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Inverse problems

Basics

The big picture

y = T (x) + n

I y ∈ CM is the observed data
I x ∈ CN is the image of interest (not observed)
I n ∈ CM is the noise

T is the observation (forward) operator
I known : estimate x from y
I unknown : estimate x and T from y

I Prior information on T (linear, parametric,...)
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Inverse problems

Basics

Examples of forward models in ultrasound imaging (non exhaustive)

Despeckling
I In the log-compressed envelope domain T is the identity operator

y = x + n

I Example from Field II

. A. Achim, A Bezerianos, P Tsakalides, Novel Bayesian multiscale method for speckle removal in medical ultrasound images, IEEE TMI, 2001.
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Inverse problems

Basics

Examples of forward models in ultrasound imaging (non exhaustive)

Compressed sensing
I T is a downsampling matrix in fast or/and slow time
I Applied to pre- or post-beamforming RF data
I Also used to decrease the number of active elements
I Φ is a fat random matrix

y = Φx + n

3D line-wise sampling
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. P. van der Meulen, P. Kruizinga, J. G. Bosch, G. Leus, Coding Mask Design for Single Sensor Ultrasound Imaging, IEEE TCI, 2020.

. A. R, A. K. Thittai, Compressed Sensing Approach for Reducing Number of Receive Elements in Synthetic Transmit Aperture Imaging , IEEE TUFFC, 2020.

. M. Zhang et al., Compressed Ultrasound Signal Reconstruction Using a Low-Rank and Joint-Sparse Representation Model, IEEE TUFFC, 2019.

. J. Liu, Q. He, J. Luo, A Compressed Sensing Strategy for Synthetic Transmit Aperture Ultrasound Imaging, IEEE TMI, 2017.

. Z. Chen, A. Basarab, D. Kouamé, A Compressive Deconvolution in Medical Ultrasound Imaging, IEEE TMI, 2016.

. O. Lorintiu et al., A Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling, IEEE TMI, 2015.

. G. David, J.-L. Robert, B. Zhang, and A. F. Laine, Time domain compressive beam forming of ultrasound signals, J. Acoust. Soc. Am., 2015.

. A. Achim et al., Reconstruction of ultrasound RF echoes modelled as stable random variables, IEEE TCI, 2015.

. T. Chernyakova, Y. C. Eldar, Fourier-Domain Beamforming : The Path to Compressed Ultrasound Imaging, IEEE TUFFC, 2014.

. M. F. Schiffner, G. Schmitz, Fast pulse-echo ultrasound imaging employing compressive sensing, IEEE IUS, 2011.
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Inverse problems

Basics

Examples of forward models in ultrasound imaging (non exhaustive)

Deconvolution
I Linear image formation model, under the first order Born approximation
I In the RF domain, T is a convolution operator between the tissue refectivity function (x) and the

PSF (h)

y = h ⊗ x + n⇔ y = Hx + n
I Example - 3D printed phantom

. A. Besson et al., A Physical Model of Nonstationary Blur in Ultrasound Imaging, IEEE TCI, 2019.

. M. I. Florea, A. Basarab, D. Kouamé, S. A. Vorobyov, An Axially Variant Kernel Imaging Model Applied to Ultrasound Image Reconstruction, IEEE SPL, 2018.

. O. V. Michailovich, Non-stationary blind deconvolution of medical ultrasound scans, SPIE Medical Imaging, 2017.

. K. Hasan, S.-E. Rabbi, S. Y. Lee, Blind Deconvolution of Ultrasound Images Using l1 -Norm-Constrained Block-Based Damped Variable Step-Size Multichannel LMS Algorithm,
IEEE TUFFC, 2016.

. N. Zhao, A. Basarab, D. Kouamé, J.-Y. Tourneret, Joint deconvolution and segmentation of ultrasound images using a hierarchical Bayesian model based on generalized
Gaussian priors, IEEE TIP, 2016.
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Inverse problems

Basics

Examples of forward models in ultrasound imaging (non exhaustive)

Beamforming
I T relates the raw RF data to the image to be

beamformed
I Depends on the acquisition geometry
I Can include the PSF

Other applications
I Tissue motion, blood flow, segmentation, tissue

characterization, sparse array design, acoustic
microscopy, ultrasound tomography, etc.

Plane-wave imaging

. A. Besson et al., Ultrafast ultrasound imaging as an inverse problem : Matrix-free sparse image reconstruction, IEEE TUFFC, 2017.

. D. Bujoreanu, B. Nicolas, D. Friboulet, H. Liebgott, Inverse problem approaches for coded high frame rate ultrasound imaging, Asilomar, 2017.

. E. Ozkan, V. Vishnevsky, O. Goksel, Inverse problem of ultrasound beamforming with sparsity constraints and regularization, IEEE TUFFC, 2017.

