

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

Line artefact quantification in lung ultrasound images of COVID-19 patients using a non-convex regularization-based method

O. Karakuş¹

N. Anantrasirichai¹

A. Aguersif² S. Silva²

A. Basarab³ A. Achim¹

¹University of Bristol, UK, ²Service de Reanimation, CHU Purpan, Toulouse, France, ³IRIT, Universite Paul Sabatier Toulouse, France.

GdR ISIS Diagnostic et pronostic pour la COVID-19 28 January 2021

Outline

1 Introduction

2 LUS Image Formation

Introduction

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

3 Non-Convex Regularisation

4 Line Artefacts Detection

5 Experimental Analysis

Introduction Pulmonary (Lung) disease

- ✓ Local to the lungs: Pneumonia, COPD, Lung Cancer.
- $\checkmark\,$ Manifesting themselves in the lungs: Kidney Disease, Tuberculosis, COVID-19.
- ✓ Causes death of +100.000 people/year in the UK.
- $\checkmark\,$ Somebody dies due to pulmonary diseases in the UK in every 5 minutes.
- \checkmark The 3rd common death reason in the UK.

(FC: nih.gov)

Adrian Basarab

Introduction Lung Ultrasound and Line Artefacts

Introduction

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

- \checkmark Lung ultrasound (LUS) can help in assessing the fluid status of patients in intensive care
- ✓ LUS can be conducted rapidly and repeatably at the bedside, can reduce the need for CT scans (shorter delays, lower irradiation levels and cost)
- ✓ The common feature in all clinical conditions is the presence in LUS of a variety of line artefacts (e.g., pleural, A, B-lines).

(Karakus et al., IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020)

Introduction Detection and Quantification

(Smith et al., Anaesthesia, 2020)

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

The Proposed Algorithm

Introduction

LUS Image Formation

Non-Convex Regularisatio

Line Artefact

Experimental Analysis

Image Formation

Forward Model

- $\checkmark\,$ Radon transform of a LUS image
- $\checkmark~$ Speckle noise \rightarrow False peaks resulting from collinear noisy edge points

Introduction

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

 $\checkmark~$ Solution: Exploiting the fact \rightarrow a small number of lines are to be detected

 $\checkmark X$ is sparse Radon information.

Image Formation

Inverse Problem

✓ Recalling the forward imaging model,

$$\hat{X} = \arg\min_{X} \left\{ F(X) = \Psi(Y, \mathcal{C}X) + \psi(X) \right\}$$

Introduction

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

✓ Under the assumption of an *i.i.d* Gaussian noise,

$$\Psi(Y, \mathcal{C}X) = rac{\|Y - \mathcal{C}X\|_2^2}{2\sigma^2}$$

✓ Based on the prior density p(X), the problem of estimating X

$$\hat{X} = \arg\min_{X} \frac{\|Y - \mathcal{C}X\|_{2}^{2}}{2\sigma^{2}} \underbrace{-\log p(X)}_{\text{the penalty function, }\psi(X)}$$
(3)

(1)

(2)

Non-Convex Regularisation

Cauchy Proximal Splitting

Non-convex Cauchy-based Penalty

 $\checkmark\,$ The Cauchy distribution \rightarrow Prior Density (to promote sparsity)

$$p(X) \propto rac{\gamma}{\gamma^2 + X^2}$$
 (4)

✓ By replacing p(X) with the Cauchy prior, we obtain

$$\hat{x}_{\text{Cauchy}} = \arg\min_{x} \frac{\|y - \mathcal{A}x\|_{2}^{2}}{2\sigma^{2}} - \log\left(\frac{\gamma}{\gamma^{2} + x^{2}}\right).$$
(5)

The Cauchy Proximal Splitting algorithm:

$$\boldsymbol{u}^{(i)} \leftarrow \boldsymbol{X}^{(i)} - \boldsymbol{\mu} \boldsymbol{\mathcal{C}}^{\mathsf{T}} (\boldsymbol{\mathcal{C}} \boldsymbol{X}^{(i)} - \boldsymbol{Y}), \tag{6}$$

$$X^{(i+1)} \leftarrow \mathsf{PROXCAUCHY}(u^{(i)}, \gamma, \mu).$$
 (7)

Thanks to $PROXCAUCHY(\cdot) \rightarrow Convergence$ is guaranteed¹.

¹ O. Karakuş et. al., "Convergence Guarantees for Non-Convex Optimisation With Cauchy-Based Penalties," in IEEE Trans. Signal Process., (68), 6159-6170, 2020

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

Line Artefacts Detection Algorithm

Figure: Schematic view of the proposed line artefact detection algorithm.

