Computational medical imaging: from model-based approaches to machine learning

Adrian Basarab

Université de Toulouse, IRIT, Université Paul Sabatier Toulouse 3

ICABME 2019, Tripoli, Lebanon

Computational medical imaging

Model-based approaches

Introduction Compressed acoustic microscopy Results Other (successful) examples

Data-driven approaches

Introduction Limitation of model-based methods U-net

Conclusions

What is medical imaging?

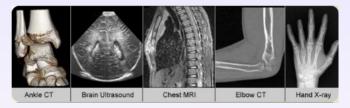
 Visualization of body parts, tissues or organs, for use in clinical diagonsis, treatment and disease monitoring

Anatomical vs Functional

Medical imaging modalities

Nuclear medicine (SPECT, PET)

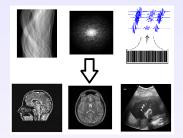
Radiology techniques (X-ray radiography, CT, MRI, Ultrasound)



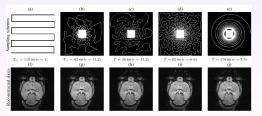
Scanners

Computational medical imaging

Data inversion



Incomplete data, non-traditional sensing, etc.

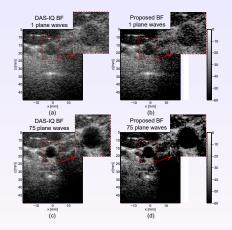


Adrian Basarab

Computational medical imaging: from model-based approaches to machine learning

Incomplete data in ultrasound

Computational methods to compensate for the lack of data



[.] Winner of plane-wave imaging challenge in medical ultrasound, IEEE IUS, 2016.

[.] T. Szasz, A. Basarab, D. Kouamé, Beamforming through regularized inverse problems in ultrasound medical imaging, IEEE TUFFC, 2016.

Computational medical imaging

Model-based approaches Introduction

Compressed acoustic microscopy Spatio-temporal sparse encoding Spatial sampling Temporal sampling

Results Other (successful) examples

Data-driven approaches

Introduction Limitation of model-based methods U-net

Conclusions

Inverse problems

$$\mathbf{y} = T(\mathbf{x}) + \mathbf{n}$$

- **b** $\mathbf{y} \in \mathbb{C}^{M}$ is the observed data (image)
- ▶ $\mathbf{x} \in \mathbb{C}^{N}$ is the image of interest (not observed)
- ▶ $\mathbf{n} \in \mathbb{C}^M$ is the noise

T is the observation (forward) operator

- known : estimate x from y
- unknown : estimate x and T from y

Inverse problems in computational medical imaging are usually ill-posed

- T is not invertible, an infinity of solutions may exist
- A small perturbation on the data may cause an important variation on the estimate (e.g. Fourier measurements)

Solution

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{y} - T(\mathbf{x})\|_2^2 + \lambda r(\mathbf{x})$$

Computational medical imaging

Model-based approaches

Introduction

Compressed acoustic microscopy

Spatio-temporal sparse encoding Spatial sampling Temporal sampling

Results Other (successful) examples

Data-driven approaches

Introduction Limitation of model-based methods U-net

Conclusions

Basics on acoustic microscopy

Single-element transducer

- Very high frequency (> 50 MHz) : 250 MHz or 500 MHz
- Spherically-focused (F-number < 1.3)</p>

Raster scan

- RF data, reflected from each scanned position, yield 3D data volume
- Acoustic parameters estimated at each position form 2D maps

Challenges

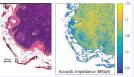
- Scanning time of 5 minutes for 1 mm by 1 mm sample
- Tissue properties may change during scanning
- Decrease the acquisition time and data amount, reduce equipment costs

Data acquisition

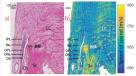
Raster scan

- For each (x₁, x₂) position, RF data composed of two main reflections is digitized and saved, yielding to a 3D data volume (x₁, x₂, t)
- Speed of sound, acoustic impedance and attenuation are estimated at each scan location (x₁, x₂) to form quantitative 2D parameter maps

