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Computational medical imaging

What is medical imaging?

I Visualization of body parts, tissues or organs, for use in clinical
diagonsis, treatment and disease monitoring

I Anatomical vs Functional
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Computational medical imaging

Medical imaging modalities

I Nuclear medicine (SPECT, PET)

I Radiology techniques (X-ray radiography, CT, MRI, Ultrasound)

I Scanners
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Computational medical imaging

Computational medical imaging
I Data inversion

I Incomplete data, non-traditional sensing, etc.
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Computational medical imaging

Incomplete data in ultrasound

I Computational methods to compensate for the lack of data
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. Winner of plane-wave imaging challenge in medical ultrasound, IEEE IUS, 2016.

. T. Szasz, A. Basarab, D. Kouamé, Beamforming through regularized inverse problems in ultrasound medical imaging, IEEE TUFFC,
2016.
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Model-based approaches

Introduction

Inverse problems

y = T (x) + n

I y ∈ CM is the observed data (image)
I x ∈ CN is the image of interest (not observed)
I n ∈ CM is the noise

T is the observation (forward) operator
I known : estimate x from y
I unknown : estimate x and T from y

Inverse problems in computational medical imaging are usually ill-posed
I T is not invertible, an infinity of solutions may exist
I A small perturbation on the data may cause an important variation on

the estimate (e.g. Fourier measurements)

Solution

x̂ = arg minx ‖y− T (x)‖2
2 + λr(x)
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Model-based approaches
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Model-based approaches

Compressed acoustic microscopy

Basics on acoustic microscopy

Single-element transducer
I Very high frequency (> 50 MHz) : 250 MHz or 500 MHz
I Spherically-focused (F-number < 1.3)

Raster scan
I RF data, reflected from each scanned position, yield 3D data volume
I Acoustic parameters estimated at each position form 2D maps

Challenges
I Scanning time of 5 minutes for 1 mm by 1 mm sample
I Tissue properties may change during scanning
I Decrease the acquisition time and data amount, reduce equipment costs
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Model-based approaches

Compressed acoustic microscopy

Data acquisition

Raster scan
I For each (x1, x2) position, RF data composed of two main reflections is

digitized and saved, yielding to a 3D data volume (x1, x2, t)
I Speed of sound, acoustic impedance and attenuation are estimated at

each scan location (x1, x2) to form quantitative 2D parameter maps

Example of impedance map

Example of speed of sound
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Model-based approaches
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Model-based approaches

Compressed acoustic microscopy

Proposed data acquisition process

RF signal

FRI sampling

Target object CS Spiral scanning CS-FRI undersampled
discrete cubic data set

Saved By CS

I Spiral pattern (Φ) scanning in spatial domain, y = Φx + n
I Innovation rate (ρ = 1/T ) sampling in time domain, xn =

〈∑L−1
l=0 al h(t − tl ), ϕ

( t
T − n

)〉

. J. Kim, J. Mamou, D. Kouamé, A. Achim, and A. Basarab, Spatio-temporal compressed quantitative acoustic microscopy, IEEE IUS, Oct
2019.

. J. Kim, J. Mamou, P. R. Hill, N. Canagarajah, D. Kouamé, A. Basarab, and A. Achim, Approximate message passing reconstruction of
quantitative acoustic microscopy images, IEEE Trans. on UFFC, Mar 2018.

. J. Kim, J. Mamou, D. Kouamé, A. Achim, and A. Basarab, Reconstruction of quantitative acoustic microscopy images from rf signals
sampled at innovation rate, IEEE IUS, Oct 2018.
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Model-based approaches
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Model-based approaches

Compressed acoustic microscopy

Compressed sensing (CS)

I Sampling signals parsimoniously, acquiring only the relevant
signal information, rather than sampling followed by compression

I Direct model
y = Φx + n

I y ∈ RM : measurement vector
I Φ ∈ RM×N : measurement matrix
I x ∈ RN : image to be reconstructed, M << N
I n ∈ RM : zero-mean additive white Gaussian noise

I Reconstruction

θ̂x = min
θx
‖θx‖1 subject to y = ΦW−1θx

I W is a sparsifying transform, θx = Wx

. D.L. Donoho, Compressed sensing, IEEE Trans. on Information Theory, 2006.

