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Medical imaging

What is medical imaging?

I Visualization of body parts, tissues or organs, for use in clinical
diagonsis, treatment and disease monitoring

I Anatomical vs Functional
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Medical imaging

Medical imaging modalities

I Nuclear medicine (SPECT, PET)

I Radiology techniques (X-ray radiography, CT, MRI, Ultrasound)

I Scanners
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Medical imaging

Computational medical imaging
I Data inversion

I Incomplete data, non-traditional sensing, etc.
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Medical imaging

Incomplete data in ultrasound

I Computational methods to compensate for the lack of data
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. T. Szasz, A. Basarab, D. Kouamé, Beamforming through regularized inverse problems in ultrasound medical imaging, IEEE TUFFC,
2016.
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Inverse problems

Basics

Schematic view
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Inverse problems

Basics

Ill-posedness

y = T (x) + n

I y ∈ CM is the observed data (image)
I x ∈ CN is the image of interest (not observed)
I n ∈ CM is the noise

T is the observation (forward) operator
I known : estimate x from y
I unknown : estimate x and T from y

I Prior information on T (linear, parametric,...)

Inverse problems in computational medical imaging are usually ill-posed
I T is not invertible
I An infinity of solutions may exist
I A small perturbation on the data may cause an important variation on

the estimate (e.g. Fourier measurements)
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Inverse problems
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Inverse problems

Sparse-based inversion

Inversion and regularization

How to chose one (the !) solution from all the possible solutions?
I Constrain the solution considering penalties
I Need for a priori information on x (regularization)
I Sparse regularization

Are medical images sparse ?
I Contain only a reduced number of non-zero pixels
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Inverse problems

Sparse-based inversion

Distributions promoting sparsity

x̂ = argmax
x

p(x|y) = argmin
x
(− log(py (y|x))− log(px(x)))

Most common choice
I Laplace distribution

x̂ = argminx ‖y− T (x)‖2
2 + λ‖x‖1
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Inverse problems

Sparse-based inversion

Distributions promoting sparsity

x̂ = argmax
x

p(x|y) = argmin
x
(− log(py (y|x))− log(px(x)))

Heavy-tailed distributions
I "The tyranny of the normal distribution is that we run the world ... by attributing average levels of competence to the whole

population. What really matters is what we do with the tails of the distribution rather than the middle.", R. X. Cringely, Accidental
Empires, 1992

I α-stable distribution, with α < 2

x̂ = argminx ‖y− T (x)‖2
2 + λ‖x‖p

p

. A. Achim, A. Basarab, G. Tzagkarakis, P. Tsakalides, D. Kouamé, Reconstruction of ultrasound RF echoes modelled as stable random
variables, IEEE TCI, 2015.
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Inverse problems

Sparse-based inversion

How about medical images that are not sparse?

Non-adaptive dictionaries to sparsify x
I Fourier transform : only adapted to stationary signals
I Short-time Fourier transform, wavelet transform
I Overcomplete representations : curvelet, ridgelet

x̂ = argminx ‖y− T (x)‖2
2 + λ‖Wx‖1
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Inverse problems

Sparse-based inversion

Learned dictionaries

Redundancy and patch self-similarity

. I. Tosic and P. Frossard, Dictionary learning, IEEE Signal Processing Magazine, 2011.

. Image source : https ://www.slideshare.net/zukun/p02-sparse-coding-cvpr2012-deep-learning-methods-for-vision
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Inverse problems
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Inverse problems

Summary

General path

From the forward model to its inversion
I Establish the forward model T linking the unknown (image) to the data

I Balance between fidelity to physics and computational tractability
I Define proper prior information about x and the noise

I Important impact on the solution’s pertinence
I Formalize the inverse problem as a cost function minimization
I Stochastic simulation or numerical optimization to find the minimizer

I Convexity of the cost function
I Form of the forward operator T
I Continuous and/or discrete variables

I Is the solution reliable ?
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Model-based approaches
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Model-based approaches

Image restoration

Image restoration models

y = SHx + n

I x ∈ RN : image to reconstruct
I y ∈ RM : observable data
I H ∈ RN×N : 2D convolution matrix

Deconvolution
I S : identity matrix (M = N)

