
Lambda Calulus:A Case for Indutive De�nitionsRalph MatthesInstitut f�ur Informatik der Universit�at M�unhenOettingenstra�e 67, 80538 M�unhenmatthes�informatik.uni-muenhen.deJuly 8, 2000AbstratThese leture notes intend to introdue to the subjet of lambda al-ulus and types. A speial fous is on the use of indutive de�nitions.The ultimate goal of the ourse is an advaned treatment of indutivetypes.Contents1 Overview 22 Introdution to Indutive De�nitions 43 Lambda Calulus 133.1 Motivation . 133.2 Pure Untyped Lambda Calulus 154 Conuene 195 Weak and Strong Normalization 276 Simple and Intersetion Types 336.1 Simply-Typed Lambda Calulus 346.2 Lambda Calulus with Intersetion Types 366.3 Strong Normalization of Typable Terms 396.4 Typability of Strongly Normalizing Terms 417 Parametri Polymorphism 417.1 Strong Normalization of Typable Terms 447.1.1 Saturated Sets . 447.1.2 Calulating with Saturated Sets 457.1.3 Strong Computability . 461

7.2 Undeidability of Type Cheking 487.3 An Expliit System of Parametri Polymorphism 487.4 Strong Normalization and Typed Conuene of F 538 Monotone Indutive Types 608.1 The Example of Continuations 611 OverviewTyped �-aluli are espeially simple typed funtional programming languages.The study of those basi formalisms has appliations to the design and the devel-opment of programming languages, program logis and inuenes mathematiallogi (espeially strutural proof theory) from whih it originated.Starting with the indutive de�nitions of (untyped) �-terms and �-redution,the normal terms, the weakly normalizing terms and the strongly normalizingterms are haraterized indutively. This means, the properties of not havinga redut or not having an in�nite redution sequene, are turned into positivestatements. Moreover, with strongly normalizing terms it is done in a way fail-itating a proof of strong normalization of intersetion-typed terms enormously(whih would even over �-rules). Conerning the weakly normalizing terms, anindutively de�ned relation is introdued for the proof of standardization (dealtwith in the exerises). The tehnique of superdelopments is used to establishonuene. The system of universal types (system F �a la Curry) is proved to bestrongly normalizing, and system F �a la Churh is introdued at length. Againonuene and strong normalization are established whih later requires but asmall modi�ation to over the extensions of system F by monotone indutivetypes.After having used indution on indutively de�ned sets so suessfully, themeans of indution are added to the lambda alulus itself: By a onstrutively-minded inspetion of Tarski's �xed-point theorem the most general formulationof indutive types is gained (via the Curry-Howard isomorphism). This givesa lot more insight into the apability of system F for modelling abstrat datatypes and into usual formulations of indutive types found in the literature. Theidea of interpolation will eluidate why those systems give equal omputationalpower. Unfortunately, the material onerning indutive types is not availablein the present version of these notes.In essene, this ourse is a presentation (of a logiian's view) of several ofthe most important results on the syntax (and operational semantis) by help ofgeneral indution (in priniple known to everybody who knows about ontext-free grammars), and then a reetion of the priniple via �-aluli with indutivetypes.Desription of the "ourse's philosophy": In some sense, the presentationwill be more elementary than in standard textbooks beause everything is a-omplished in a stritly onstrutive fashion. On the other hand, it requiressome level of mathematial sophistiation to fully understand indution on in-dutively de�ned sets although the onept will be introdued arefully and2

applied to a wide range of examples (the �rst part of whih ould as well betreated by ordinary indution). Conerning ontent, most of the ourse willstik to results found in standard textbooks suh as [Bar84, Bar93, GLT89,Hin97, Kri93, Mit96℄. The reader may easily gain insight by omparing thequite di�erent styles of presentation.To sum up, the material is self-ontained and is intended to onvey severalof the entral insights of �-alulus in a way whih should also be interestingfor those who already know the results.Citations are quite rare in these notes. This does not indiate that I onsiderthe results to be original. Credits are given in my researh papers. In a futureversion, I might add many more itations to enhane fairness.Aknowledgements to my olleagues Thorsten Altenkirh and Felix Jo-ahimski for helpful omments on drafts of this work.Setion 2 deals with an extended example of simultaneous indutive de�ni-tions: ontext-free grammars. Two grammars for the same language are provento be equal. The proofs are done so arefully that a funtional program anbe read o� immediately. Its purpose is the transformation of the parse treesfrom one grammar into the other. But the main purpose is the illustration ofindution.In setion 3 the onept of binding is motivated from alulus. Untyped�-alulus is introdued: terms, substitution, �-equality, Curh numerals, �-redution.Conuene of �-redution is de�ned and proved in setion 4. Friends ofdiagrams may enjoy the proof of loal onuene whih is given beforehand sineit is muh more perspiuous. However, the method of establishing onuene inthe spirit of M. Takahashi with superdevelopments �a la F. von Raamsdonk, isexplained in great detail in order to make it as oneivable as the loal onueneproof.Setion 5 provides the notions of normalizability. Weak and strong normal-izability are both haraterized in a syntax-direted way|useful for proofs ofnormalization in later setions.Types enter the sene in setion 6: Simple and intersetion types are moti-vated and studied. The tehnial development is on�ned to intersetion typessine it is more demanding as well as more informative: type assignment mat-ters! The results are losure under substitution and reverse substitution, In-version and Subjet Redution, and the main result the well-known fat thatexatly the strongly normalizing terms are typable with intersetion types.In setion 7 universal types prevail. First, the �-terms get a riher typingsystem (system of universal types=system F �a la Curry) whih requires theandidate method for the proof of strong normalization. After a glane at theundeidability of type heking, the expliit form of system F is introdued witha riher term struture. Several tehnial ompliations our (e. g., loal on-uene fails without typability restrition). A �rst set of examples demonstratesF's ability to enode datatypes. Strong normalization is proved as a preparationfor the system with �xed-point types. 3

Setion 8 is inomplete: After an illuminating ML program a disussion ofthe virtues of indutive types and the limitations of F's enodings therof anbe found. It is intended to make this quite large a setion in later versions ofthese leture notes.2 Introdution to Indutive De�nitionsIn theoretial omputer siene, indutive de�nitions are ubiquitous. Mostly,they appear in the disguise of formal grammars whih are idealizations of nat-ural language grammars. Therefore, this introdution to indutive de�nitionsonentrates on examples of (even ontext-free) grammars. In [ASU86, Exam-ple 4.8℄ two equivalent grammars for arithmeti expressions are studied for thepurpose of illustrating the elimination of left reursion. The �rst one is (withid a set of identi�ers): E ! E+ T j TT ! T � F j FF ! (E) j idThe intuition of the non-terminals is given by:� E: expression = a sum of terms� T: term = a produt of fators� F: fator = a parenthesized expression or an identi�erThus we model that in arithmeti expressions, � has a higher preedene than+, and that parentheses enfore grouping. The grammar is left reursive andtherefore annot be treated by top-down parsing methods: One runs into theloop E! E + T! E+ T+ T! E+ T+ T + T! : : :The seond grammar is as follows (with empty word �):E ! THH ! +TH j �T ! FKK ! �FK j �F ! (E) j idThe idea is to deompose an expression into a term and a string of the form+T+ T+ : : :+ T (expressed by the auxiliary non-terminal H) while in the �rstgrammar, the deomposition would be into a list of T's with +'s inbetween. Thesame idea is used for the terms.The laim is that both grammars are equivalent, i. e., that the same expres-sions an be derived from the non-terminal E. How an we prove that with fullmathematial rigour? Answer: By indution. More onretely: By indution onthe generation of the expressions aording to these grammars. This generationproess may be made preise as follows: We simultaneously de�ne the sets E ,T and F of strings derivable in the �rst grammar from the non-terminals E, Tand F, respetively. This will be done by means of an indutive de�nition to beexpressed by the following rules: 4

(1) If e 2 E and t 2 T then e + t 2 E .(2) If t 2 T then t 2 E .(3) If t 2 T and f 2 F then t � f 2 T .(4) If f 2 F then f 2 T .(5) If e 2 E then (e) 2 F .(6) If i 2 id then i 2 F .These rules have to be interpreted as desribing the generation of the sets E , Tand F , hene the three sets will have all the properties expressed by the rules,and an element only enters one of the three sets if this is possible by one of thesix rules. E. g., e+ t only enters E by the �rst rule, if already e 2 E and t 2 T .Clearly, we are only interested in the set E of expressions, but we have tode�ne sets for every non-terminal in the grammar.Analogously, we indutively de�ne �ve sets E 0;H 0; T 0;K 0;F 0, orrespondingto the �ve non-terminals of the seond grammar:(a) If t 2 T 0 and h 2 H 0 then th 2 E 0.(b) If t 2 T 0 and h 2 H 0 then +th 2 H 0.() � 2 H 0.(d) If f 2 F 0 and k 2 K 0 then fk 2 T 0.(e) If f 2 F 0 and k 2 K 0 then �fk 2 K 0.(f) � 2 K 0.(g) If e 2 E 0 then (e) 2 F 0.(h) If i 2 id then i 2 F 0.Lemma 1 (Equivalene) E = E 0.Proof It is obvious that we annot prove E = E 0 in isolation. We �rst proveE � E 0 and simultaneously prove T � T 0 and F � F 0 by indution on thesimultaneous indutive de�nition of E , T and F . Proving by indution meansarguing on the generation of all the strings in E , T and F by help of the rules(1) to (6). Sine the rules speify whih strings have to be in E , T or F before,we may assume that for those strings we already have that they are in E 0, T 0and F 0, respetively. This is always alled the indution hypothesis.We go through (1) to (6):(1) If e + t 2 E has been onluded from e 2 E and t 2 T , we have to showthat e + t 2 E 0. By indution hypothesis, e 2 E 0 and t 2 T 0. Sine thereis only one rule for E 0, we onlude that e = t 0h with t 0 2 T 0 and h 2 H 0.Now, we �rst prove an auxiliary statement: If h 2 H 0 and t 2 T 0 thenh+ t 2 H 0. This is proved by indution on H 0: If h 2 H 0 due to rule (b)5