. E. Candès, J. Romberg, T. Tao, Robust Uncertainty Principles : Exact Signal Reconstruction from Highly Incomplete Fourier
Information, IEEE Trans. on Information Theory, 2006.
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Model-based approaches

Compressed acoustic microscopy

Sensing pattern

I Experimental constraints
I Point-wise acquisition
I RF data acquired continuously as the motor stages are moved

I Proposed solution
I Spiral sensing originating in the center of the area to be sampled
I The pace of the spreading is used to prescribe the measurement

rate
I Example of spiral pattern for a measurement rate of 20%

. J-H. Kim, J. Mamou, P.R. Hill, N.Canagarajah, D. Kouamé, A. Basarab, A. Achim, Approximate Message Passing Reconstruction of
Quantitative Acoustic Microscopy Images, IEEE TUFFC, 2018.
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Model-based approaches

Compressed acoustic microscopy

AMP algorithm

I Iterative signal reconstruction algorithm
I Turns the reconstruction problem into an iterative denoising

approach

θt+1
x = ηt

(
ΘT z t + θt

x

)
z t = y −Θθt

x +
1
δ

z t−1〈η′t−1(ΘT z t−1 + θt−1
x
〉

I t : iterative index
I Θ = ΦW−1

I ηt (·), η
′
t (·) : denoising function and its first derivative

I δ : measurement rate M/N
I z t ∈ RM : current residual (error)

. D. L. Donoho, A. Maleki, A. Montanari, Message passing algorithms for compressed sensing, Proc. Nat. Academy Sci., 2009.
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Model-based approaches

Compressed acoustic microscopy

Wavelet-based Cauchy AMP

I Assumptions
I Wavelet coefficients provide a sparse representation for natural

images
I They can be accurately modelled using heavy tailed distributions

I Design the denoising function η
I Based on the hypothesis of Cauchy distributed wavelet coefficients

of QAM images

P(w) =
γ

w2 + γ2

I w is the wavelet coefficient
I γ is the dispersion parameter

. A. Achim and E. E. Kuruoglu, Image denoising using bivariate α-stable distributions in the complex wavelet domain, IEEE Signal
Processing Letters, 2005.
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Model-based approaches

Compressed acoustic microscopy

Cauchy-AMP algorithm

I MAP estimator
I Observed coefficient v contaminated with additive Gaussian noise

(n = v − w)

ŵ = arg max
w

Pw |v(w |v)

I Using Bayes’ theorem and taking the logarithm form

ŵ(v) = arg max
w

[
− (v − w)2

2σ2
n

+ log
(

γ

w2 + γ2

)]
I Cancel the first derivative w.r.t. w

ŵ3 − vŵ2 + (γ2 + 2σ2
n)ŵ − γ2v = 0

I Esimate of clean wavelet coefficient w

ŵ = η(v) =
v
3

+ s + t

ŵ
′

= η
′
(v) = 1/3 + s

′
+ t
′

I s and t depend on v and σ2
n
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Model-based approaches

Compressed acoustic microscopy

Cauchy-AMP algorithm

I The comparison of behaviour among four different denoisers
I Cauchy-based
I Soft thresholding (ST)
I Amplitude scale invariant Bayes estimator (ABE)

θ
t
q,i
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t+

1
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Soft Thesholding

ABE

Cauchy

Hard Thesholding

. D.L. Donoho, De-noising by soft-thresholding, IEEE Trans. on Information Theory, 1995.

. M. A. Figueiredo and R. D. Nowak, Wavelet-based image estimation : an empirical Bayes approach using Jeffreys’ noninformative prior,
IEEE Trans. on Image Processing, 2001.
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Model-based approaches

Compressed acoustic microscopy

Results at 30% measurement ratio

I Human lymph node

(a) Original (b) AMP-Cauchy

(c) AMP-ST (d) AMP-ABE

I Quantitative results

Method SSIM PSNR
AMP-Cauchy 0.714 40.42

AMP-ST 0.683 39.98
AMP-ABE 0.708 40.10
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Model-based approaches

Compressed acoustic microscopy

Proposed data acquisition process

RF signal

FRI sampling

Target object CS Spiral scanning CS-FRI undersampled
discrete cubic data set

Saved By CS

I Spiral pattern (Φ) scanning in spatial domain, y = Φx + n
I Innovation rate (ρ = 1/T ) sampling in time domain, xn =

〈∑L−1
l=0 al h(t − tl ), ϕ

( t
T − n

)〉

. J. Kim, J. Mamou, D. Kouamé, A. Achim, and A. Basarab, Spatio-temporal compressed quantitative acoustic microscopy, IEEE IUS, Oct
2019.

. J. Kim, J. Mamou, P. R. Hill, N. Canagarajah, D. Kouamé, A. Basarab, and A. Achim, Approximate message passing reconstruction of
quantitative acoustic microscopy images, IEEE Trans. on UFFC, Mar 2018.