Super-resolution
I S : subsampling matrix (M = d2N)

Compressed deconvolution
I S : random subsampling matrix (M << N)
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Model-based approaches

Image restoration
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Model-based approaches

Image restoration

Application to ultrasound - Forward model

Approximations
I Linear image formation model, under the first order Born approximation
I Spatially invariant PSF
I Circulant boundary conditions→ H is diagonalizable via Fourier

transform

y = h ⊗ x + n⇔ y = Hx + n

Example - 3D printed phantom

. K. Füzesi, A. Basarab, G. Cserey, D. Kouamé, M. Gyöngy, Validation of image restoration methods on 3D-printed ultrasound phantoms,
IEEE IUS, 2017.
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Model-based approaches

Image restoration

Hierarchical Bayesian model

Bayesian law
posterior ∝ likelihood × prior

Likelihood and parameter priors
I Likelihood : additive white Gaussian noise

p(y|x, σ2
n) =

1
(2πσ2

n)N/2
exp
(
− 1

2σ2
n
‖y− Hx‖2

2

)
I Priors :

I Noise variance σ2
n : conjugate inverse gamma (IG) prior

p(σ2
n) ∼ IG(α, ν)
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Model-based approaches

Image restoration

Image regularization

I Generalized Gaussian distributions (GGD)

p(xi) =
K∑

k=1

wk GGD(ξk , γk ) with wk = P(zi = k)

⇔ xi |zi = k ∼ GGD(ξk , γk )

where i ∈ {1, · · · ,N} and k ∈ {1, · · · ,K}, with N the number of
pixels and K the number of statistically homogeneous regions.

I Continuous (x) and discrete (z) variables→ MCMC algorithm
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Model-based approaches

Image restoration

Hyperparameter priors
I Label map z

p(zi |z−i) = p(zi |zV(i))
Potts model

p(z) =
1

C(β)
exp

 N∑
i=1

∑
i′∈V(i)

βδ(zi − zi′)


I Shape (ξ) and scale (γ) parameters : Uniform and Jeffreys

non-informative priors

p(ξ) =
K∏

k=1

p(ξk ) =
K∏

k=1

1
3
I[0,3](ξk )

p(γ) =
K∏

k=1

p(γk ) =
K∏

k=1

1
γk
IR+(γk )

I Posterior distribution Using Bayesian theorem, the joint posterior
(target) distribution is

p(x, z, ξ,γ, σ2
n |y) ∝ p(y|x, σ2

n , z, ξ,γ)p(x|z, ξ,γ)p(z|ξ,γ)p(ξ,γ)
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Model-based approaches

Image restoration

Conditional Distributions

I Noise variance σ2
n

p(σ2
n |y,x, ξ,γ, z) ∝ IG

(
α+ N/2, θ +

1
2
‖y− Hx‖2

2

)
I Scale γ

p(γk |x, ξ, z,γ−k ) ∝ IG
(

Nk

ξk
, ‖xk‖ξk

ξk

)
I Shape ξ Metropolis Hastings

p(ξk |x,γ, z, ξ−k ) ∝ aNk
k exp

(
−
‖xk‖ξk

ξk

γk

)
I[0,3](ξk )
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Model-based approaches

Image restoration

Conditional Distributions

I Label map z

πi,k ∝ ak exp

(
−|xi |ξk

γk

)
exp

 ∑
n′∈V(i)

βδ(k − zn′)

 .

The normalized conditional probability of the label zi is defined as

π̃i,k =
πi,k∑K

k=1 πi,k
.

I TRF x Hamiltonian Monte Carlo (HMC)

p(x|y, σ2
n , ξ,γ, z) ∝ exp

(
−
‖y− Hx‖2

2
2σ2

n
−

K∑
k=1

‖xk‖ξk
ξk

γk

)
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Model-based approaches

Image restoration

Hybrid Gibbs sampler

for t = 1 to NMC do
. Sample the noise variance σ2

n according to its conditional
distribution.
. Sample the scale parameter γ according to its conditional
distribution.
. Sample the shape parameter ξ using an RWMH algorithm.
. Sample the labels z according to the normalized conditional
distribution.
. Sample the TRF x using an HMC method.

end for

Basic idea of Gibbs sampler
Generate samples according to the conditional distributions of variables of
interest.