Example of impedance map



Example of speed of sound



Adrian Basarab

Computational medical imaging: from model-based approaches to machine learning

Computational medical imaging

Model-based approaches

Introduction

Compressed acoustic microscopy

Spatio-temporal sparse encod Spatial sampling

Temporal sampling

Results Other (successful) examples

Data-driven approaches

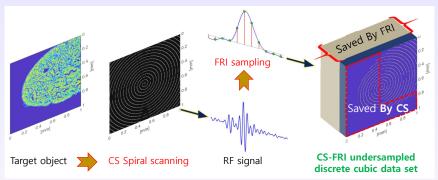
Introduction Limitation of model-based methods U-net

Conclusions

Model-based approaches

- Compressed acoustic microscopy

Proposed data acquisition process



Spiral pattern (Φ) scanning in **spatial domain**, $y = \Phi x + n$

► Innovation rate ($\rho = 1/T$) sampling in time domain, $x_n = \left\langle \sum_{l=0}^{L-1} a_l h(t - t_l), \varphi\left(\frac{t}{T} - n\right) \right\rangle$

[.] J. Kim, J. Mamou, D. Kouamé, A. Achim, and A. Basarab, Spatio-temporal compressed quantitative acoustic microscopy, IEEE IUS, Oct 2019.

[.] J. Kim, J. Mamou, P. R. Hill, N. Canagarajah, D. Kouamé, A. Basarab, and A. Achim, Approximate message passing reconstruction of quantitative acoustic microscopy images, *IEEE Trans. on UFFC*, Mar 2018.

[.] J. Kim, J. Mamou, D. Kouamé, A. Achim, and A. Basarab, Reconstruction of quantitative acoustic microscopy images from rf signals sampled at innovation rate, *IEEE IUS*, Oct 2018.

Computational medical imaging

Model-based approaches

Introduction

Compressed acoustic microscopy

Spatio-temporal sparse encoding Spatial sampling Temporal sampling

Results Other (successful) examples

Data-driven approaches

Introduction Limitation of model-based methods U-net

Conclusions

Compressed sensing (CS)

- Sampling signals parsimoniously, acquiring only the relevant signal information, rather than sampling followed by compression
- Direct model

$$\boldsymbol{y} = \Phi \boldsymbol{x} + \boldsymbol{n}$$

- $\mathbf{y} \in \mathbb{R}^{M}$: measurement vector
- $\Phi \in \mathbb{R}^{M \times N}$: measurement matrix
- ▶ $\mathbf{x} \in \mathbb{R}^N$: image to be reconstructed, M << N
- ▶ $\boldsymbol{n} \in \mathbb{R}^{M}$: zero-mean additive white Gaussian noise

Reconstruction

$$\hat{\theta}_x = \min_{\theta_x} \|\theta_x\|_1$$
 subject to $y = \Phi W^{-1} \theta_x$

• W is a sparsifying transform, $\theta_x = W x$

[.] D.L. Donoho, Compressed sensing, IEEE Trans. on Information Theory, 2006.

[.] E. Candès, J. Romberg, T. Tao, Robust Uncertainty Principles : Exact Signal Reconstruction from Highly Incomplete Fourier Information, IEEE Trans. on Information Theory, 2006.

Sensing pattern

- Experimental constraints
 - Point-wise acquisition
 - RF data acquired continuously as the motor stages are moved
- Proposed solution
 - Spiral sensing originating in the center of the area to be sampled
 - The pace of the spreading is used to prescribe the measurement rate
- Example of spiral pattern for a measurement rate of 20%

[.] J-H. Kim, J. Mamou, P.R. Hill, N.Canagarajah, D. Kouamé, A. Basarab, A. Achim, Approximate Message Passing Reconstruction of Quantitative Acoustic Microscopy Images, *IEEE TUFFC*, 2018.