. J. Kim, J. Mamou, D. Kouamé, A. Achim, and A. Basarab, Reconstruction of quantitative acoustic microscopy images from rf signals
sampled at innovation rate, IEEE IUS, Oct 2018.
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Model-based approaches

Compressed acoustic microscopy

Finite rate of innovation (FRI)
I A typical FRI signal described by a limited number of parameters

x(t) =
L−1∑
l=0

alh(t − tl )

Unknown :
I tl : time delays
I al : amplitude

decays

Known :
I h(t) : pulse shape

1.74 1.76 1.78 1.8
time ( s)

-0.2
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0
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0.2
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m
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Reference signal
QAM RF signal

I FRI sampling by kernel ϕ(t) and innovation rate (ρ = 1/T )

xn =

〈
L−1∑
l=0

alh(t − tl ), ϕ (t/T − n)

〉
I ρ : total number of the unknown parameters (tl , al )

I FRI recovery techniques for estimating tl and al
I Annihilating filter, matrix pencil method, etc.

. M. Vetterli, P. Marziliano, and T. Blu, Sampling signals with finite rate of innovation, IEEE Trans. on Signal Proc., Jun 2002.

Adrian Basarab Computational medical imaging: from model-based approaches to machine learning 24 / 44



Model-based approaches

Compressed acoustic microscopy

Acoustic parameter estimation by AR estimator
I Retrieve Fourier coefficients X [k ] from x [n] and Φ(ω)

x [n] = 〈x(t), ϕ(t − nT )〉 =
∑
k∈Z

X [k ]e
j2πknT
τ Φ∗

[2πk
τ

]
I Φ∗(ω) : transpose of Fourier transform of ϕ(t)

I The power series form acquired from N[k ] = X [k ]/H[k ]

N[k ] =
L−1∑
l=0

al{exp[∆f (βl + j2πtl )]}k =
L−1∑
l=0

alλ
k
l

I AR model construction

Nk =
n∑

i=1

siNk−i + εk

I Calculation of acoustic parameters from identified λl and al

. J-H. Kim, J. Mamou, D. Kouamé, A. Achim, A. Basarab, Autoregressive model-based reconstruction of quantitative acoustic maps from
RF signals sampled at innovation rate, submitted to IEEE TCI, 2019.

. D. Rohrbach and J. Mamou, Autoregressive signal processing applied to high-frequency acoustic microscopy of soft tissues, IEEE
Trans. on UFFC, 2018.
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Model-based approaches

Results
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Model-based approaches

Results

Illustration of the images at each reconstruction stage

I Speed of sound (SOS) maps of chicken tendon acquired with a
250 MHz transducer
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(c)

I (a) : Conventional sampling at 1µm by 1µm
I (b) : The spiral masking area recovered by FRI framework
I (c) : FRI-CS recovery
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Model-based approaches

Results

Comparison of reconstructed images

I Chicken tendon 2D SOS maps
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(b) CS recovery
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(c) FRI recovery
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(d) FRI-CS recovery

I Quantitative results

Methods PSNR(dB) NRMSE SSIM compressed ratio ( %) Acquisition times
CS (b) 26.31 0.0483 0.7166 40 5%
FRI (c) 24.19 0.0617 0.6741 6.5 100%

FRI-CS (d) 23.38 0.0678 0.5511 2.6 5%
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Model-based approaches

Other (successful) examples

Super-resolution

I Tensor-based super-resolved 3D CBCT

I MR-ultrasound image fusion

MRI Ultrasound Fusion

. J. Hatvani, A. Basarab, J.-Y. Tourneret, M. Gyongy, D. Kouamé, A Tensor Factorization Method for 3D Super-Resolution with Application
to Dental CT, IEEE TMI, 2019.

. O. El Mansouri, A. Basarab, F. Vidal, D. Kouamé, J.-Y. Tourneret, Fusion of Magnetic Resonance and Ultrasound Images : a Preliminar
Study on Simulated Data, IEEE ISBI, 2019.
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Model-based approaches

Other (successful) examples

Cardiac motion estimation

Let Ik ∈ RN , Ik+1 ∈ RN be two consecutive images
I The motion field to be estimated is

Uk = (uT
k , v

T
k )T ∈ R2N

Minimization of an energy function

min
α,U
{Edata(U, I) + λsEspatial(U) + λd Esparse(U,D,α)}

. N. Ouzir, A. Basarab, O. Lairez, and J.-Y. Tourneret, Robust Optical Flow Estimation in Cardiac Ultrasound images Using a Sparse
Representation, IEEE TMI, 2018.