. N. Zhao, A. Basarab, D. Kouamé, J.-Y. Tourneret, Joint deconvolution and segmentation of ultrasound images using a hierarchical
Bayesian model based on generalized Gaussian priors, IEEE TIP, 2016.

Adrian Basarab Computational medical imaging: from model-based approaches to machine learning 27 / 69



Model-based approaches

Image restoration

Deconvolution result on in vivo data (1/2)

(a) Observation (b) `2 (c) `1

(d) Proposed x̂
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Model-based approaches

Image restoration

Deconvolution result on in vivo data (2/2)

TABLE – Deconvolution Quality for the real US data

Group Metrics RF `2 `1 Proposed

Skin melanoma
RG - 3.01 4.63 10.01

CNR 1.17 1.09 1.19 1.35
Time(s) - 0.007 3.53 1303.4
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Model-based approaches

Image restoration
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Model-based approaches

Image restoration

Forward model

y = SHx + n

I y ∈ RNl×1 : is the measured image, Nl = ml × nl

I x ∈ RNh×1 : super-resolved image to be estimated, Nh = d2Nl

I n ∈ RNl×1 : Gaussian noise

Degradation operators
I H ∈ RNh×Nh : 2D circulant convolution matrix (PSF of the transducer)
I S ∈ RNl×Nh : subsampling operator
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Model-based approaches

Image restoration

SR optimization problem

min
x

1
2
‖y− SHx‖2

2 + τφ(Ax)

I Total variation or `p-norm regularization
I Constrained optimization

minx,u
1
2
‖y− SHx‖2

2 + τφ(u)

subject to Ax = u

I Associated augmented Lagrangian function

L(x,u,λ) = 1
2
‖y− SHx‖2

2 + τφ(u) +
µ

2
‖Ax− u + λ‖2

2
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Model-based approaches

Image restoration

ADMM-based algorithm

Iterate
xk+1 = argminx ‖y− SHx‖2

2 + µ‖Ax− uk + dk‖2
2

uk+1 = argminu τφ(u) + µ
2 ‖Axk+1 − u + dk‖2

2
dk+1 = dk + (Axk+1 − uk+1)
until stopping criterion is satisfied.

Update u using the proximal operator

proxλ,φ(ν) = argmin
x
φ(x) +

1
2λ
‖x − ν‖2.

. Parikh & Boyd, Proximal algorithms, Foundations and Trends in Optimization, 2014.

. Combettes & Pesquet, Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter Proximal splitting methods in
signal processing, Springer Optimization and Its Applications, 2011.
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Model-based approaches

Image restoration

ADMM-based algorithm

Iterate
xk+1 = argminx ‖y− SHx‖2

2 + µ‖Ax− uk + dk‖2
2

uk+1 = argminu τφ(u) + µ
2 ‖Axk+1 − u + dk‖2

2
dk+1 = dk + (Axk+1 − uk+1)
until stopping criterion is satisfied.

Update x
I `2 − `2 minimization problem

min
x

1
2
‖y− SHx‖2

2 + τ‖Ax− v‖2
2

I Classical solution O(N3
h )

x̂ = (HHSHSH + 2τAHA)−1(HHSHy + 2τAHv)

I SH is not diagonalisable in the frequency domain
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Model-based approaches

Image restoration

Proposed closed-form solution

min
x

1
2
‖y− SHx‖2

2 + τ‖Ax− v‖2
2

I Lemma

FSHSFH =
1
d2 (Jd · Iml ) · (Jd · Inl )

where Jd ∈ Rd×d is a matrix of ones, Iml and Inl are identity
matrices and · is the Kronecker product.