AMP algorithm

- Iterative signal reconstruction algorithm
 - Turns the reconstruction problem into an iterative denoising approach

$$\boldsymbol{\theta}_{x}^{t+1} = \eta_{t} \Big(\Theta^{T} \boldsymbol{z}^{t} + \boldsymbol{\theta}_{x}^{t} \Big)$$
$$\boldsymbol{z}^{t} = \boldsymbol{y} - \Theta \boldsymbol{\theta}_{x}^{t} + \frac{1}{\delta} \boldsymbol{z}^{t-1} \big\langle \eta_{t-1}^{'} (\Theta^{T} \boldsymbol{z}^{t-1} + \boldsymbol{\theta}_{x}^{t-1} \big\rangle$$

- t : iterative index
- $\bullet \Theta = \Phi W^{-1}$
- $\eta_t(\cdot), \eta'_t(\cdot)$: denoising function and its first derivative
- δ : measurement rate M/N
- ► $z^t \in \mathbb{R}^M$: current residual (error)

[.] D. L. Donoho, A. Maleki, A. Montanari, Message passing algorithms for compressed sensing, Proc. Nat. Academy Sci., 2009.

Computational medical imaging: from model-based approaches to machine learning

Wavelet-based Cauchy AMP

Assumptions

- Wavelet coefficients provide a sparse representation for natural images
- They can be accurately modelled using heavy tailed distributions
- Design the denoising function η
 - Based on the hypothesis of Cauchy distributed wavelet coefficients of QAM images

$$P(w) = rac{\gamma}{w^2 + \gamma^2}$$

- w is the wavelet coefficient
- γ is the dispersion parameter

[.] A. Achim and E. E. Kuruoglu, Image denoising using bivariate α-stable distributions in the complex wavelet domain, *IEEE Signal Processing Letters*, 2005.

Cauchy-AMP algorithm

MAP estimator

 Observed coefficient v contaminated with additive Gaussian noise (n = v - w)

$$\hat{w} = \arg\max_{w} Pw|v(w|v)$$

Using Bayes' theorem and taking the logarithm form

$$\hat{w}(v) = \arg \max_{w} \left[-\frac{(v-w)^2}{2\sigma_n^2} + \log\left(\frac{\gamma}{w^2+\gamma^2}\right) \right]$$

Cancel the first derivative w.r.t. w

$$\hat{w}^3 - v\hat{w}^2 + (\gamma^2 + 2\sigma_n^2)\hat{w} - \gamma^2 v = 0$$

Esimate of clean wavelet coefficient w

$$\hat{w} = \eta(v) = rac{v}{3} + s + t$$

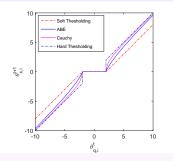
 $\hat{w}^{'} = \eta^{'}(v) = 1/3 + s^{'} + t^{'}$

s and t depend on v and σ²_n

Cauchy-AMP algorithm

The comparison of behaviour among four different denoisers

- Cauchy-based
- Soft thresholding (ST)
- Amplitude scale invariant Bayes estimator (ABE)



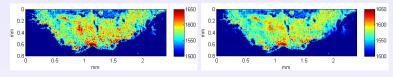
[.] D.L. Donoho, De-noising by soft-thresholding, IEEE Trans. on Information Theory, 1995.

[.] M. A. Figueiredo and R. D. Nowak, Wavelet-based image estimation : an empirical Bayes approach using Jeffreys' noninformative prior, IEEE Trans. on Image Processing, 2001.