. T. Szasz, A. Basarab, D. Kouamé, Beamforming through regularized inverse problems in ultrasound medical imaging, IEEE TUFFC, 2016.
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Inverse problems

Basics

Why inverting these models is a difficult problem?

The solution is not unique and T is not invertible
I Despeckling : infinite number of ways to decompose an ultrasound image (y) into the sum

between a despeckled image (n) and speckle noise (n)
I Beamforming : each different method will provide a different beamformed image from exactly

the same acquired raw data
I Compressed sensing : in y = Φx + n, Φ is a fat matrix, less measurements than unknowns
I Deconvolution : the PSF is a band-pass filter, thus canceling or strongly attenuating certain

frequencies
I ...
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Inverse problems

Sparse-based inversion

Inversion and regularization

How to chose one (the !) solution from all the possible solutions?
I Constrain the solution considering penalties
I Need for a priori information on x (regularization)
I Sparse regularization (considered here for illustration purpose)

I The target image contains only a reduced number of non-zero pixels

MAP estimator
I Consider the image of interest is a random variable

x̂ = arg max
x

p(x|y) = arg min
x

(− log(py (y|x))− log(px (x)))

I Note that DAS beamformer does not follow this trend, but it is a ML estimator (x is supposed
deterministic, hypothesis of uncorrelated Gaussian noise)

. T. Chernyakova, D. Cohen, M. Shoham, Y. C. Eldar, iMAP Beamforming for High-Quality High Frame Rate Imaging, IEEE TUFFC, 2019.
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Inverse problems

Sparse-based inversion

Distributions promoting sparsity

x̂ = arg max
x

p(x|y) = arg min
x

(− log(py (y|x))− log(px (x)))

Most common choice
I Under the assumption of additive Gaussian noise
I Laplace distribution to promote the sparsity of x

x̂ = arg minx ‖y− T (x)‖2
2 + λ‖x‖1
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MRI-Ultrasound image fusion

Context

Interest of MR-US image fusion in endometriosis diagnosis

Joint work with O. El Mansouri, F. Vidal, D. Kouamé and J.-Y. Tourneret

I Presence of endometrial glands or stroma in sites different from the uterine cavity
I Typically affects women in their reproductive age and is associated with chronic pelvic pain and

infertility
I Surgery is the standard treatment

Complementary medical imaging modalities
I MRI offers a large field of view but with limited spatial resolution
I High-frequency (10 MHz) ultrasound offers a good spatial resolution but with limited field of

view and poor SNR
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MRI-Ultrasound image fusion

Model and inversion
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MRI-Ultrasound image fusion

Model and inversion

Forward models (1/2)

MRI (low spatial resolution and sampling, Gaussian noise)

ym = SHxm + nm

Ultrasound (Rayleigh noise)

yu = xu + nu

I Super-resolution methods to estimate xm
I Despeckling methods to estimate xu
I Fusion : estimate an image x that gathers information from both xm and xu
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MRI-Ultrasound image fusion

Model and inversion

Forward models (2/2)

Different physical phenomena behind image acquisition
I xm and xu are different

I Geometric misalignment modeled by a geometric transform T
I No one to one correspondence between the gray levels

xu,i = fc(T , xm,u) =
∑

p+q≤d

cpqT (xp
m,i )(∇T (xm)Hu)q

i

Finally

ym = HSx + nm

yu = fc(T (x),∇T (x)Hu) + nu

. A. Roche et al., Rigid registration of 3D ultrasound with MR images : a new approach combining intensity and gradient information, IEEE Trans. Med. Imaging, 2001.

. O. El Mansouri, F. Vidal, A. Basarab, P. Payoux, D. Kouamé, J.-Y. Tourneret, Fusion of Magnetic Resonance and Ultrasound Images for Endometriosis Detection, IEEE TIP, 2020.

. O. El Mansouri, A. Basarab, M. Figueiredo, D. Kouamé, J.-Y. Tourneret, Ultrasound and magnetic resonance image fusion using a patch-wise polynomial model, IEEE ICIP, 2020.
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MRI-Ultrasound image fusion

Model and inversion

Inverse problem

A priori information
I Gaussian noise in MRI and log-Rayleigh distributed speckle
I The fused image is piecewise smooth, i.e., its gradient is sparse (total variation)
I The geometric transform is composed by a global affine transform and a local B-spline elastic

deformation

(x̂ , T̂ , ĉ) = argmin
x,T ,c

1
2
‖ym − SHx‖2︸ ︷︷ ︸
MRI data fidelity

+ τ1

N∑
i=1

exp [yu,i − fc,i (T ,x ,u)− γ(yu,i − fc,i (T ,x ,u))]︸ ︷︷ ︸
US data fidelity

+ τ2‖∇x‖2 + τ3‖∇fc(T ,x ,u)‖2 + τ4Rs(T )︸ ︷︷ ︸
regularization

. Matlab code available at https ://www.irit.fr/ Adrian.Basarab/codes.html
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MRI-Ultrasound image fusion