I Proposed solution O(Nh logNh)

x̂ =
1
2τ

FHΨFr− 1
2τ

FHΨΛH
(

2τd INl +ΛΨΛH
)−1

ΛΨFr

where r = HHSHy + 2τAHv, Ψ = F
(
AHA

)−1 FH and Λ ∈ CNl×Nh

is block diagonal

. N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. Kouamé, J.-Y. Tourneret, Fast Single Image Super-resolution using a New Analytical
Solution for `2-`2 Problems, IEEE TIP, 2016
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Model-based approaches

Image restoration

Super-resolution result on in vivo data (1/2)
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Model-based approaches

Image restoration

Super-resolution result on in vivo data (2/2)

TABLE – Numerical results

`p Method RG Time (s) Iters.

p = 2 Proposed 1.78 0.009 -
Classical 1.78 0.53 55

p = 1 Proposed 16.26 2.42 190
Classical 16.50 2.58 199

p = 4
3

Proposed 9.72 0.76 28
Classical 10.04 1.12 37

p = 3
2

Proposed 5.55 0.31 14
Classical 5.72 0.75 33

. M. K. Ng et. al., Solving Constrained Total-variation Image Restoration and Reconstruction Problems via Alternating Direction Methods,
SIAM J. Sci. Comput..

. Morin et. al., Alternating direction method of multipliers framework for super-resolution in ultrasound imaging, Proc. ISBI, 2012
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Model-based approaches

Image restoration

Spatially variant image deconvolution

In ultrasound imaging (but not only), the PSF is not stationary
I Attenuation effects the amplitude of the PSF
I Wave focusing (focused, diverging, plane waves) influence the shape of

the PSF

Example for one focus point
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Model-based approaches

Image restoration

Forward model

One PSF per image pixel

y = HPx + n

Zero padding operator P
I Sparse matrix
I Operator P : Rmt×nt → Rmp×np pads an image with a boundary of width

nr and height mr , yielding an image of size mp = mt + 2mr times
np = nt + 2nr .

I Example of matrix form of 1D padding operator P(10, 3)

Zero Circular Replicate Symmetric
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Model-based approaches

Image restoration

Spatially-variant convolution operator H

Valid and full convolution products

C1(k)a = k ∗1 a, C2(k)a = k ∗2 a

Rotation operator

(R(k))i,j = kmk−i+1,nk−j+1

  

k∗1 a

k∗2 a

k
a

Full-width window operator

(Ws(i1, i2)a)i,j = ai+i1,j , i ∈ {0, ..., i2−i1}

Zero padding operator

(Zs(i1, i2)a)i,j =

{
ai−i1,j , i ∈ {i1, ..., i2},

0, otherwise

  

a

b=W a(i1 , i2) a

c=Za( i1 , i2)b

ma

na

i1

i2

ma

na

H =

mt∑
ih=1

Z t(ih, ih)C1(k(ih))Wp(ih, ih + 2mr )
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Model-based approaches

Image restoration

Spatially-variant deconvolution optimization problem

Proximal splitting algorithms
I Data fidelity term φ(HPx − y)
I Employ at every iteration of the gradient of the data fidelity term

∇(φ(HPx − y)) = PT HT (∇φ)(HPx − y)

Adjoint HT of the axially-variant convolution operator
I Matrix-free expression for the convolution and auxiliary operators

(Ws(i1, i2))T = Zs(i1, i2), (C1(k))T = C2(R(k))

I Therefore

HT =

mt∑
ih=1

Zp(ih, ih + 2mr )C2(R(k(ih)))W t(ih, ih)

. M. I. Florea, A. Basarab, D. Kouamé, S. A. Vorobyov, An axially-variant kernel imaging model applied to ultrasound image
reconstruction, IEEE SPL, 2018.
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Model-based approaches

Image restoration

Spatially-variant deconvolution simulation result

Elastic-net regularization
I Solved with a FISTA-like algorithm

min
x

1
2
‖HPx − y‖2

2 + λ1‖x‖1 +
λ2

2
‖x‖2

2.

(a) TRF ground truth ; (b) PSFs for 20 depths at regularly spaced intervals of 2 mm; (c) Observed image ; (d) Invariant deconvolution result ;
(e) Variant deconvolution result.

. M. I. Florea, S. A. Vorobyov, An Accelerated Composite Gradient Method for Large-Scale Composite Objective Problems, IEEE TSP,
2019.