- Compressed acoustic microscopy

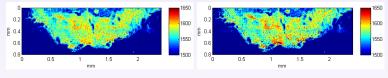
Results at 30% measurement ratio

Human lymph node



(a) Original

(b) AMP-Cauchy



(c) AMP-ST

(d) AMP-ABE

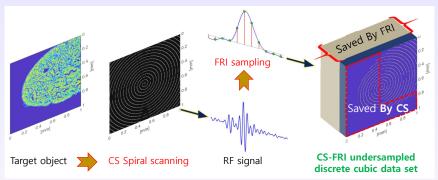
Quantitative results

Method	SSIM	PSNR
AMP-Cauchy	0.714	40.42
AMP-ST	0.683	39.98
AMP-ABE	0.708	40.10

Model-based approaches

- Compressed acoustic microscopy

Proposed data acquisition process



Spiral pattern (Φ) scanning in **spatial domain**, $y = \Phi x + n$

► Innovation rate ($\rho = 1/T$) sampling in time domain, $x_n = \left\langle \sum_{l=0}^{L-1} a_l h(t - t_l), \varphi\left(\frac{t}{T} - n\right) \right\rangle$

[.] J. Kim, J. Mamou, D. Kouamé, A. Achim, and A. Basarab, Spatio-temporal compressed quantitative acoustic microscopy, IEEE IUS, Oct 2019.

[.] J. Kim, J. Mamou, P. R. Hill, N. Canagarajah, D. Kouamé, A. Basarab, and A. Achim, Approximate message passing reconstruction of quantitative acoustic microscopy images, *IEEE Trans. on UFFC*, Mar 2018.

[.] J. Kim, J. Mamou, D. Kouamé, A. Achim, and A. Basarab, Reconstruction of quantitative acoustic microscopy images from rf signals sampled at innovation rate, *IEEE IUS*, Oct 2018.

Computational medical imaging

Model-based approaches

Introduction

Compressed acoustic microscopy

Spatio-temporal sparse encoding Spatial sampling Temporal sampling

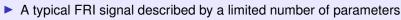
Results Other (successful) examples

Data-driven approaches

Introduction Limitation of model-based methods U-net

Conclusions

Finite rate of innovation (FRI)



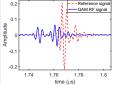
$$x(t) = \sum_{l=0}^{L-1} a_l h(t-t_l)$$

Unknown :

- t_l : time delays
- a_l : amplitude decays

Known :

h(t) : pulse shape



FRI sampling by kernel $\varphi(t)$ and innovation rate ($\rho = 1/T$)

$$x_n = \left\langle \sum_{l=0}^{L-1} a_l h(t-t_l), \varphi(t/T-n) \right\rangle$$

- ρ : total number of the unknown parameters (t_l, a_l)
- FRI recovery techniques for estimating t_l and a_l
 - Annihilating filter, matrix pencil method, etc.

[.] M. Vetterli, P. Marziliano, and T. Blu, Sampling signals with finite rate of innovation, IEEE Trans. on Signal Proc., Jun 2002.

Acoustic parameter estimation by AR estimator

• Retrieve Fourier coefficients X[k] from x[n] and $\Phi(\omega)$

$$x[n] = \langle x(t), \varphi(t - nT) \rangle = \sum_{k \in Z} X[k] e^{\frac{j2\pi knT}{\tau}} \Phi^* \Big[\frac{2\pi k}{\tau} \Big]$$

• $\Phi^*(\omega)$: transpose of Fourier transform of $\varphi(t)$

• The power series form acquired from N[k] = X[k]/H[k]

$$N[k] = \sum_{l=0}^{L-1} a_l \{ \exp[\Delta f(\beta_l + j2\pi t_l)] \}^k = \sum_{l=0}^{L-1} a_l \lambda_l^k$$

AR model construction

$$N_k = \sum_{i=1}^n s_i N_{k-i} + \epsilon_k$$

Calculation of acoustic parameters from identified λ_l and a_l

[.] J-H. Kim, J. Mamou, D. Kouamé, A. Achim, A. Basarab, Autoregressive model-based reconstruction of quantitative acoustic maps from RF signals sampled at innovation rate, submitted to *IEEE TCI*, 2019.

[.] D. Rohrbach and J. Mamou, Autoregressive signal processing applied to high-frequency acoustic microscopy of soft tissues, IEEE Trans. on UFFC, 2018.