Results

Fusion result on phantom data (1/2)

Homemade phantom mimicking pelvic anatomy

3D represenation
MRI on phantom US on phantom

In vivo data

MRI in vivo Endometrioma Uterus

. F. Vidal, O. El Mansouri, D. Kouamé, A. Basarab, On the design of a pelvic phantom for magnetic resonance and ultrasound image fusion, IEEE IUS, 2019.
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MRI-Ultrasound image fusion

Results

Fusion result on phantom data (2/2)

MRI Ultrasound Fusion

Fusion/Registration Deformation field
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Lung ultrasound

Context

Lung ultrasound

Joint work with O. Karakus, N. Anantrasirichai, A. Aguersif, S. Silva, A. Achim

I Lung ultrasound (LUS) can help in assessing the fluid status of patients in intensive
care

I LUS can be conducted rapidly and repeatably at the bedside, can reduce the need for
CT scans (shorter delays, lower irradiation levels and cost)

I The common feature in all clinical conditions is the presence in LUS of a variety of
line artefacts (e.g., pleural A, B-lines).

B

B
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Lung ultrasound

Model and inversion

Forward model (1/2)

I The objective is to detect automatically lines in LUS (manual detection is time
consuming : hundreds of images per patient, "random" line occurrence)

I Forward model based on Radon transform

X (r , θ) =

∫
R2

Y (i , j)δ(r − i cos θ − j sin θ)didj

. N. Anantrasirichai, W. Hayes, M. Allinovi, D. Bull, and A. Achim, Line detection as an inverse problem : application to lung ultrasound imaging, IEEE TMI, 2017.
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Lung ultrasound

Model and inversion

Forward model (2/2)
I Radon transform of a LUS image
I Speckle noise generates multiple false peaks resulting from collinear noisy edge

points

I Proposed solution : exploit the fact that only a small number of lines are to be
detected

Y = CX + N
I Y is the LUS image
I C is the inverse Radon transform
I X is supposed sparse and N an additive Gaussian noise
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Lung ultrasound

Model and inversion

Inverse problem

I Cauchy distribution used to promote the sparsity of X

p(x) ∝ γ

γ2 + x2

I MAP estimator

X̂Cauchy = arg min
X

‖Y − CX‖2
2

2σ2 −
∑
i,j

log

(
γ

γ2 + X 2
ij

)

. O. Karakus, P. Mayo, A. Achim, Convergence guarantees for non-convex optimisation with Cauchy-based penalties, arXiv preprint.

. O. Karakus, N. Anantrasirichai, A. Aguersif, S. Silva, A. Basarab, and A. Achim, Detection of Line Artefacts in Lung Ultrasound Images of COVID-19 Patients via Non-Convex
Regularization, IEEE TUFFC special issue on Ultrasound in COVID-19 and Lung Diagnostics, 2020.

. Matlab code available at https ://data.bris.ac.uk/data/dataset/z47pfkwqivfj2d0qhyq7v3u1i
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Lung ultrasound

Results
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Lung ultrasound

Results

Results
I Evaluation on nine COVID-19 patients

Original
images

Ground
truth

Proposed
method

[Anantrasirichai
et al, IEEE
TMI’17]
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Conclusions

Conclusions (1/2)

Computational ultrasound imaging
I In most applications data is not sufficient (noise, incomplete data)
I Computational methods are used to avoid the ill-posedness of the resulting inverse problem

Model-based approaches
I Models include knowledge about the physics : fidelity,

tractability
I Regularization terms are required and usually use

fixed transforms or learned dictionaries (sparsity)
I Robust methods to outliers (model or regularizer not

valid)

. N. Ouzir, A. Basarab, O. Lairez, J.-Y. Tourneret, Robust Optical Flow Estimation in Cardiac Ultrasound images Using a Sparse Representation, IEEE TMI, 2019.

. N. Ouzir, A. Basarab, H. Liebgott, B. Harbaoui, J.-Y. Tourneret, Cardiac motion estimation in ultrasound images using spatial and sparse regularizations, IEEE TIP, 2018.
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Conclusions

Conclusions (2/2)

Machine (deep) learning
I More flexibility, but usually requires learning databases
I Useful for approaching complicated physical models
I Example in quantitative acoustic microscopy : predict 500-MHz quantitative images from

250-MHz acquisitions

I Can also be used as (plug&play) regularizer combined with explicit physics-inspired models

. J. Mamou, T. Pellegrini, D. Kouamé, A. Basarab, A convolutional neural network for 250-MHz quantitative acoustic-microscopy resolution enhancement,IEEE EMBC, 2019.
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