] A$

- in LoTREC:

Rule Nec_Star
hasElement w nec star variable Pi variable A
add w variable A
add w nec variable Pi nec star variable Pi
variable A
Rule Pos_Star
hasElement w pos star variable Pi variable A add w or variable A pos variable Pi pos ...

- Observe: these rules don't add subformulas
- . . . but 'almost' subformulas (Fischer-Ladner closure)

PDL: taming the Kleene star

■ Problem: how to handle transitive closure?

- Solution: postpone

■ $M, w \Vdash\left[\Pi^{*}\right] A$ iff $M, w \Vdash A \wedge[\Pi]\left[\Pi^{*}\right] A$

- in LoTREC:

Rule Nec_Star
hasElement w nec star variable Pi variable A
add w variable A
add w nec variable Pi nec star variable Pi
variable A
Rule Pos_Star
hasElement w pos star variable Pi variable A
add w or variable A pos variable Pi pos ...
■ termination: use looptesting

- Observe: these rules don't add subformulas
- . . . but 'almost' subformulas (Fischer-Ladner closure)

PDL: taming the Kleene star, ctd.

- A problem:

■ execute $\left\langle I^{*}\right\rangle P$ step-by-step
■ always choose the graph where the fulfillment of $\left\langle I^{*}\right\rangle P$ is postponed
■ observe: terminates by looptest, but $\left\langle I^{*}\right\rangle P$ not fulfilled \Longrightarrow premodel cannot be transformed into a model of $\left\langle I^{*}\right\rangle P$

■ Solution: check whether are all eventualities are fulfilled \Longrightarrow use model checking, v.s.

Outline

3 LoTREC
■ Language

- Rules
- Strategies
- Tableau notation
- Do the algorithms do the right thing?

4 Implementing logics

- Classical logic
- Modal logic K
- Multi-modal logic K_{n}
- KT
- KD
- S4
- Intuitionistic logic LJ

■ Model checking in LoTREC

- PDL
- Suggestions

It is up to you...

- S5; K + Universal operator
- Confluence
- LTL

Thank you!