then h = +t 0h 0 with t 0 2 T 0 and h 0 2 H 0 whih entered H 0 before h. Byindution hypothesis, h 0 + t 2 H 0, hene h + t = +t 0h 0 + t 2 H 0 by rule(b) again. If h 2 H 0 due to rule () then h = �. By rules () and (b),h+ t = � + t = +t = +t� 2 H 0. By help of this statement, we infer thath+ t 2 H 0, hene e + t = t 0h+ t 2 E 0 by rule (a).(2) If t 2 E has been onluded from t 2 T , we have to show that t 2 E 0, andthe indution hypothesis is t 2 T 0. We are done by rules () and (a).(3) We need another auxiliary lemma: If k 2 K 0 and f 2 F 0 then k � f 2 K 0.The proof and the whole ase are similar to (1).(4) Similar to (2).(5) If (e) 2 F has been onluded from e 2 E , we have to show that (e) 2 F 0,and the indution hypothesis is e 2 E 0. So were are done by rule (g).(6) If i 2 F has been onluded from i 2 id, we have to show that i 2 F 0.This holds by rule (h).Let us prove E 0 � E . Sine the de�nitions of E 0, H 0, T 0, K 0 and F 0 areentangled, we need to prove something for all of those. Therefore, we indutivelyde�ne two auxiliary sets H and K. H is de�ned by mimiking rules (b) and ():(b+) If t 2 T and h 2 H then +th 2 H.(+) � 2 H.Analogously, K is de�ned after the model of (e) and (f):(e+) If f 2 F and k 2 K then �fk 2 K.(f+) � 2 K.Now, we an simultaneously prove E 0 � E , H 0 � H, T 0 � T , K 0 � K andF 0 � F by indution on the simultaneous indutive de�nition of E 0, H 0, T 0,K 0 and F 0. In order to do this, we �rst prove that (a) to (h) hold when all theprimed entities X 0 are replaed by the X , for X 2 fE ;H; T ;K;Fg.(a) Show that if t 2 T and h 2 H then th 2 E . We need an auxiliarylemma: If e 2 E and e 0 2 E then e + e 0 2 E . It is proved by indutionon the generation of e 0 2 E : If e 0 2 E has been onluded by rule (1)then e 0 = e 00 + t for some previously found e 00 2 E and some t 2 T . Byindution hypothesis, e+e 00 2 E , hene by rule (1), e+e 0 = e+e 00+t 2 E .If e 0 2 E has been onluded by rule (2) from e 0 2 T then e + e 0 2 E by(1).Now, the laim is proved for arbitrary t 2 T by indution on h 2 H: Ifh 2 H stems from rule (b+) then h = +t 0h 0 for some t 2 T and somepreviously generated h 0 2 H. By indution hypothesis, t 0h 0 2 E . Sinet 2 E , the auxiliary lemma yields th = t+ t 0h 0 2 E . If h 2 H by rule (+)then h = � and therefore th = t 2 E .6

(b) By rule (b+): If t 2 T and h 2 H then +th 2 H.() � 2 H by rule (+).(d) Show that if f 2 F and k 2 K then fk 2 T . In analogy to (a), we �rstprove t; t 0 2 T) t�t 0 2 T by indution on t 0 2 T and then do indutionon k 2 K.(e) By rule (e+): If f 2 F and k 2 K then �fk 2 K.(f) � 2 K by rule (f+).(g) By rule (5): If e 2 E then (e) 2 F .(h) If i 2 id then i 2 F by (6).Therefore, the unprimed entities ful�ll the de�ning lauses of the primed enti-ties. Sine the primed entities are assumed to be the smallest sets with thoseproperties (elements only enter if one of the rules applies), we onlude that theprimed entities are all inluded in the unprimed ones, respetively.Readers not being familiar with this order-theoreti arguments may simplydo an indutive proof of x 2 X 0) x 2 X for X 2 fE ;H; T ;K;Fg in traditionalstyle. We only onsider this for rule (a): Assume that th 2 E 0 has been on-luded from t 2 T 0 and h 2 H 0. By indution hypothesis, t 2 T and h 2 H.Therefore, by the validity of (a) with T 0, H 0 and E 0 replaed by T , H and E ,respetively, we get th 2 E and are done. �Sine our proof only ontained onstrutive arguments, it is straightforwardto write a program by whih the parse trees for expressions aording to the �rstand the seond grammar an be transformed into eah other. The programminglanguage we hose is Standard ML of New Jersey (Version 110.0.6 of Otober1999).The readers are not expeted to be familiar with SML. Nevertheless, itshould be possible to understand the program text without explaining the syn-tax. Only the intentions are given and the output of the system when fed withthe program lines shown so far.datatype'id expr = Pnode (* P for plus *) of 'id expr * 'id term |Tnode (* T for term *) of 'id termand 'id term = Mnode (* M for multiply *) of 'id term * 'id fator |Fnode (* F for fator *) of 'id fatorand 'id fator = Bnode (* B for braket *) of 'id expr |Inode (* I for identifier *) of 'id;Three indutive datatypes are introdued whih are parameterized by 'id rep-resenting the set of identi�ers (in our examples this will always be the built-intype string of strings). They model the set of derivation trees for E , T andF . The rules (1) to (6) are represented by onstrutors (whih are nothing buttags). So, e. g., Pnode stands for (1) and thus requires some 'id expr and some7

'id term (* denotes pairing). Note that only the derivation trees are modeledand not the expressions themselves. The system's answer (with its preferredtype variable name 'a):datatype 'a expr = Pnode of 'a expr * 'a term | Tnode of 'a termdatatype 'a term = Fnode of 'a fator | Mnode of 'a term * 'a fatordatatype 'a fator = Bnode of 'a expr | Inode of 'aval f1 = Bnode(Pnode(Tnode(Fnode(Inode("7"))),Fnode(Inode("3"))));val t1 = Fnode(Bnode(Tnode(Mnode(Fnode(Inode("8")),f1))));val e1 = Pnode(Tnode(t1),Mnode(Fnode(Inode("6")),Inode("5")));fun itplus(expr,n) =if n <= 0 then exprelse Pnode(expr,Fnode(Bnode(itplus(expr,n-1))));(* for the formation of big terms *)val e2 = itplus(e1,50);val e3 = itplus(e1,1000);val e4 = itplus(e1,100000);Some examples are provided, leading to the outputval f1 = Bnode (Pnode (Tnode (Fnode #),Fnode (Inode #))) : string fatorval t1 = Fnode (Bnode (Tnode (Mnode (#,#)))) : string termval e1 = Pnode (Tnode (Fnode (Bnode #)),Mnode (Fnode #,Inode #)) : string exprval itplus = fn : 'a expr * int -> 'a exprval e2 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #))) : string exprval e3 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #))) : string exprval e4 = Pnode (Pnode (Tnode #,Mnode #),Fnode (Bnode (Pnode #))) : string exprNote that # indiates trunation of output. By reursion on the derivation treeswe de�ne the derived elements of E , T and F as lists of symbols:fun ppe(Pnode(expr,term)) = ppe(expr)�["+"℄�ppt(term) |ppe(Tnode(term)) = ppt(term)and ppt(Mnode(term,fator)) = ppt(term)�["*"℄�ppf(fator) |ppt(Fnode(fator)) = ppf(fator)and ppf(Bnode(expr)) = ["("℄�ppe(expr)�[")"℄ |ppf(Inode(ident)) = [ident℄;val str1 = ppf f1;val str2 = ppt t1;val str3 = ppe e1;Note that � denotes onatenation of lists. We get8

val ppe = fn : string expr -> string listval ppt = fn : string term -> string listval ppf = fn : string fator -> string listval str1 = ["(","7","+","3",")"℄ : string listval str2 = ["(","8","*","(","7","+","3",")",")"℄ : string listval str3 = ["(","8","*","(","7","+","3",")",")","+","6","*",...℄ : string listNote that ... denotes trunation of the list (although in this example ...stands for nothing but "5" whih an be heked by entering the line(str3=["(","8","*","(","7","+","3",")",")","+","6","*","5"℄);the response to whih should be val it = true : bool).The seond grammar is dealt with similarly:datatype'id ee = THnode of 'id tt * 'id hhand 'id hh = PPnode of 'id tt * 'id hh |EmptyHand 'id tt = FKnode of 'id ff * 'id kkand 'id kk = MMnode of 'id ff * 'id kk |EmptyKand 'id ff = BBnode of 'id ee |IInode of 'id;(* examples *)val hh1 = PPnode(FKnode(IInode("6"),MMnode(IInode("5"),EmptyK)),EmptyH);val kk1 = MMnode(BBnode(THnode(FKnode(IInode("7"),EmptyK),PPnode(FKnode(IInode("3"),EmptyK),EmptyH))),EmptyK);val ee1 = THnode(FKnode(BBnode(THnode(FKnode(IInode("8"),kk1),EmptyH)),EmptyK),hh1);(* string representation *)fun ppee(THnode(tt,hh)) = pptt(tt)�pphh(hh)and pphh(PPnode(tt,hh)) = ["+"℄�pptt(tt)�pphh(hh) |pphh(EmptyH) = niland pptt(FKnode(ff,kk)) = ppff(ff)�ppkk(kk)and ppkk(MMnode(ff,kk)) = ["*"℄�ppff(ff)�ppkk(kk) |ppkk(EmptyK) = niland ppff(BBnode(ee)) = ["("℄�ppee(ee)�[")"℄ |ppff(IInode(ident)) = [ident℄;This yieldsdatatype 'a ee = THnode of 'a tt * 'a hh9

datatype 'a hh = EmptyH | PPnode of 'a tt * 'a hhdatatype 'a tt = FKnode of 'a ff * 'a kkdatatype 'a kk = EmptyK | MMnode of 'a ff * 'a kkdatatype 'a ff = BBnode of 'a ee | IInode of 'aval hh1 = PPnode (FKnode (IInode #,MMnode #),EmptyH) : string hhval kk1 = MMnode (BBnode (THnode (#,#)),EmptyK) : string kkval ee1 = THnode (FKnode (BBnode #,EmptyK),PPnode (FKnode #,EmptyH)): string eeval ppee = fn : string ee -> string listval pphh = fn : string hh -> string listval pptt = fn : string tt -> string listval ppkk = fn : string kk -> string listval ppff = fn : string ff -> string listval str4 = ppee(ee1);val ok1 = (str3 = str4);leads toval str4 = ["(","8","*","(","7","+","3",")",")","+","6","*",...℄ : string listval ok1 = true : booland shows that ee1 is the derivation in the seond grammar of the same ex-pression as that derived by e1 in the �rst one.Now we ome to the onversion from the �rst grammar to the seond gram-mar reeting the �rst part of the proof of the lemma. The auxiliary statementfor (1), namely if h 2 H 0 and t 2 T 0 then h+ t 2 H 0, is turned into a funtionplus whih takes an argument in 'a hh and one in 'a tt to produe that in'a hh reeting their addition. Similarly, we de�ne mult to reet the auxiliarylemma for (3). Moreover, we exploit that there are only one rule for E 0 and T 0eah whih allows to deompose the derivations into two piees.fun plus(PPnode(tt',hh),tt) = PPnode(tt',plus(hh,tt)) |plus(EmptyH,tt) = PPnode(tt,EmptyH);fun mult(MMnode(ff',kk),ff) = MMnode(ff',mult(kk,ff)) |mult(EmptyK,ff) = MMnode(ff,EmptyK);fun eetott(THnode(tt,hh)) = tt;fun eetohh(THnode(tt,hh)) = hh;fun tttoff(FKnode(ff,kk)) = ff;fun tttokk(FKnode(ff,kk)) = kk;val plus = fn : 'a hh * 'a tt -> 'a hhval mult = fn : 'a kk * 'a ff -> 'a kkval eetott = fn : 'a ee -> 'a ttval eetohh = fn : 'a ee -> 'a hhval tttoff = fn : 'a tt -> 'a ffval tttokk = fn : 'a tt -> 'a kk 10