Computational medical imaging

Model-based approaches

Introduction

Compressed acoustic microscopy Spatio-temporal sparse encoding Spatial sampling Temporal sampling

Results Other (successful) examples

Data-driven approaches

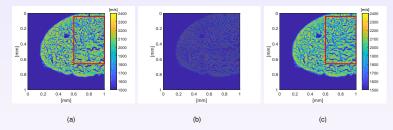
Introduction Limitation of model-based methods U-net

Conclusions

```
Model-based approaches
```

Illustration of the images at each reconstruction stage

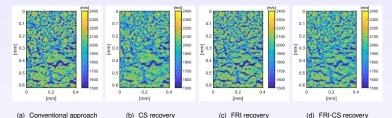
Speed of sound (SOS) maps of chicken tendon acquired with a 250 MHz transducer



- (a) : Conventional sampling at $1\mu m$ by $1\mu m$
- (b) : The spiral masking area recovered by FRI framework
- (c) : FRI-CS recovery

Comparison of reconstructed images

Chicken tendon 2D SOS maps



Quantitative results

Methods	PSNR(dB)	NRMSE	SSIM	compressed ratio (%)	Acquisition times
CS (b)	26.31	0.0483	0.7166	40	5%
FRI (c)	24.19	0.0617	0.6741	6.5	100%
FRI-CS (d)	23.38	0.0678	0.5511	2.6	5%

Computational medical imaging

Model-based approaches

Introduction

Compressed acoustic microscopy Spatio-temporal sparse encoding Spatial sampling Temporal sampling

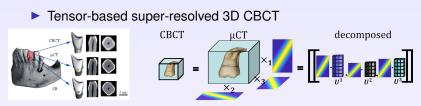
Results Other (successful) examples

Data-driven approaches

Introduction Limitation of model-based methods U-net

Conclusions

Super-resolution



MR-ultrasound image fusion

Ultrasound

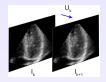
[.] J. Hatvani, A. Basarab, J.-Y. Tourneret, M. Gyongy, D. Kouamé, A Tensor Factorization Method for 3D Super-Resolution with Application to Dental CT, IEEE TMI, 2019.

[.] O. El Mansouri, A. Basarab, F. Vidal, D. Kouamé, J.-Y. Tourneret, Fusion of Magnetic Resonance and Ultrasound Images : a Preliminar Study on Simulated Data, IEEE ISBI, 2019.

Cardiac motion estimation

Let $I_k \in \mathbb{R}^N$, $I_{k+1} \in \mathbb{R}^N$ be two consecutive images

► The motion field to be estimated is $\boldsymbol{U}_{\boldsymbol{k}} = (\boldsymbol{u}_{\boldsymbol{k}}^{T}, \boldsymbol{v}_{\boldsymbol{k}}^{T})^{T} \in \mathbb{R}^{2N}$



Minimization of an energy function

 $\min_{\boldsymbol{\alpha},\boldsymbol{U}} \{ E_{\text{data}}(\boldsymbol{U},\boldsymbol{I}) + \lambda_s E_{\text{spatial}}(\boldsymbol{U}) + \lambda_d E_{\text{sparse}}(\boldsymbol{U},\boldsymbol{D},\boldsymbol{\alpha}) \}$

[.] N. Ouzir, A. Basarab, O. Lairez, and J.-Y. Tourneret, Robust Optical Flow Estimation in Cardiac Ultrasound images Using a Sparse Representation, *IEEE TMI*, 2018.

[.] N. Ouzir, A. Basarab, H. Liebgott, B. Harbaoui, and J.-Y. Tourneret, Motion estimation in echocardiography using sparse representation and dictionary learning, IEEE TIP, 2018.