Adrian Basarab

Evaluation on COVID-19 Patients*

Detection Results

Original

images

Ground truth

Proposed method (Karakus et

al. IEEE

TUFFC'20)

[Anantrasirichai et al, IEEE TMI'17]

Introduction

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

* COVID-19 LUS data and annotations have been provided by Prof. Stein Silva and Dr. Amazigh Aguersif (Service de Réanimation, CHU Purpan, Toulouse, France).

Adrian Basarab

Evaluation on COVID-19 Patients

Performance metrics for B-line quantification

Performance Metric	The Proposed Method	Anantrasirichai et. al.
% Detection Accuracy	87.349%	78.916%
% Missed Detection	5.422%	13.855%
% False Detection	7.229%	7.229%
Specificity	7.692%	14.286%
Recall	94.118%	84.868%
Precision	92.308%	91.489%
F ₁ Index	0.932	0.881
F ₂ Index	0.938	0.861
F _{0.5} Index	0.927	0.901
LR+	1.020	0.990
Area under curve (AUC)	0.963	0.931
The average number of B-lines (Ground Truth) = 1.520		
Average Detected B-lines	1.550	1.410
NMSE of number of detected B-lines	0.151	0.243

Introduction

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

Adrian Basarab

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

Evaluation on Children's Kidney Disease Patients

Original Image

Detection

Quantifying Line Artefacts - Case 1: B-lines

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Quantifying Line Artefacts - Case 2: A-lines

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Quantifying Line Artefacts - Case 3: Consolidation

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

 \checkmark LUS imaging plays an increasing role in evaluation of pulmonary disease patients.

- $\checkmark\,$ Applicability at the bedside and real time,
- ✓ Capability in assessing lungs status.

Introduction

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

- $\checkmark\,$ LUS imaging plays an increasing role in evaluation of pulmonary disease patients.
 - ✓ Applicability at the bedside and real time,
 - $\checkmark\,$ Capability in assessing lungs status.
- $\checkmark\,$ Line artefacts \rightarrow vital information on the stage and progression of the disease.
- ✓ Automatisation is crucial.
 - $\checkmark\,$ reducing the need for expert interpretation
 - \checkmark benefit doctors, nurses, patients and their families alike

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

Conclusions

- $\checkmark\,$ LUS imaging plays an increasing role in evaluation of pulmonary disease patients.
 - ✓ Applicability at the bedside and real time,
 - ✓ Capability in assessing lungs status.
- $\checkmark\,$ Line artefacts \rightarrow vital information on the stage and progression of the disease.
- ✓ Automatisation is crucial.
 - reducing the need for expert interpretation
 - / benefit doctors, nurses, patients and their families alike

✓ We proposed

- / a novel non-convex regularisation based line artefacts quantification.
- Radon transform base inverse problem formulation,
- Regularisation to promote linear features.
- \checkmark Exploiting non-convexity whilst guaranteeing the convergence.

LUS Image Formation

Non-Convex Regularisation

Line Artefacts Detection

Experimental Analysis

Conclusions

Conclusions

- $\checkmark\,$ LUS imaging plays an increasing role in evaluation of pulmonary disease patients.
 - ✓ Applicability at the bedside and real time,
 - ✓ Capability in assessing lungs status.
- $\checkmark\,$ Line artefacts \rightarrow vital information on the stage and progression of the disease.
- ✓ Automatisation is crucial.
 - ✓ reducing the need for expert interpretation
 - / benefit doctors, nurses, patients and their families alike

✓ We proposed

- $\checkmark\,$ a novel non-convex regularisation based line artefacts quantification.
 - Radon transform base inverse problem formulation,
- Regularisation to promote linear features.
- \checkmark Exploiting non-convexity whilst guaranteeing the convergence.
- $\checkmark~$ Future work \rightarrow Fully Bayesian Analysis and Diagnosis Tool for Lung Disease.
- ✓ **Future work** → Uncertainty Quantification.

Thank you for your time!

For questions please contact via email: adrian.basarab@irit.fr

For details of this work please see our TUFFC paper:

[1] O. Karakuş, et .al, "Detection of Line Artifacts in Lung Ultrasound Images of COVID-19 Patients Via Nonconvex Regularization," in IEEE TUFFC, Nov. 2020, doi: 10.1109/TUFFC.2020.3016092.

For Matlab Code:

[2] QuantLUS - CPS v1.0 https://doi.org/10.5523/bris.z47pfkwqivfj2d0qhyq7v3u1i.