The following de�nitions of the transforming funtions are straightforwardlyread o� the proofs of (1) to (6). Clearly, they have to be de�ned simultaneously,and every appliation of the indution hypothesis now beomes some reursiveall to one of the three funtions about to be de�ned.fun ve(Pnode(expr,term)) =let val ee = ve(expr) inTHnode(eetott(ee),plus(eetohh(ee),vt(term)))end |ve(Tnode(term)) = THnode(vt(term),EmptyH)and vt(Mnode(term,fator)) =let val tt = vt(term) inFKnode(tttoff(tt),mult(tttokk(tt),vf(fator)))end |vt(Fnode(fator)) = FKnode(vf(fator),EmptyK)and vf(Bnode(expr)) = BBnode(ve(expr))|vf(Inode(ident)) = IInode(ident);val ok2=(ve(e1)=ee1);Notie that the let onstrution provides for abbreviations used loally.val ve = fn : 'a expr -> 'a eeval vt = fn : 'a term -> 'a ttval vf = fn : 'a fator -> 'a ffval ok2 = true : boolWe turn to the other diretion orresponding to the proof of E 0 � E . The twoauxiliary sets H and K are represented by two additional indutive datatypes:datatype 'id auxh = PPPnode of 'id term * 'id auxh |EmptyAuxH;datatype 'id auxk = MMMnode of 'id fator * 'id auxk |EmptyAuxK;datatype 'a auxh = EmptyAuxH | PPPnode of 'a term * 'a auxhdatatype 'a auxk = EmptyAuxK | MMMnode of 'a fator * 'a auxkWe again need auxiliary funtions reeting the lemmas� If e 2 E and e 0 2 E then e + e 0 2 E .� If t 2 T and h 2 H then th 2 E .� If t 2 T and t 0 2 T then t � t 0 2 T .� If f 2 F and k 2 K then fk 2 T .11

embedded into the proof. The operations on the derivations are given in theorder of those lemmas:fun pluse(expr,Pnode(expr',term)) = Pnode(pluse(expr,expr'),term) |pluse(expr,Tnode(term)) = Pnode(expr,term);fun onth(term,EmptyAuxH) = Tnode(term) |onth(term,PPPnode(term',auxh)) =pluse(Tnode(term),onth(term',auxh));fun multt(term,Mnode(term',fator)) = Mnode(multt(term,term'),fator) |multt(term,Fnode(fator)) = Mnode(term,fator);fun onfk(fator,EmptyAuxK) = Fnode(fator) |onfk(fator,MMMnode(fator',auxk)) =multt(Fnode(fator),onfk(fator',auxk));val pluse = fn : 'a expr * 'a expr -> 'a exprval onth = fn : 'a term * 'a auxh -> 'a exprval multt = fn : 'a term * 'a term -> 'a termval onfk = fn : 'a fator * 'a auxk -> 'a termAs before, no intuition is needed to produe the transforming funtions fromthe proofs of (a) to (h). However, note that sine we only showed them for therules where the primed entities X 0 have been replaed by the X , the appliationsof the indution hypotheses are hidden, but nevertheless the reursive alls haveto be made as for the other diretion.fun vee(THnode(tt,hh)) = onth(vtt(tt),vhh(hh))and vhh(PPnode(tt,hh)) = PPPnode(vtt(tt),vhh(hh)) |vhh(EmptyH) = EmptyAuxHand vtt(FKnode(ff,kk)) = onfk(vff(ff),vkk(kk))and vkk(MMnode(ff,kk)) = MMMnode(vff(ff),vkk(kk)) |vkk(EmptyK) = EmptyAuxKand vff(BBnode(ee)) = Bnode(vee(ee)) |vff(IInode(ident)) = Inode(ident);val ok3 = (vee(ee1) = e1);val ok4 = (vee(ve(e2)) = e2);val ok5 = (vee(ve(e3)) = e3);val ok6 = (vee(ve(e4)) = e4); (* takes some time *)12

val vee = fn : 'a ee -> 'a exprval vhh = fn : 'a hh -> 'a auxhval vtt = fn : 'a tt -> 'a termval vkk = fn : 'a kk -> 'a auxkval vff = fn : 'a ff -> 'a fatorval ok3 = true : boolval ok4 = true : boolval ok5 = true : boolval ok6 = true : boolval it = () : unitNote that the last line of output stems from the exeution of the whole programloaded into SML by the ommand use("expr.sml") where expr.sml is thename of the soure �le.3 Lambda CalulusWe introdue �-alulus in its simplest form: There is only �-abstration andappliation, and no typing whatsoever. Nevertheless, in the motivating exam-ples, a riher signature will freely be used.3.1 MotivationImagine how in mathematial texts you will express that the funtion f is thesquaring funtion. The easiest way to do that is by saying that f(x) = x2 forall x. Others prefer to write f := (�)2, using the anonymous dot instead of thevariable name x. But how would we denote the two-plae funtion g whih formsthe sum of the squares of the arguments? We ould write g(x; y) := x2 + y2with the variables x and y. Is g := (�)2 + (�)2 aeptable? It does not indiatewhih is the �rst and whih is the seond argument. Hene we prefer to havevariable names.If we want to speak about the sum of two squares, why should we �rstintrodue some name g for that, instead of diretly writing a mathematialdesription? In �-alulus, we would write �x�y:x2 + y2.How would we express the �rst derivative �2g of g := �x�y:x2+y2 w. r. t. theseond argument (often written �g�y)? It is again a funtion of two arguments:�2g := �x�y: lim!0 �h:g(x; y + h) - g(x; y)h :In order to use �-notation as muh as possible, we even have writtenlim!0 �h:g(x; y+ h) - g(x; y)hinstead of the more usual limh!0 g(x; y + h) - g(x; y)h :13

Sine the onstrution does not depend on the onrete de�nition of g, wemay again do an abstration and de�ne �2 as an operation whih takes a two-plae funtion g and returns �2g, i. e., we de�ne�2 := �g�x�y: lim!0 �h:g(x; y+ h) - g(x; y)h :Note that the limit need not exist for every g and that therefore, stritly speak-ing, �2 is not well-de�ned. So, do not take this example too serious. A muhmore important issue: We do not need to have the name �2 at hand in order tobe able to express our onept of forming the derivative. We may simply saythat it is given by �g�x�y: lim!0 �h:g(x; y+ h) - g(x; y)h :Let us now alulate �x:�2(�x�y:x2 + y2) x 2, i. e., the funtion taking anyargument x to the partial derivative of our previous g w. r. t. y, evaluated atthe point (x; 2). By expanding the abbreviation, we get�x:��g�x�y: lim!0 �h:g(x; y + h) - g(x; y)h �(�x�y:x2 + y2) x 2:Clearly, we now want to replae the formal parameters g; x; y of �2 by theexpressions �x�y:x2 + y2; x; 2, respetively. This yields�x: lim!0 �h: (�x�y:x2 + y2)(x; 2 + h) - (�x�y:x2 + y2)(x; 2)h :Again we replae the formal parameters x; y of g by the atual arguments. (Forthis example, we do not distinguish between two subsequent arguments and apair of arguments.) We get�x: lim!0 �h: (x2 + (2 + h)2) - (x2 + 22)h :It is now a matter of algebra to see that the numerator of the fration hasthe same value as 4h + h2. And lim!0 �h:4 + h will ertainly be 4 sine itis suÆient for that to evaluate �h:4 + h at the argument 0, hene replaingthe formal parameter h by 0 in 4 + h, yielding 4 + 0 whih, by algebra, hasthe same value as 4. Hene, we have transformed �x:�2(�x�y:x2 + y2) x 2 into�x:4 whih does not allow any further simpli�ation. So we may say that theonstant funtion returning 4 on any input, is the result of our alulation.In pure �-alulus, we only model the bare bones of this example: Therewill be neither a referene to algebrai manipulations nor even to the oneptof a limit. So, there will be no squares, no sums, no frations, no subtrations.There are even no pairs (no tuples). But we may freely �-abstrat \formal"variables and may always apply one expression to another with the intuitionthat the �rst expression represents a funtion and the seond one an argumentto it. And the only mehanism for \alulation" will be the replaement offormal parameters by atual arguments.14

3.2 Pure Untyped Lambda CalulusLet an in�nite set V of identi�ers be given. The identi�ers serve as names forvariables. We usually denote elements of V by x; y; z. The identi�ers them-selves do not matter and will never appear in the presentation. The possibilityof having di�erent sets V is not exploited. The most basi �-alulus only mod-els funtionals (sine those funtions may take as well funtions as arguments,it is preferred to refer to them as funtionals). This is done by giving a sim-ple grammar for them|more preisely, by the following indutive de�nition ofterms:De�nition 1 (Terms) The set T of terms is indutively given by:� If x 2 V then x 2 T .� If x 2 V and r 2 T then �xr 2 T .� If r 2 T and s 2 T then (rs) 2 T .The intention is that �xr models the funtion x 7! r(x) in general mathematiallanguage, where r(x) is just r with the dependeny on x indiated (hene only ametasyntatially blown up notation for r). In mathematis one would perhapsprefer to write r(s) instead of the �-alulus notation (rs) for an appliation ofr to s.By de�nition, terms are strings onsisting of identi�ers in V , parenthesesand the greek letter �. Sine we do not aim at studying parsing issues, we willview terms as trees, i. e., we identify a term with its indutive generation bythe above de�nition. And as long as it is lear whih tree is meant, we leaveout parentheses. We also assume that appliation assoiates to the left and usethe dot notation: A dot hides a pair of parentheses, whih opens at the dot andloses as far to the right as is syntatially possible.Examples 1 xx is (xx). xxx is ((xx)x). ! := �x:xx is �x(xx).
 := !! is(�x(xx)�x(xx)).Note that all of the examples are quite ounterintuitive sine x is applied tox itself, hene x is on one hand viewed as a funtion and on the other as anargument to that funtion. By typing restritions to be introdued later, thosebizarre terms will be ruled out. Nevertheless, the theorems on pure �-alulusalways also hold for them.To give at least some intuition for
, think of funtions as prediates, i. e.,funtions with boolean range. Then fx means that f holds true of the argumentx. Moreover, �xr is the prediate whih holds true of x i� r(x) is true. In thisway, �-abstration beomes set omprehension. In a set-theoreti notation, !would then orrespond to M := fx j x 2 xg and
 to the assertion that M 2M.11Bertrand Russell used the set M := fx j x =2 xg and the assertion M 2M for his famousset-theoreti paradox. As a remedy he proposed typed systems. The ure for unpleasantbehaviour of �-terms will also be types, i. e., the restrition to terms whih follow sometyping disipline. 15