Computational medical imaging

Nodel-based approaches Introduction Compressed acoustic microscopy Spatial sampling Temporal sampling Bos ults

Other (successful) examples

Data-driven approaches

Introduction

Limitation of model-based methods U-net

Conclusions

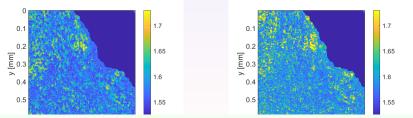
Spatial resolution in acoustic microscopy

Dependent on the central frequency

- Increasing the frequency comes with
 - Increased costs associated with the transducer and the necessary electronics
 - Experimental difficulties (e.g., sensitivity to nm scale vibrations and temperature)

Example of impedance images on a section of cancerous human lymph node

Thin section of soft tissue (12 µm) affixed to a microscopy slide



250 MHz

500 MHz

Adrian Basarab

Computational medical imaging: from model-based approaches to machine learning

Computational medical imaging

Adel-based approaches Introduction Compressed acoustic microscop Spatial sampling Temporal sampling Besults

Other (successful) examples

Data-driven approaches

Introduction Limitation of model-based methods U-net

Conclusions

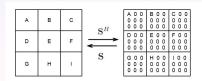
Forward model

 $\mathbf{y} = \mathbf{S}\mathbf{H}\mathbf{x} + \mathbf{n}$

- ▶ $\mathbf{y} \in \mathbb{R}^{N_l \times 1}$: is the measured image, $N_l = m_l \times n_l$
- ▶ $\mathbf{x} \in \mathbb{R}^{N_h \times 1}$: super-resolved image to be estimated, $N_h = d^2 N_l$
- ▶ $\mathbf{n} \in \mathbb{R}^{N_l \times 1}$: Gaussian noise

Degradation operators

- ▶ $\mathbf{H} \in \mathbb{R}^{N_h \times N_h}$: 2D circulant convolution matrix (PSF of the transducer)
- ▶ $\mathbf{S} \in \mathbb{R}^{N_l \times N_h}$: subsampling operator



SR optimization problem

 Super-resolved slice x_t estimation (time subscript is omitted in the following)

$$\min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{SHx}\|_2^2 + \tau \phi(\mathbf{Ax})$$

Total variation regularization

$$\phi(\mathsf{A}\mathbf{x}) = \sqrt{\|\mathsf{D}_{\mathrm{h}}\mathbf{x}\|^2 + \|\mathsf{D}_{\mathrm{v}}\mathbf{x}\|^2}$$

$$\mathbf{A} = [\mathbf{D}_{\mathrm{h}}, \mathbf{D}_{\mathrm{v}}]^{\mathcal{T}} \in \mathbb{R}^{2N_{\mathrm{h}} imes N_{\mathrm{h}}}$$

Constrained optimization

$$\min_{\mathbf{x},\mathbf{u}} \quad \frac{1}{2} \|\mathbf{y} - \mathbf{SHx}\|_2^2 + \tau \phi(\mathbf{u})$$
 subject to $\mathbf{Ax} = \mathbf{u}$

Associated augmented Lagrangian function

$$\mathcal{L}(\mathbf{x}, \mathbf{u}, \boldsymbol{\lambda}) = rac{1}{2} \|\mathbf{y} - \mathbf{SHx}\|_2^2 + au \phi(\mathbf{u}) + rac{\mu}{2} \|\mathbf{Ax} - \mathbf{u} + \boldsymbol{\lambda}\|_2^2$$

ADMM-based algorithm

Iterate

$$\begin{aligned} \mathbf{x}^{k+1} &= \arg\min_{\mathbf{x}} \|\mathbf{y} - \mathbf{SH}\mathbf{x}\|_{2}^{2} + \mu \|\mathbf{A}\mathbf{x} - \mathbf{u}^{k} + \mathbf{d}^{k}\|_{2}^{2} \\ \mathbf{u}^{k+1} &= \arg\min_{\mathbf{u}} \tau \phi(\mathbf{u}) + \frac{\mu}{2} \|\mathbf{A}\mathbf{x}^{k+1} - \mathbf{u} + \mathbf{d}^{k}\|_{2}^{2} \\ \mathbf{d}^{k+1} &= \mathbf{d}^{k} + (\mathbf{A}\mathbf{x}^{k+1} - \mathbf{u}^{k+1}) \\ \text{until stopping criterion is satisfied.} \end{aligned}$$