. N. Ouzir, A. Basarab, H. Liebgott, B. Harbaoui, and J.-Y. Tourneret, Motion estimation in echocardiography using sparse representation
and dictionary learning, IEEE TIP, 2018.
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Data-driven approaches

Introduction

Spatial resolution in acoustic microscopy

Dependent on the central frequency
I Increasing the frequency comes with

I Increased costs associated with the transducer and the necessary
electronics

I Experimental difficulties (e.g., sensitivity to nm scale vibrations and
temperature)

Example of impedance images on a section of cancerous human lymph node
I Thin section of soft tissue (12 µm) affixed to a microscopy slide

250 MHz 500 MHz
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Data-driven approaches
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Data-driven approaches

Limitation of model-based methods

Forward model

y = SHx + n

I y ∈ RNl×1 : is the measured image, Nl = ml × nl

I x ∈ RNh×1 : super-resolved image to be estimated, Nh = d2Nl

I n ∈ RNl×1 : Gaussian noise

Degradation operators
I H ∈ RNh×Nh : 2D circulant convolution matrix (PSF of the transducer)
I S ∈ RNl×Nh : subsampling operator
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Data-driven approaches

Limitation of model-based methods

SR optimization problem

I Super-resolved slice xt estimation (time subscript is omitted in
the following)

min
x

1
2
‖y− SHx‖2

2 + τφ(Ax)

I Total variation regularization

φ(Ax) =
√
‖Dhx‖2 + ‖Dvx‖2

A = [Dh,Dv]T ∈ R2Nh×Nh

I Constrained optimization

minx,u
1
2
‖y− SHx‖2

2 + τφ(u)

subject to Ax = u

I Associated augmented Lagrangian function

L(x,u,λ) =
1
2
‖y− SHx‖2

2 + τφ(u) +
µ

2
‖Ax− u + λ‖2

2

Adrian Basarab Computational medical imaging: from model-based approaches to machine learning 36 / 44



Data-driven approaches

Limitation of model-based methods

ADMM-based algorithm

Iterate
xk+1 = arg minx ‖y− SHx‖2

2 + µ‖Ax− uk + dk‖2
2

uk+1 = arg minu τφ(u) + µ
2 ‖Axk+1 − u + dk‖2

2
dk+1 = dk + (Axk+1 − uk+1)
until stopping criterion is satisfied.

Update u using the vector-soft-thresholding operator

ν = [Dhxk+1 + dk
h ,Dvxk+1 + dk

v ]

uk+1[i] = max{0, ‖ν[i]‖2 − τ/µ}
ν[i]
‖ν[i]‖2

Update x using a closed-form solution exploiting the following property of S

FSHSFH =
1
d

Jd · INl

. N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. Kouamé, J.-Y. Tourneret, Fast Single Image Super-resolution using a New Analytical
Solution for `2-`2 Problems, IEEE TIP, 2016.
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Data-driven approaches

Limitation of model-based methods

Resolution target results

USAF 1951 resolution phantom
I Super-resolution factor d = 2

Horizontal profiles
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Data-driven approaches

Limitation of model-based methods

Model-based super-resolution

Fails on ex vivo samples
I Convolution with the PSF not sufficient to model the 250 MHz images

Example of impedance images on a section of cancerous human lymph node
I Thin section of soft tissue (12 µm) affixed to a microscopy slide

500 MHz 250 MHz Enhanced 250 MHz
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Data-driven approaches
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Data-driven approaches

U-net

Data-driven super-resolution

Fully convolution neural network (U-net) trained on 250 and 500 MHz images

. J. Mamou, T. Pellegrini, D. Kouamé, A. Basarab, A convolutional neural network for 250-MHz quantitative acoustic-microscopy
resolution enhancement , IEEE EMBC, 2019.
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Data-driven approaches

U-net

Results

500 MHz 250 MHz Enhanced 250 MHz
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Conclusions

Conclusions

Computational imaging
I In most of medical applications data is not sufficient to form the image

(noise, incomplete data)
I Computational methods are used to avoid the ill-posedness of the

resulting inverse problem

Model-based approaches
I Models include knowledge about the physics : fidelity, tractability?
I Regularization terms are required and usually use adaptive or

non-adaptive transforms : appropriate choice ?

Data-driven approaches
I More flexibility, but usually require learning databases
I How to include knowledge about the physics ?
I Forward model, regularization, both?
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