De�nition 2 (Free variables) De�ne the set FV(r) of variables ourringfree in r by reursion on r:� FV(x) := fxg.� FV(�xr) := FV(r) n fxg.� FV(rs) := FV(r) [FV(s).Obviously, FV(r) is always a �nite subset of V . As long as a term has freevariables (a term without free variables is losed), its intended meaning dependson the assignment of values for the free variables. Hene, it is important toknow the names of the variables. On the ontrary, the variables ourringin r whih are not free (the formal parameters or bound variables) are onlya means of pointing to the plaes where to bind the atual argument to theformal parameter. Hene, there is no di�erene at all between �xx and �yy.More generally, we will never make a distintion between terms di�ering onlyin the names of their bound variables as long as the internal referenes arethe same.2 So for us, (�x:xy)x � (�z:zy)x where � denotes syntati equality.Surely, (�z:zy)x 6� (�y:yy)x.A word of aution: In the passage from �xr to r, x may beome a freevariable, and onsequently its name matters. Hene in arguments by indutionon terms, the ase of an abstration typially reads as follows: \Case �xr. Byrenaming of the bound variable x, we may assume that x does not appear inthe set M [given beforehand℄. By indution hypothesis for r, . . . ". This meansthat although an arbitrary �xr has to be studied, we feel free to rename x in it.We even assume this has already been done and led to the hoie x. Then we�x the variable name and break up �xr to yield r with possible free ourrenesof x. We may now apply the indution hypothesis to r or rename other boundvariables in r, et.3De�nition 3 (Substitution) De�ne the result r[x := s℄ of replaing everyfree ourrene of the variable x in r by the term s reursively as follows:� x[x := s℄ := s� y[x := s℄ := y for y 6= x.� (�yr)[x := s℄ := �y:r[x := s℄ where we may assume by renaming of thebound variable y that y =2 fxg [FV(s).� (rt)[x := s℄ := r[x := s℄t[x := s℄.2In the literature, this will often be alled a variable onvention or that terms are onsid-ered up to renaming of bound variables or modulo �-equivalene. A mathematially soundjusti�ation of this identi�ation proess is not as trivial as one might expet it to be. More-over, for any operation on terms suh as substitution de�ned below, the independene of thehosen representative of the term has to be heked.3In a rigorous treatment, indution on the term struture would not even be available.Instead, one would have to argue by indution on the height of a term sine the height is thesame for �-equivalent terms. 16

Note in the ase of an abstration that y = x would forbid any replaement sinethen x would not be free in �xr. If we allowed y 2 FV(s), this free variableof s would be aptured by the outer �-abstration although there has been nofuntional dependeny beforehand. This would be ounterintuitive and alsomake substitution inompatible with renaming of bound variables.Lemma 2 r[x := s℄[y := t℄ = r[y := t℄[x := s[y := t℄℄ for x =2 fyg [FV(t).Proof Indution on r. �With the notion of substitution at hand, we are now able to de�ne whihterms are onsidered to be omputationally equal if our omputations are re-strited to the replaement of formal parameters by arguments, i. e., when re-plaing (�xr)s by r[x := s℄ in any part of the expressions.De�nition 4 (�-equality) Let =� be the ongruene relation generatedfrom (�xr)s =� r[x := s℄, i. e., =� is de�ned indutively by:(�) (�xr)s =� r[x := s℄ (outer �-equality).(�) r =� r 0) �xr =� �xr 0 (�-equality under an abstration).(a) r =� r 0 ^ s =� s 0) rs =� r 0s 0 (appliation).(r) r =� r (reexivity).(t) r =� s^ s =� t) r =� t (transitivity).(s) r =� s) s =� r (symmetry).(�)4 and (a) are the rules of ompatibility with the term formation rules,the rules (r), (t) and (s) express that =� is an equivalene relation.Clearly, it would suÆe to restrit the reexivity rule (r) to x =� x sine (�)and (a) are present in the system. Note that the names � and � are standardnotation.Example 2
 = (�x:xx)! =� (xx)[x := !℄ = !! =
 by rule (�). Thisdoes not sound interesting sine reexivity would also prove
 =�
.Example 3 (Churh numerals) De�ne n := �f�x: f(: : : (f| {z }n times x) : : :). The termn is alled the n-th Churh numeral. It will be onvenient to introdue theabbreviation rns := r(: : : (r| {z }n times s) : : :) suh that n = �f�x:fnx. The ompositionof terms is de�ned as r Æ s := �x:r(sx) (for some x =2 FV(r) [FV(s)). Thenfor every natural numbers m and n and terms r we have that (mr)Æ(nr) =�m + nr. Thus addition is represented within pure �-alulus. The proof isonly skethed: By hoosing the names of the bound variables appropriately,4The names � and � are standard notation.17

the left-hand side beomes �z:�(�f�x:fmx)r���(�g�y:gny)r�z�. By applying(�) twie, ompatibility several times, and assoiativity one, we get the�-equal term �z:(�x:rmx)�(�y:rny)z� =� �z:(�x:rmx)(rnz) =� �z:rm(rnz) =�z:rm+nz =� (�f�z:fm+nz)r. Why is this a proof sketh? Beause we taitlyuse several properties whih need to be proved by indution on naturalnumbers.Exerise 1 De�ne K := �x�yx and S := �x�y�z:xz(yz) with x; y; z di�erent.(Reall that xz(yz) = ((xz)(yz)).) Produe some term t suh that SKK =� tand t has no subterm of the form (�xr)s (hene t will later be alled �-normal).Exerise 2 Show for every m and n that m Æ n =� m � n and for m 6= 0and every n: m n =� nm. Hene, also multipliation and exponentiationare represented within pure �-alulus.5Exerise 3 (Predeessor) (diÆult) De�ne some losed term P represent-ing the predeessor funtion: For every n � 1, Pn =� n - 1 and P0 =� 0.Show that P meets its spei�ation.One possible solution6 is as follows: Numeral n applies its �rst argu-ment n times to its seond argument. Hene, iteration is already presentin the system. Full primitive reursion may be derived from iteration bymeans of pairing. Pairs may be de�ned very easily (a term hr; si and terms�1r and �2r for any terms r and s suh that �1hr; si =� r and �2hr; si =� s).Problem 1 How an we argue that �x�yx 6=� �x�yy? Clearly, we wantthem to be di�erent sine they represent proedures taking two argumentsand returning the �rst and the seond argument, respetively.7 But howdo we know that we annot use (�) together with (s) in order to produeterms (�xr)s out of r[x := s℄ in ourse of the hypothetial derivation of�x�yx =� �x�yy?By leaving out the rules of equivalene relations, and by adjusting the ap-pliation rule properly, we arrive at the de�nition of �-redution.De�nition 5 (�-redution) Indutively de�ne the relation !� as follows:(�) (�xr)s!� r[x := s℄ (outer �-redution).(�) r!� r 0) �xr!� �xr 0 (�-redution under an abstration).(r) r!� r 0) rs!� r 0s (right appliation).(l) r!� r 0) sr!� sr 0 (left appliation).5In fat, every partial reursive funtion an be modeled within �-alulus by taking theChurh numerals as numbers.6There are muh easier solutions and muh more bizarre ones.7If they were �-equal, all the terms would be �-equal.18

If r!� s we say that r redues by one �-redution step to s.Example 4
 = (�x:xx)!!� (xx)[x := !℄ = !! =
 by rule (�). This isinteresting sine reexivity has been exluded by passing from =� to !�.In fat, this example is a major nuisane whih will later be removed bytyping restritions.Lemma 3 r!� r 0) FV(r 0) � FV(r).Proof Indution on !�. �For every binary relation !, the transitive reexive losure of ! (i.,e.,the least transitive and reexive relation ontaining !) is denoted by !�.Equivalently, r !� s i� there are n 2 N0 and r0; r1; : : : ; rn suh that r = r0,8i 2 f1; : : : ; ng:ri-1 ! ri, and rn = s.Corollary 4 r!�� r 0) FV(r 0) � FV(r). �It is easy to see that !�� has all the de�ning properties of =� exept symme-try. But the absene of symmetry makes life muh easier as will be the themeof the next setion. Problem 1 will be solved.4 ConueneAlthough �-alulus even enjoys onuene, a proof of loal onuene is shown�rst.De�nition 6 (Loal onuene) A binary relation ! �M�M is loallyonuent i�8r 2M8r 0 2M8r 00 2M: r! r 0 ^ r! r 00) 9t 2M: r 0 !� t^ r 00 !� t:r
wwpppppppppppppp

''OOOOOOOOOOOOOr 0 �
&&N

N
N

N
N

N
N loal onuene r 00�

wwp
p

p
p

p
p

ptLemma 5 !� is loally onuent.Proof Let r!� r 0 and r!� r 00. By indution on r show that there is a term tsuh that r 0 !�� t and r 00 !�� t. We distinguish sixteen ases aording to thefour ases in the generation of r!� r 0 and r!� r 00, respetively. This will beindiated by a pair of names of rules taken from the de�nition of �-redution.
19

�=�. The situation is trivial: (�xr)s�
yyssssssssss �

%%K
KKKKKKKKKr[x := s℄

KKKKKKKKKK

KKKKKKKKKK
r[x := s℄

ssssssssss

ssssssssssr[x := s℄�=�. We have �xr�
||xx

xx
xx

xx �
##F

FFFFFFF�xr 0 �xr 00 due to r�
����

��
��

� �

@@
@@

@@
@@r 0 r 00 .By indution hypothesis, we get a term t with r 0 � �

��
>>

>>
>>

> r 00��
����

��
��

��t .Therefore, also �xr 0 � �
""F

FF
FF

FF
F �xr 00��{{xxxxx

xxx�xt .r/r and l/l. Similarly.r/l. We have rs�
}}{{

{{
{{

{{ �
!!C

CC
CC

CC
Cr 0s rs 0 with r!� r 0 and s!� s 0.Obviously, r 0s � ""D

DD
DD

DD
D rs 0�}}zzzzzzzzr 0s 0 .

l/r. Symmetri to the preeding ase.r/�. We have (�xr)s�
||zz

zz
zz

zz
z �

%%J
JJJJJJJJts r[x := s℄ with �xr!� t.Hene, t = �xr 0 with r !� r 0. Sine this implies r[x := s℄ !� r 0[x := s℄(see the substitutivity lemma below),we arrive at ts r[x := s℄