Update **u** using the vector-soft-thresholding operator

$$\nu = [\mathbf{D}_{h}\mathbf{x}^{k+1} + \mathbf{d}_{h}^{k}, \mathbf{D}_{v}\mathbf{x}^{k+1} + \mathbf{d}_{v}^{k}]$$
$$\mathbf{u}^{k+1}[i] = \max\{\mathbf{0}, \|\nu[i]\|_{2} - \tau/\mu\} \frac{\nu[i]}{\|\nu[i]\|_{2}}$$

Update x using a closed-form solution exploiting the following property of S

$$\mathsf{FS}^{H}\mathsf{SF}^{H}=rac{1}{d}\mathsf{J}_{d}\cdot\mathsf{I}_{N_{l}}$$

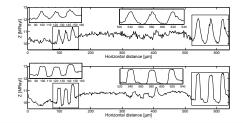
[.] N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. Kouamé, J.-Y. Tourneret, Fast Single Image Super-resolution using a New Analytical Solution for ℓ_2 - ℓ_2 Problems, *IEEE TIP*, 2016.

Resolution target results

USAF 1951 resolution phantom

Super-resolution factor d = 2

Horizontal profiles



Model-based super-resolution

Fails on ex vivo samples

Convolution with the PSF not sufficient to model the 250 MHz images

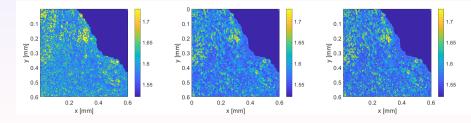
Example of impedance images on a section of cancerous human lymph node

Thin section of soft tissue (12 µm) affixed to a microscopy slide

500 MHz

250 MHz

Enhanced 250 MHz



Computational medical imaging

Adel-based approaches Introduction Compressed acoustic microscopy Spatial sampling Temporal sampling Besults

Other (successful) examples

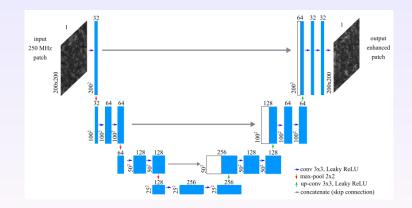
Data-driven approaches

Introduction Limitation of model-based methods U-net

Conclusions

Data-driven super-resolution

Fully convolution neural network (U-net) trained on 250 and 500 MHz images



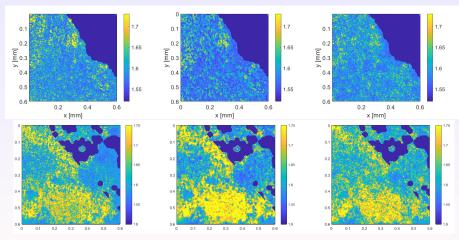
[.] J. Mamou, T. Pellegrini, D. Kouamé, A. Basarab, A convolutional neural network for 250-MHz quantitative acoustic-microscopy resolution enhancement, IEEE EMBC, 2019.

Results

500 MHz

250 MHz

Enhanced 250 MHz



Conclusions

Computational imaging

- In most of medical applications data is not sufficient to form the image (noise, incomplete data)
- Computational methods are used to avoid the ill-posedness of the resulting inverse problem

Model-based approaches

- Models include knowledge about the physics : fidelity, tractability ?
- Regularization terms are required and usually use adaptive or non-adaptive transforms : appropriate choice ?

Data-driven approaches

- More flexibility, but usually require learning databases
- How to include knowledge about the physics?
- Forward model, regularization, both?

Computational medical imaging: from model-based approaches to machine learning

Adrian Basarab

Université de Toulouse, IRIT, Université Paul Sabatier Toulouse 3

ICABME 2019, Tripoli, Lebanon