Adrian Basarab Computational medical imaging: from model-based approaches to machine learning 43 / 69



Model-based approaches

MRI-Ultrasound image fusion
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Model-based approaches

MRI-Ultrasound image fusion

Clinical interest

Complementary medical imaging modalities
I MRI offers a large field of view but with limited spatial resolution
I High-frequency ultrasound offers a good spatial resolution but with

limited field of view and poor SNR

Endometriosis diagnosis

Adrian Basarab Computational medical imaging: from model-based approaches to machine learning 45 / 69



Model-based approaches

MRI-Ultrasound image fusion

Forward models

MRI (low spatial resolution and sampling, Gaussian noise)

ym = SHxm + nm

Ultrasound (Rayleigh noise)

yu = xu + nu

Different physical phenomena behind image acquisition
I No one to one correspondence between the gray levels
I US image formation is essentially based on the gradient of acoustic

impedance between neighbouring tissues
I US image can thus be seen as a function of the MRI and its gradient

xu = f (xm,∇nH
mu)

xu,i =
∑

p+q≤3

cpqxp
m,i(∇xH

m u)q
i

. A. Roche, X. Pennec, G. Malandain, and N. Ayache, Rigid registration of 3D ultrasound with MR images : a new approach combining
intensity and gradient information, IEEE Trans. Med. Imaging, 2001.
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Model-based approaches

MRI-Ultrasound image fusion

MR-US fusion optimization problem

Total variation regularization

x̂ = argmin
x

1
2
‖ym − SHx‖2 + λ‖∇x‖2

+ τ2

N∑
i=1

[
exp(yu,i − fi(x ,∇xHu))− γ(yu,i − fi(x ,∇xHu))

]

. O. El Mansouri, A. Basarab, F. Vidal, D. Kouamé, J.-Y. Tourneret, Fusion of Magnetic Resonance and Ultrasound Images : a Preliminar
Study on Simulated Data, IEEE ISBI, 2019.
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Model-based approaches

MRI-Ultrasound image fusion

PALM algorithm

Proximal alternating linearized minimization

min
(x,v)

ψ(x, v) := l(x) + g(v) + H(x, v)

where l and g are continuous convex functions and H may be non-linear.

Step 1 : Take γ1 > 1, set ck = γ1Lx(vk)

xk+1 = proxl
ck

(
xk − 1

ck
∇x H(xk, vk)

)
= argmin

x
(x− xk)H∇x H(xk, vk) +

ck

2
‖x− xk‖2 + l(x)

Step 2 : Take γ2 > 1, set dk = γ2Lv (xk)

vk+1 = proxg
dk

(
vk − 1

dk
∇v H(xk, vk)

)
= argmin

v
(v− vk)H∇v H(xk, vk) +

dk

2
‖v− vk‖2 + g(v)

. J. Bolte, S. Sabach, and M. Teboulle, “Proximal alternating lin-earized minimization or nonconvex and nonsmooth
problems,”Mathematical Programming,2014.
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Model-based approaches

MRI-Ultrasound image fusion

MR-US image fusion using PALM

min
(x,v)

ψ(x,v) := l(x) + g(v) + H(x,v)

Auxiliary variable v

l(x) =
1
2
‖ym − SHx‖2

2 + τ1‖∇x‖2

g(v) = τ2

∑
i

[exp(yu,i − vi)− γ(yu,i − vi)] + τ3‖∇v‖2

H(x, v) = τ4

N∑
i=1

(
vi −

∑
p+q≤3

cpqxp
i (∇xHu)q

i

)
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Model-based approaches

MRI-Ultrasound image fusion

MR-US image fusion using PALM
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Model-based approaches

MRI-Ultrasound image fusion

Fusion result on phantom data (1/3)

Homemade phantom mimicking pelvic anatomy

3D represenation
MRI on phantom

MRI in vivo

Ultrasound

US on phantom
Endometrioma Uterus
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Model-based approaches

MRI-Ultrasound image fusion

Fusion result on phantom data (2/3)

MRI Ultrasound Fusion

MRI Ultrasound Fusion
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Model-based approaches

MRI-Ultrasound image fusion

Fusion result on phantom data (3/3)

MRI Ultrasound Fusion
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Model-based approaches

MRI-Ultrasound image fusion

Fusion result on phantom data (3/3)

MRI Ultrasound Fusion

MRI US Fused image
CNR 48.76 dB 20.64 dB 37.73 dB

Interface 1 slope 2.89e−2 7.42e−2 7.42e−2

Interface 2 slope -0.10e−2 8.89e−2 6.86e−2

Interface 3 slope 3.57e−2 5.47e−2 6.61e−2

Interface 4 slope -1.35e−2 -1.95e−2 -2.05e−2
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Data-driven approaches