�
����

��
��

��
��

��
��

��
�(�xr 0)s �

%%K
KKKKKKKKK r 0[x := s℄

.
20

�/r. Symmetri to the preeding ase.l/�. We have (�xr)s�
zzuuuuuuuuu �

%%J
JJJJJJJJ(�xr)s 0 r[x := s℄ with s!� s 0.By the ompatibility lemma below, this implies r[x := s℄ !�� r[x := s 0℄(with as many steps as free ourrenes of x in r).Hene, (�xr)s 0 �

%%K
KKKKKKKKK

r[x := s℄��
yyrrrrrrrrrrr[x := s 0℄ .Notie that it is essential to put !�� instead of !� in this diagram.r/�. Symmetri to the preeding ase.� with other rules. Those six ases are impossible sine the other rules needappliation terms. �Two properties of !� have been used in this proof whih are now statedmore prominently:Lemma 6 (Substitutivity) If r!� r 0 then r[x := s℄!� r 0[x := s℄.Proof Indution on !�. �Lemma 7 (Compatibility) If s !� s 0 then r[x := s℄ !�� r[x := s 0℄, andr[x := s℄!� r[x := s 0℄ if x ours exatly one free in r.Proof Prove by indution on r that r[x := s℄ !�� r[x := s 0℄ with as many�-redution steps as the number of free ourrenes of x in r. �De�nition 7 (Conuene) A binary relation ! �M�M is onuent i�8r 2M8r 0 2M8r 00 2M: r!� r 0 ^ r!� r 00) 9t 2M: r 0 !� t^ r 00 !� t:r�

yysssssssssss �
%%K

KKKKKKKKKKr 0 �
%%J

J
J

J
J

J onuene r 00�
yys

s
s

s
s

stProblem 2 Can we get onuene of ! out of its loal onuene? Adiret proof fails:
21

//

��

��

��

��

//

��

//

��

//

��

��

��

//

��

//

��

//

��

// //

��

��

// // //

��

// //

��

// // //

// //This ould go on with ever inreasing omplexity. Moreover, there is abinary relation ! whih is loally onuent and not onuent: It is givenby the following graph on four items: oo ""bb // .Later we will see a ondition for deriving onuene from loal onuene.Theorem 1 !� is onuent.The proof will oupy the rest of this setion.De�nition 8 (Diamond Property) A binary relation ! �M�M has thediamond property i�8r 2M8r 0 2M8r 00 2M: r! r 0 ^ r! r 00) 9t 2M: r 0 ! t^ r 00 ! t:r
wwooooooooooooooo

''PPPPPPPPPPPPPPr 0
''O

O
O

O
O

O
O

O diamond property r 00
wwo

o
o

o
o

o
o

otNotie that onuene is a derived onept: ! is onuent i� !� has thediamond property. Also note that the ase l/� of the proof of loal onueneimmediately lets us �nd a ounterexample to the diamond property for !�,e. g., by starting with (�x:yxx)((�zr)s).The idea to prove onuene of some ! is as follows: Find a binary relation� (to be read as parallel redution) suh that ! �� �!� and� has the di-amond property. Conuene of ! follows easily: Assume r�
����

��
��

� �

@@
@@

@@
@@r 0 r 00 ,

22

i. e., r
����

��
�

��
??

??
?

����
��

�

 A
AA

AAr 0 r 00
.

Sine ! ��, we have r
������
��

�
�� ��
??

??
?

������
��

�
 A

AA
AAr 0 r 00

.
Multiple uses of the diamond property for � give:r

������
��

�
�� ��
??

??
?

�� ��
??

??
?

������
��

�

������
��

�

�� ��
==

==
=

������
��

�
 @

@@
@@r 0

�� ��
??

??
?

������
��

�

�� ��
==

==
= r 00

~~~~~~
~~

~

������
��

�
�� ��
??

??
?

�� ��
>>

>>
>

������
��

�tHene, by � �!�, r 0 !� : : :!� t and r 00 !� : : :!� t. Sine !� is transitiveby de�nition, we �nally get r 0 !� t and r 00 !� t. (Of ourse, this proof withdots ould be made more preise by some indutive argument.)How do we de�ne suh a notion�� for !�? Reonsider the ruial ase l/�in the proof of loal onuene. If we want to satisfy!� ��� and the diamondproperty for ��, we have to solve (�xr)s�
zzuuuuuuuuu �

%%J
JJJJJJJJ(�xr)s 0 � %% %%J

JJJ
JJJ

JJ
JJ

r[x := s℄�yyyysssssssssss?
.

(Reall that s!� s 0 is assumed in l/�.) Clearly, we want to have r[x := s 0℄ asthe ommon redut. Therefore, our �� must ful�lls!� s 0 ) r[x := s℄�� r[x := s 0℄:This intuitively means that in r[x := s℄�� r[x := s 0℄, the �-redution step froms to s 0 has to be arried out in parallel for eah free ourrene of x in r. We23



will now try to �nd out whih �-redutions on a term an be performed in onepass through it, and will later de�ne �� suh that r �� s i� s is the resultwhen performing �-redutions on r in one pass through r. First we de�ne theoptimal result r� of suh an ation on r.De�nition 9 (Complete superdevelopment) By reursion on terms r de-�ne the term r� as follows:x� := x;(�xr)� := �xr�;(rs)� := � t[x := s�℄ if r� = �xt,r�s� otherwise.In ase of a variable, there is nothing to do. Everything we an do with anabstration �xr, takes plae in its kernel r. Conerning an appliation rs, we�rst look what an be done with r and s. If the result r� happens to be anabstration, we even arry out the outer �-redution step (�xt)s� !� t[x := s�℄,otherwise we simply apply r� to s�. (Further possibilities for �-redution stepsannot be grasped uniformly by one pass through the term.)Examples 5 Consider r := (�x�y:xyy)st. In order to alulate r� we needto know ((�x�y:xyy)s)� whih hin turn alls for (�x�y:xyy)�. (�x�y:xyy)� =�x�y:xyy is plain. Therefore, ((�x�y:xyy)s)� = (�y:xyy)[x := s�℄ = �y:s�yy.Sine we may assume that y =2 FV(s), we �nally get r� = (s�yy)[y := t�℄ =s�t�t�. We see that the omplete superdevelopment is apable of replainga list of formal parameters (here x and y) by the atual arguments (herethe results s� and t�).The omplete superdevelopment may also eliminate intervening iden-tities, e. g., ((�xx)(�yr)s)� = r�[y := s�℄. Notie that (�xx)(�yr)s has hid-den parentheses, as shown in ((�xx)(�yr))s, preventing the �-redution of(�yr)s. Nevertheless, (�xx)(�yr)s and (�yr)s have the same omplete su-perdevelopment.Finally, omplete superdevelopments annot remove every possibility for�-redution, e. g., for x =2 FV(s), we get ((�x:xs)(�yr))� = (�yr�)s� (use thatFV(s�) � FV(s) shown below) whih an further be �-redued to r�[y := s�℄(whih of ourse may again be �-reduible depending on r and s).Lemma 8 r!� r�.Proof Indution on r. �As a orollary, we get FV(r�) � FV(r).Now, we want to see how �� should be de�ned to ensure that r �� r�:Sine x� = x, we have to require x �� x. Conerning (�xr)� = �xr�, we willalready know that r�� r� and have to show that �xr�� �xr�. This suggeststo require, more generally, r �� r 0 ) �xr �� �xr 0. Similarly|we now treatthe appliation|in ase r� = �xt, we will already know that r �� �xt ands �� s� and have to show that rs �� t[x := s�℄. This suggest to require24



r �� �xt^ s �� s 0 ) rs �� t[x := s 0℄. Finally, if we already know r �� r�and s�� s�, we want to onlude rs �� r�s�, if r� fails to be an abstration.This suggests to require r �� r 0 ^ s �� s 0 ) rs �� r 0s 0, whih seems morereasonable if we also allow r 0 to be an abstration. These four requirements willbe the de�nition of ��.De�nition 10 (Parallel �-redution) De�ne the binary relation �� in-dutively as follows:(�) r�� �xt^ s�� s 0 ) rs�� t[x := s 0℄.(�) r�� r 0 ) �xr�� �xr 0.(a) r�� r 0 ^ s�� s 0 ) rs�� r 0s 0.(v) x�� x.Notie that for given r, there may be several terms r 0 suh that r �� r 0, e. g.,in ase r �� �xt and s �� s 0, we have that rs �� t[x := s 0℄ by (�) andrs �� (�xt)s 0 by (a). (Reall that there are possibilities that those termsoinide: t = xx and s 0 = !.)Lemma 9 r�� r�.Proof By indution on r we verify that �� indeed has the property whih ledus to the de�nition. �Lemma 10 �� is reexive.Proof By indution on r show r�� r. This does not need rule (�). �Corollary 11 !� ���.Proof By indution on !�. Sine !� is the smallest set with its de�ningproperties, we simply have to show those properties for ��, i. e., we have toshow:(�) (�xr)s�� r[x := s℄.(�) r�� r 0 ) �xr�� �xr 0.(r) r�� r 0 ) rs�� r 0s.(l) r�� r 0 ) sr�� sr 0.This uses reexivity of �� at least four times. �Lemma 12 �� �!��.Proof By indution on ��. Sine �� is the smallest set with its de�ningproperties, we simply have to show those properties for !��, i. e., we have toshow: 25



(�) r!�� �xt^ s!�� s 0 ) rs!�� t[x := s 0℄.(�) r!�� r 0 ) �xr!�� �xr 0.(a) r!�� r 0 ^ s!�� s 0 ) rs!�� r 0s 0.(v) x!�� x.They learly hold. �The only remaining task is to prove the diamond property for��. A ruialase (with r�� r 0 and s�� s 0) will be (�xr)s�
yyyyttttttttt �

%% %%J
JJJJJJJJ(�xr 0)s 0 � %% %%KKKKKKKKKKK
r[x := s℄�yyyysssssssssss?

.
Clearly, we want to have r 0[x := s 0℄ as the ommon redut. This alls for thefollowingLemma 13 r�� r 0 ^ s�� s 0 ) r[x := s℄�� r 0[x := s 0℄.Proof Indution on r �� r 0. We only onsider the most tehnial ase (�):Assume that ru �� t[y := u 0℄ has been derived from r �� �yt and u �� u 0.By the indutive hypothesis, r[x := s℄ �� (�yt)[x := s 0℄ = �y:t[x := s 0℄ (sinewe may assume that y =2 fxg[FV(s 0)), and also u[x := s℄�� u 0[x := s 0℄. Hene,r[x := s℄u[x := s℄�� t[x := s 0℄[y := u 0[x := s 0℄℄ = t[y := u 0℄[x := s 0℄;by Lemma 2. Therefore, (ru)[x := s℄�� t[y := u 0℄[x := s 0℄, as required. �Note that this lemma omprises substitutivity and ompatibility (f. Lemma 6and Lemma 7 for !�).Lemma 14 (Maximality) If r�� r 0 then r 0 �� r�.r�wwwwooooooooooooooor 0 � '' ''O

O
O

O
O

O
O maximality of (:)�r�Thus r� is the optimum what an be done by �-redution in one pass, and ��gives all the possibilities one has in one pass (inluding doing nothing sine��is reexive), and if in the passage from r to r 0, the optimal way has not beenhosen (hene r 0 6= r�), r� an be reahed in another pass through r 0.Proof Indution on r�� r 0. We only look at the interesting ases.26



(�). Case rs�� t[x := s 0℄ thanks to r�� �xt and s�� s 0. By indutionhypothesis, �xt�� r� and s 0 �� s�. By inspetion of the rules of ��, itis lear that �xt�� r� an only be derived by rule (�). Therefore, r� hasto be a �-abstration r� = �xt 0 and t �� t 0. Hene, (rs)� = t 0[x := s�℄.By the preeding lemma, t[x := s 0℄�� t 0[x := s�℄.(a). By indution hypothesis, r 0 �� r� and s 0 �� s�. We have to showthat r 0s 0 �� (rs)�. If r� = �xt then, by rule (�), r 0s 0 �� t[x := s�℄ =(rs)�. Otherwise, by rule (a), r 0s 0 �� r�s� = (rs)�. �Notie that Lemma 9 is merely the speial ase with r 0 = r, hene its proof issuperuous sine we did not use it to prove maximality.Corollary 15 �� has the diamond property.Proof Given r, we already know the term t whih for any r 0 and r 00 suh thatr�� r 0 and r�� r 00 ful�lls r 0 �� t and r 00 �� t: It is r�. �To onlude, we have found a binary relation �� with !� � �� � !��and the diamond property. Hene, !� is onuent.Exerise 4 Show that !� has the Churh-Rosser property: For everyterms r and s, r =� s implies that there is some term t suh that r !�� tand s!�� t.Exerise 5 Solve Problem 1.Exerise 6 (a sequel to Exerise 2) Show that for m 6= 0 and any n, wehave m n!�� nm.Exerise 7 A simple lemma says 8s9r:sr =� r. The idea: For given s, setr := (�x:s(xx))(�x:s(xx)) with x =2 FV(s). Verify that sr =� s. (Hene, r isa �xed point of s viewed as a funtion.)In the intended solution to Exerise 3, one needs some suessor onChurh numerals, hene some losed terms S suh that 8n 2 N:Sn =� n+ 1.Show that S := �z�f�x:f(zfx) is a possible hoie.By the little lemma, there is a term r suh that Sr =� r. The term r inthe proof is no Churh numeral, i. e., not of the form n with some n 2 N.Show that (this is no aident:) no Churh numeral is �xed point of S.5 Weak and Strong NormalizationDe�nition 11 Given a binary relation ! �M �M, an element r 2 M isin normal form i� there is no s 2M suh that r! s.Lemma 16 (�-normal forms) The set nf of terms in normal form w. r. t.!� equals the set NF, de�ned by indution as follows:� If ~r � NF then x~r 2 NF. 27



� If r 2 NF then �xr 2 NF.The notation with vetors deserves a short explanation: ~r denotes a �nite list ofterms. This is not part of the syntax of �-alulus but a metasyntati devieto ommuniate terms. In fat, we have in�nitely many rules of the form:r1; : : : ; rn 2 NF) xr1 : : : rn 2 NF for every n 2 N0 .8Proof nf � NF is proved by indution on terms: x 2 NF. Let rs be in nf,hene also r; s 2 nf sine a redution in r or s gives rise to a redution in rs.By indution hypothesis r; s 2 NF. If r were of the form �xt, then ertainlyrs =2 nf. Hene, r = x~s for ~s � NF. We onlude rs = x~ss 2 NF. Let �xr be innf. Hene, also r 2 nf. By indution hypothesis, r 2 NF whih yields �xr 2 NF.NF � nf is proved by indution on the de�nition of NF. Let x~r be in NFthanks to ~r � NF. By indution hypothesis, ~r � nf, hene also x~r 2 nf sineany possible redution of x~r has to happen in one of the ~r. Let �xr be in NFdue to r 2 NF. By indution hypothesis, r 2 nf. Sine redutions on �xr anonly happen by help of the rule �, also �xr 2 nf. �Examples 6 ! = �x:xx 2 NF. 
 = !! =2 NF.De�nition 12 Given a binary relation ! �M �M, an element r 2 M isweakly normalizing i� there is an s 2M in normal form suh that r!� s.Let wn be the set of terms whih are weakly normalizing w. r. t. !�.Examples 7 nf � wn. 
 =2 wn sine the only term t suh that 
 !�� t is
 itself. (�x�y:y)
 2 wn sine its redut �yy is in nf.Exerise 8 Show that r 2 wn and r!�� r 0 imply r 0 2 wn.De�nition 13 Given a binary relation ! �M �M, an element r 2 M isstrongly normalizing i� there is no in�nite redution sequene starting fromr, i. e., i� there are no r0; r1; : : : suh that r0 = r and ri ! ri+1 for every i.This de�nition has a major drawbak: It is formulated as a negative state-ment, namely the non-existene of an in�nite redution sequene. This an beavoided and even the referene to in�nity be removed in the following indutiveharaterization.De�nition 14 Given a binary relation ! �M �M, its aessible part ais indutively de�ned by:8r 2M:(8s 2M:r! s) s 2 a) ) r 2 a:In other words: An objet r 2 M quali�es for a if every one-step redut s(any objet s 2M suh that r! s) already quali�ed for a.Clearly, if r is in normal form, then there is nothing to hek, and r entersa immediately.8The in�nity ould be avoided by introduing the onept of neutral term simultaneouslywith NF: Variables are neutral, and if r is neutral and s 2 NF, then rs neutral. Moreover, allneutral terms are in NF. 28



Lemma 17 The set a is the set of strongly normalizing elements of M.Proof How an we prove that a only ontains strongly normalizing objets?By indution on the indutive de�nition of a! Let r be in a thanks to s 2 afor every s suh that r ! s. Assume, we had an in�nite redution sequenestarting from r, i. e., some s-1; s0; s1; : : : suh that r = s-1 and for all i � -1:si ! si+1. Setting s := s0, we have r ! s, and an in�nite redution sequenestarting from s. This ontradits the indution hypothesis whih tells us that sis already strongly normalizing (sine s has entered a before r entered it).We now show that an r 2Mna is not strongly normalizing by onstrutingr0; r1; : : : suh that r0 = r and for all i, ri ! ri+1 and ri 2M n a. Set r0 := r.Assume that r0; : : : ; ri have already been onstruted. Sine ri =2 a, it did notqualify for a, hene there has to be some one-step redut ri+1 of ri whih alsodid not qualify for a, i. e., some ri+1 2M suh that ri ! ri+1 and ri+1 =2 a.�Note that the seond part of the proof uses some form of the axiom of hoieand is not onstrutively justi�ed.9De�ne sn := a!� . Hene, sn is the set of �-terms whih do not have anin�nite sequene of �-redutions.Example 8 (�x�y:y)