Super-resolved acoustic microscopy
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Data-driven approaches

Super-resolved acoustic microscopy

Basics on acoustic microscopy

Single-element transducer
I Very high frequency : 250 and 500 MHz
I Transmits short ultrasound pulses
I Receives the RF echo signals reflected from the sample

Sample
I Thin section of soft tissue (12 µm) affixed to a microscopy slide
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Data-driven approaches

Super-resolved acoustic microscopy

Spatial resolution in acoustic microscopy

Dependent on the central frequency
I Increasing the frequency comes with

I Increased costs associated with the transducer and then ecessary
electronics

I Experimental difficulties also arise (e.g., sensitivity to nm scale
vibrations and temperature)

Example of impedance images on a section of cancerous human lymph node
I Thin section of soft tissue (12 µm) affixed to a microscopy slide

250 MHz 500 MHz
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Data-driven approaches

Super-resolved acoustic microscopy

Model-based super-resolution

USAF 1951 resolution phantom
I Super-resolution factor d = 2

Horizontal profiles

0 100 200 300 400 500 600

10

11

12

13

Horizontal distance [µm]

Z
 [M

R
ay

l]

0 100 200 300 400 500 600

10

11

12

13

Horizontal distance [µm]

Z
 [M

R
ay

l]

80 90 100 110 120 130 140 150 160

80 90 100 110 120 130 140 150 160

520 540 560 580 600 620 640

520 540 560 580 600 620 640

Adrian Basarab Computational medical imaging: from model-based approaches to machine learning 58 / 69



Data-driven approaches

Super-resolved acoustic microscopy

Model-based super-resolution

Fails on ex vivo samples
I Convolution with the PSF not sufficient to model the 250 MHz images

Example of impedance images on a section of cancerous human lymph node
I Thin section of soft tissue (12 µm) affixed to a microscopy slide

250 MHz 500 MHz Enhanced 250 MHz
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Data-driven approaches

Super-resolved acoustic microscopy

Data-driven super-resolution

Fully convolution neural network (U-net) trained on 250 and 500 MHz images

. J. Mamou, T. Pellegrini, D. Kouamé, A. Basarab, Super Resolution in Quantitative Acoustic Microscopy using a U-net like Convolution
Neural Network, IEEE ISBI, 2019.
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Data-driven approaches

Super-resolved acoustic microscopy

Results

250 MHz 500 MHz Enhanced 250 MHz
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Data-driven approaches

Super-resolved dental CBCT
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Data-driven approaches

Super-resolved dental CBCT

Basics on dental Computed Tomography

Cone-beam Computed Tomography
I Available in dental offices, low dose

µCT
I Only for extracted teeth, high dose

Adrian Basarab Computational medical imaging: from model-based approaches to machine learning 63 / 69



Data-driven approaches

Super-resolved dental CBCT

Application to endodontics

Segmentation of the root canal

Need for spatial resolution
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Data-driven approaches

Super-resolved dental CBCT

Model-based super-resolution

Fails in this particular application
I Regularization functions not appropriate
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Data-driven approaches

Super-resolved dental CBCT

Data-driven super-resolution

Convolution neural network trained on CBCT and µCT data

Result on one slice

. J. Hatvani, A. Horvath, J. Michetti, A. Basarab, D. Kouamé and M. Gyöngy, Deep Learning-Based Super-Resolution Applied to Dental
Computed Tomography, IEEE TRPMS, 2019.
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Data-driven approaches

Super-resolved dental CBCT

Data-driven super-resolution

A more challenging slice

Segmentation result in 3D
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Conclusions

Conclusions

Computational imaging
I In most of medical applications data is not sufficient to form the image

(noise, incomplete data)
I Computational methods are used to avoid the ill-posedness of the

resulting inverse problem

Model-based approaches
I Models include knowledge about the physics : fidelity, tractability?
I Regularization terms are required and usually use adaptive or

non-adaptive transforms : appropriate choice ?

Data-driven approaches
I More flexibility, but usually require learning databases
I How to include knowledge about the physics ?
I Forward model, regularization, both?
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