 =2 sn sine we get a onstant in�nite redution se-quene by �-redutions of 
.Exerise 9 Show that for a strongly normalizing binary relation !, i. e.,every objet is strongly normalizing w. r. t. !, loal onuene implies on-uene.Hint: By indution on r being in the aessible part of ! show thatevery diagram for onuene originating in r may be losed.Lemma 18 (Charaterization of the strongly normalizing terms) Theset sn equals the set SN, de�ned by indution as follows:� If ~r � SN then x~r 2 SN.� If r 2 SN then �xr 2 SN.� If r[x := s℄~s 2 SN and s 2 SN then (�xr)s~s 2 SN.Proof The more important part is proving that SN � sn whih may also bealled the soundness of SN w. r. t. strong normalization of !� (every elementof SN is indeed strongly normalizing). Clearly, this has to be done by indutionon the indutive de�nition of SN. We will pro�t from a deeper understandingof indution: Proving by indution on an indutively de�ned set I, that everyinhabitant of I has some property expressed by a set M, amounts to showingthat this set M has eah of the de�ning properties of I (where|of ourse|the9A onstrutivist would simply say that the aessible part is the notion of strong nor-malization and would probably never enounter any neessity for the exlusion of in�niteredution sequenes. 29



referene to I has to be replaed by M). Why is that so? The very idea of anindutive de�nition of I is that the rules desribing its de�nition give all thepossibilities. No element may enter I without the appliation of one of the rules.Hene, I beomes the smallest set with those losure properties, and if M is anarbitrary set ful�lling the losure properties, then I � M, whih was our goalto prove.Therefore, it suÆes to prove� If ~r � sn then x~r 2 sn.� If r 2 sn then �xr 2 sn.� If r[x := s℄~s 2 sn and s 2 sn then (�xr)s~s 2 sn.We �rst give a proof whih does not argue by indution on the aessible partbut by the non-existene of in�nite redution sequenes. Imagine an in�niteredution sequene starting from x~r. In every step there has to be a redution inone of the~r. Sine there are only �nitely many terms in~r, there has to be an ri in~r whih faes in�nitely many redution steps. Contradition. Assume an in�niteredution sequene with �rst term �xr. Sine the redutions an only takeplae in r, we get an in�nite redution sequene starting from r. Contradition.Imagine an in�nite redution sequene starting from (�xr)s~s. Sine r !� r 0implies r[x := s℄!� r 0[x := s℄, and onsequently r[x := s℄~s!� r 0[x := s℄~s, therean neither be an in�nite redution sequene starting from r nor from s nor fromany of the ~s. Hene, there has to be a redut of (�xr)s~s in the in�nite redutionsequene whih does no longer have the shape (�xr 0)s 0~s 0 with r!�� r 0, s!�� s 0,si !�� s 0i. Assume this were the last suessive term of this shape. The nextterm then has to be r 0[x := s 0℄~s 0, still followed by an in�nite redution sequene.From Lemma 6 and Lemma 7, we get r[x := s℄~s!�� r 0[x := s 0℄~s 0. Therefore, wealso get an in�nite redution sequene starting with r[x := s℄~s. Contradition.Now we redo the proof for the last lause and ompletely avoid Lemma 17:Show that (�xr)s~s 2 sn by main indution on s 2 sn and side indution onr[x := s℄~s 2 sn. Hene, prove t 2 sn for every t suh that (�xr)s~s !� t. Thefollowing redutions are possible.(�xr)s~s!� (�xr 0)s~s. Then r[x := s℄~s !� r 0[x := s℄~s by substitutivity,hene by side indution hypothesis (�xr 0)s~s 2 sn.(�xr)s~s!� (�xr)s 0~s. Then r[x := s℄~s !�� r[x := s 0℄~s by ompatibility,hene also r[x := s 0℄~s 2 sn. The main indution hypothesis yields (�xr)s 0~s 2sn.(�xr)s~s!� (�xr)s~s 0. Then r[x := s℄~s!� r[x := s℄~s 0, hene by side indu-tion hypothesis (�xr)s~s 0 2 sn.(�xr)s~s!� r[x := s℄~s 2 sn by assumption.In order to larify the intriate struture of the argument we prove this oneagain and spell out the nesting of indutions preisely. Main indution on s 2 sn30



amounts to showing the de�ning property of sn for the setM := fs j 8r;~s:r[x := s℄~s 2 sn ) (�xr)s~s 2 sng:So assume that any one-step redut of s is in M. For s 2M we do side indutionon r[x := s℄~s 2 sn, i.e., we show the de�ning property of sn for the setN := ft 0 j t 0 2 sn^ 8r;~s:t 0 = r[x := s℄~s) (�xr)s~s 2 sng:So assume t 0 is a term and eah immediate redut is in N. We have to showt 0 2 N. t 0 2 sn follows from the de�nition of sn, sine N � sn. If t 0 has theform r[x := s℄~s we have to show (�xr)s~s 2 sn, so we prove t 2 sn for everyone-step redut t. Heneforward, eah lause of the proof in the above proofan be reast using the pending assumptions.For the other diretion sn � SN (also alled ompleteness of SN), we doindution on sn. Hene, we have to show 8r:(8r 0:r!� r 0 ) r 0 2 SN)) r 2 SN.This is done by indution on the term r. For this to work, note that everyterm has exatly one of the following shapes (to be proved by indution onterms): x~r; �xr; (�xr)s~s. And beause we do indution on terms, we may usethe indution hypothesis for ri in the ase x~r, for r in the ase �xr (no surprise!)and for s in the ase (�xr)s~s. The rest is routine veri�ation. (Another proofwould �rst show that strongly normalizing terms are also strongly normalizingwhen the binary relation !� is extended by . de�ned by r . s i� s is a subtermof r. Then the result follows by indution on a!�[ ..) �Exerise 10 (another proof with indution on natural numbers) Let sn(k)be the set of terms where all �-redution sequenes have at most length k.We start ounting suh that sn(0) is the set of �-normal terms. Show thatSN � Sk2N sn(k). This shall be done onstrutively. Clearly by indution,but as follows: De�ne n-plae funtions fn with n 2 N, a one-plae funtiong and a two-plae funtion h suh that� If ri 2 sn(ki) for i 2 f1; : : : ; ng then x~r 2 sn(fn(k1; : : : ; kn)).� If r 2 sn(k) then �xr 2 sn(g(k)).� If r[x := s℄~s 2 sn(k) and s 2 sn(`) then (�xr)s~s 2 sn(h(k; `)).Prove these properties.As a �nal remark: SN is syntax-direted in the sense that from the shape ofevery term r it an be read o� whih single rule of SN ould prove that r belongsto SN. This may be exploited for the following naive normalization algorithmworking for every term r 2 SN and de�ned by reursion on r:nf(x~r) := x nf(r1) : : : nf(rn)nf(�xr) := �x nf(r)nf((�xr)s~s) := nf(r[x := s℄~s)Clearly, we do not make use of s 2 SN in the last lause. Therefore, the algo-rithm would also work if this requirement were dropped in the de�nition of SN.The following exerise shows that one even gets an indutive haraterizationof the weakly normalizing terms wn by this modi�ation.31



Exerise 11 Indutively de�ne the set WN:� If ~r �WN then x~r 2 WN.� If r 2WN then �xr 2 WN.� If r[x := s℄~s 2WN then (�xr)s~s 2WN.As mentioned above, the only di�erene with the de�nition of SN is theomission of \s 2 SN" in the last lause.De�ne the binary relation  on terms indutively (the vetor notationis understood elementwise, impliitly assuming that both vetors are of thesame length)� ~r ~r 0 ) x~r x~r 0� r r 0 ^ ~s ~s 0 ) (�xr)~s (�xr 0)~s 0� r[x := s℄~s t) (�xr)s~s t is reexive (3rd rule is not needed).Show Lemma 1: r r 0 ^ s s 0 ) rs r 0s 0.Hint: Indution on the derivation of r r 0.Show Lemma 2: !�� �!��.Hint: For every inlusion do indution on the derivation of the relationto be proved smaller than the other.Show Lemma 3: r r 0 ^ s s 0 ) r[x := s℄ r 0[x := s 0℄.Hint: Indution on the derivation of r r 0.Show Lemma 4: r r 0 !� r 00 ) r r 00.Hint: Indution on the derivation of r r 0 and analysis whih possibil-ities arise for r 0 !� r 00. This is the major work of this exerise and needsLemma 1 and Lemma 3.Show the Corollary: r!�� r 0 ) r r 0.Remark: Thus we have learnt !��= , hene a new indution priniplefor !��, namely indution on the derivation of  . Up to now we only hadthe opportunity to argue by indution on the number of steps in r!�� r 0.De�ne  - by omitting ~s from the seond lause of the de�nition of  (hene  -� ). The indutive de�nition reads:� ~r - ~r 0 ) x~r - x~r 0� r - r 0 ) �xr - �xr 0� r[x := s℄~s - t) (�xr)s~s - tShow Lemma 5: r - r 0 ) r 2WN^ r 0 2 NF.Hint: Indution on the derivation of r - r 0.Show Lemma 6: r 2WN) 9r 0:r - r 0.Show Lemma 7: r r 0 2 NF) r - r 0.Hint: Indution on  . (We even see that the derivation of r  r 0only uses rules whih are also present in  -, hene there is no need for atransformation of the derivation.) 32



Theorem WN is the set wn of weakly normalizing terms.Proof: "`WN � wn"' By L. 6 we have r  - r 0 for some r 0. By L. 5,r 0 2 NF. Sine  -�!��, we onlude r 2 wn."`wn �WN"' Let r!�� r 0 2 NF. From the Corollary we get r r 0 2 NF.L. 7 shows r - r 0, and �nally, by L. 5, r 2 WN.Final question: Whih of the two parts of the statement needs the wittyapproah taken in this exerise? (The Corollary is alled the Standardiza-tion Theorem, its proof followed [Loa98℄.)6 Simple and Intersetion TypesWe have seen that there are terms whih are not strongly normalizing and eventerms whih fail to be weakly normalizing. The idea was to use the unintuitiveterm ! = �x:xx and apply it to itself. The �rst examples in setion 3.1 dealingwith derivatives of funtions on the reals were modeled without using the in-formation on the domains and ranges of the funtions at hand. E. g., we neverexpressed that we onsidered the squaring funtionf : � R ! Rx 7! x2This more spei� information may be expressed by �x:x2 : R ! R, meaningthat �x:x2 is onsidered as a funtion from the reals to the reals. That our�x:x2 belongs to the funtion spae R ! R is alled type information. If weagain ignore the fat that limits do not always exist, we might type lim!0 with(R ! R) ! R, reeting that lim!0 takes a funtion from R to R and returns areal. What would be the type of �2? Again by ignoring unde�nedness problems,we would give it the type (R ! R ! R) ! R ! R ! R: The �rst argument isa two-plae real-valued funtion on R, the seond and third arguments are realsagain, and the result is again in R.Our semanti intuition is a world of funtionals, i. e., funtions taking fun-tions and even funtionals as arguments. In that simply-typed world, there isno plae for ! = �x:xx. Sine ! is already in normal form, it is very well-behaved w. r. t. �-redution. So, in some sense, we have to give up too muhwhen restriting to the simply-typed world.If we loosen the typing onept to inlude intersetion types invented in[CDC78℄, we also over !: Simply allow intersetions of already formed types.If some x \lives" in N ! N as well as in N, there is no hesitation to assert thatxx \lives" in N. Hene, we would type ! with ((N ! N) \ N) ! N. Are thereobjets whih an been seen as numbers and as number-theoreti funtions?Not in the set-theoreti model we were appealing to, but in reursion-theoretimodels (where reursive funtions are oded by numbers). But this is not thepoint. We only need the soundness of the impliations x : (N ! N) \ N ) x :N ! N ^ x : N and x : N ! N ^ x : N ) xx : N to onlude a orret type for !.33



6.1 Simply-Typed Lambda CalulusAssume a set VT of identi�ers.10 These serve as names for atomi types. Theirgeneri name will be �. Typial examples would be nat and real, representing Nand R by mere syntax.De�nition 15 (Simple types) The set Ts of simple types is indutivelygiven by:� If � 2 VT then � 2 Ts.� If � 2 Ts and � 2 Ts then (�! �) 2 Ts.Hene, the simple types are nothing but strings of symbols built up from thegiven symbols in VT by help of the binary !, syntatially representing theonstrution of funtion spaes. As for the terms, we avoid parentheses asmuh as possible, and therefore assume ! to be right-assoiative (appliationwas meant to be left-assoiative).Examples 9 � ! � is (� ! �). nat ! nat ! nat is (nat ! (nat ! nat)).The seond example represents the spae of number-theoreti funtions oftwo arguments and explains why ! has been delared right-assoiative.More ompliated things need parentheses: (nat ! nat) ! nat representsthe funtionals taking number-theoreti funtions and returning values inN. Here, we only suppressed the outer parentheses.As a further abbreviation, set �1; : : : ; �n ! � := �1 ! : : : ! �n ! � and alsouse this with ~� := �1; : : : ; �n, hene ~� ! � is a well-de�ned type. (For n = 0we set ;! � := �.) By indution on types, it is easy to verify that every typeuniquely deomposes into ~�! � for some � 2 VT and arbitrary types ~�.De�nition 16 (Simple typing) The relation � ` r : � (term r has type �in ontext �) is indutively de�ned by the following rules:�; x : � ` x : � (V) �; x : � ` r : �� ` �xr : �! � (!I) � ` r : �! � � ` s : �� ` rs : � (!E)From these lauses, it is lear that only �nite lists of variable names withtypes (eah pair separated by a olon) may our on the left-hand sideof `. We moreover restrit those ontexts to lists with pairwise disjointvariable names. Hene, by writing �; x : �, it is impliit that x does notour in �, written x =2 �. We also syntatially identify ontexts whih arepermutations of eah other. This amounts to using the following exhangerule without inluding it into the typing system: If � is a permutation ofthe pairs in � and � ` r : � then � ` r : � (Exhange 1).10Generally, we assume that VT and V are disjoint sets, and even that terms and types arealways disjoint|in ontrast to the systems of dependent types not overed by this ourse.
34



Note that our notation always suggests that we have lists on the left-hand sideof `. In fat, we onsider the ontexts to be sets of variable delarations withoutinonsistenies arising from multiple delarations for some variable. The emptyontext will be denoted by ;, hene ` r : � and ; ` r : � mean the same assertion.Some omments on the rules: Rule (V) is nothing but lookup in the ontext,rule (!I), the !-introdution rule, follows our intuition: If r gets type � underthe assumption that the possibly free variable x is of type �, then the abstration�xr gets the funtion type � ! �. The !-elimination rule (!E) requires thatthe argument s to r of type � ! � has to have the domain type �, and statesthat the result of the appliation has the range type �.Lemma 19 There are no � and � suh that � ` ! : �.Proof If there were � and �, then the rule (!I) would have been appliedlast. Hene, we would have � = �1 ! �2 and �; x : �1 ` xx : �2. Thisan only be derived by help of (!E). Hene, there is a type � suh that�; x : �1 ` x : � ! �2 and �; x : �1 ` x : �. These an only be found by applying(V), hene � ! �2 = �1 = �. Contradition (the equality is the equality ofstrings). �Exerise 12 Let � be any type. Show that for the n-th Curh numeral n, wehave ` n : (�! �) ! �! �. Whih types are possible for mÆn := �x:m(nx)and m n in the empty ontext?Exerise 13 Show that every term in NF reeiving type (� ! �) ! � ! �(aording to our onvention, � is an atomi type) in the empty ontextis either a Churh numeral or �ff. (What is the di�erene between 1 and�ff?)Exerise 14 Show that for typable terms in normal form we an alwaysreonstrut the types � whih have been used in the abstration rule, i. e.,in the rule �; x : � ` r : � ) � ` �xr : � ! �. Show by example that this isnot the ase for arbitrary typable terms.Exerise 15 We want to prove weak normalization of simply-typed termswith nearly no overhead. Therefore we abandon the typing assignmentsand simply assume that every term we onsider is simply-typed. Morepreisely, we indutively de�ne the simply-typed terms with their types asfollows:� If x is a variable and � is a type, then x� is a term of type �.� If x is a variable, � is a type and r is a term of type � then �x�r is aterm of type �! �.� If r is a term of type � ! � and s is a term of type � then rs is aterm of type �. 35



r is a term of type � will be expressed by r : � or r�, e. g., �f�!��x�:f(f(fx)) :(� ! �) ! � ! �. For simpli�ation of notation, the types of the boundvariables are not written if there is no ambiguity. Of ourse, e. g., �x��x�:xis ambiguous for � 6= � and therefore illegal. But even after disambiguation,those terms should not be used in expliit onsiderations.The set NF now has to obey the additional proviso of well-formednessof x~r. This will not be made expliit.De�ne r # :, 9t 2 NF:r !�� t. In priniple fr j r #g equals wn, but wnis made up of untyped terms.(a) Show the following lemma: If r 2 NF and s� 2 NF, then (i) rs # ifrs is a typed term, and (i) r[x� := s℄ #.Hint: Main indution on the type �, side indution on r 2 NF. Asomewhat more involved proof �rst shows only (ii) (and uses r�!� 2 NF)rx� # to be proved beforehand) and infers (i).(b) Show that every typed term r satis�es r #.6.2 Lambda Calulus with Intersetion TypesDe�nition 17 (Intersetion types) The set Ti of intersetion types is in-dutively given by:� If � 2 VT then � 2 Ti.� If � 2 Ti and � 2 Ti then (�! �) 2 Ti.� If � 2 Ti and � 2 Ti then (� \ �) 2 Ti.Sine we have more types, i. e., Ts � Ti, we also have additional rules fortyping. Nevertheless, we will use the same symbol ` for both simple typing andintersetion typing.De�nition 18 (Intersetion typing) The relation � ` r : � (term r hastype � in ontext �) is indutively de�ned by the following rules:�; x : � ` x : � (V) �; x : � ` r : �� ` �xr : �! � (!I) � ` r : �! � � ` s : �� ` rs : � (!E)� ` r : � � ` r : �� ` r : � \ � (\I) � ` r : �1 \ �2 i 2 f1; 2g� ` r : �i (\E)The onventions onerning ontexts are as for simple typing.Note that the rules of \-introdution (\I) and \-elimination (\E) apture theintuition that the intersetion type onstrut models intersetion.Examples 10 x : (� ! �) \ � ` x : � ! � and x : (� ! �) \ � ` x : �, henex : (� ! �) \ � ` xx : � and �nally ` ! : ((� ! �) \ �) ! �. In Lemma 24,we will see that for no � and �, � ` 
 : � holds, i. e., 
 is not typable withintersetion types.Lemma 20 (Derived rules) 36



� If � ` r : � then �; x : � ` r : � (Weakening 1).� If �; x : � ` r : � then �; x : � \ � ` r : � (Weakening 2).� If �; x : � ` r : � and x =2 FV(r) then � ` r : � (Strengthening).� If �; x : � \ � ` r : � then �; x : � \ � ` r : � (Exhange 2).� If �; x : (�1\�2)\�3 ` r : � then �; x : �1\ (�2\�3) ` r : � (Exhange 3).Proof By rule indution on `. �Lemma 21 (Substitution)(a) If �; x : � ` r : � and � ` s : � then � ` r[x := s℄ : �.(b) If � ` r[x := s℄ : �, x =2 FV(s)[ � and (x =2 FV(r)) � ` s : �0) then thereis a type � suh that �; x : � ` r : � and � ` s : �.Proof (a) has a ompletely straightforward proof by indution on the derivationof �; x : � ` r : � and does not reveal anything spei� to intersetion types. (b)is typial of intersetion types (ompare with Proposition 3 in [Kri93, p. 51℄whih is unfortunately too weak sine it always requires � ` s : �0 for some type�0) and is proved by indution on the derivation of � ` r[x := s℄ : �. The aser = x is trivial. Let now r 6= x.(V) Let � ` r[x := s℄ = y : � due to y : � 2 �. Sine r 6= x, r = y 6= x.Therefore, x =2 FV(r), and we set � := �0 and apply rule (V).(!I) Let � ` r[x := s℄ = �yt : � = �1 ! �2 due to �; y : �1 ` t : �2. Siner 6= x, r = �yr0 and t = r0[x := s℄. We may assume that y =2 fxg [ FV(s).Sine x =2 FV(r0) implies x =2 FV(r) implies � ` s : �0 implies �; y : �1 `s : �0, we may apply the indution hypothesis and get a type � suh that�; y : �1; x : � ` r0 : �2 and �; y : �1 ` s : �. Strengthening yields � ` s : �.Finally, �; x : � ` �yr0 : �1 ! �2.(!E) Let � ` r[x := s℄ = t1t2 : � be derived from � ` t1 : � ! � and� ` t2 : �. Sine r 6= x, r = r1r2 and ti = ri[x := s℄ (i = 1; 2). Ifx 2 FV(r) then x 2 FV(r1) or x 2 FV(r2). In both ases the indutionhypothesis provides a type �0 suh that � ` s : �0. Hene, from theassumption of (b) we always have some �0 with � ` s : �0. By indutionhypothesis, there are types �1 and �2 suh that �; x : �1 ` r1 : � ! �,� ` s : �1, �; x : �2 ` r2 : � and � ` s : �2. By Weakening 2 and Exhange2, we get �; x : �1 \ �2 ` r1 : � ! � and �; x : �1 \ �2 ` r2 : �, hene�; x : �1 \ �2 ` r1r2 : �. Finally, � ` s : �1 \ �2.(\I) Interset the two types given by the indution hypothesis as in thepreeding ase.(\E) Trivial from the indution hypothesis. �37



The next lemma will always be needed if a given type assignment is analyzed.For its statement we need the onepts of prime types and prime fators [Kri93,p. 50℄: A prime type is a type whih is not of the form � \ �. Let P be the setof prime types. Every type an be written in the form �1 \ : : :\ �n with n � 1and �i 2 P for i 2 f1; : : : ; ng. Note that we do not are about parentheses sinethey do not hange typability (neither in ontexts due to Exhange 3 nor in thederived type due to (\I) and (\E)). The �i are alled prime fators of �. Wenow present Lemma 1 from [Kri93, p. 50℄. In the sequel the notation \~� will beused for �1 \ : : :\ �n with the impliit assumption that the �i are prime types.� 2 ~� learly means that � = �i for some i.Lemma 22 (Inversion) Let � ` r : � with � 2 P.1. If r = x then x : \~� 2 � with � 2 ~�.2. If r = �xt then � = �1 ! �2 and �; x : �1 ` t : �2.113. If r = ts then � ` t : �! \~� and � ` s : � for some types � and ~� suhthat � 2 ~�.Proof Consider in the derivation of � ` r : � an uppermost ourrene of some� ` r : \~� with � 2 ~�. The rule by whih this is ahieved annot be (\I) or (\E)sine they would require an earlier ourrene of the desribed form. Therefore,in the �rst, seond and third ase, the rule is (V), (!I) and (!E), respetively.�Lemma 23 (Subjet Redution) If � ` r : � and r!� r 0 then � ` r 0 : �.Proof By indution on � ` r : �. Only the ase (!E) is non-trivial: We have� ` rs : � due to � ` r : �! � and � ` s : �, and rs!� t. Show that � ` t : �.� If t = r 0s 0 by one redution step altogether from r to r 0 and s to s 0 thenwe are done by the indution hypothesis.� In the ase of an outer �-redution r = �xr0 and t = r0[x := s℄. By thepreeding lemma, �; x : � ` r0 : �. By Lemma 21(a), � ` r0[x := s℄ : �. �As a further appliation of Inversion, we show that 
 is not typable.Lemma 24 Let ~� � P. The following is impossible:� ` ! : \~�! � and � ` ! : \~�:Proof Indution on the number of di�erent types in ~�. Assume both typings.By Inversion, �; x : \~� ` xx : �. � = \~�. Therefore, �; x : \~� ` xx : �1 (the �rstelement of ~�). Again by Inversion, �; x : \~� ` x : � ! \~� and �; x : \~� ` x : �with �1 2 ~�. � deomposes into prime fators as � = �1 \ : : : \ �n, hene forevery k 2 f1; : : : ; ng: �; x : \~� ` x : �k. Again by Inversion, �k 2 ~� for everyk 2 f1; : : : ; ng. Therefore, � = \~� 0 for some �nite list ~� 0 omposed only of11We may assume that x =2 �. 38



elements of ~�. One more by Inversion, applied to �; x : \~� ` x : \~� 0 ! \~�,there is a �j in ~� suh that �j = \~� 0 ! \~�. Hene �j =2 ~� 0, and onsequently~� 0 has fewer di�erent types than ~�. From � ` ! : \~� we now immediately get� ` ! : \~� 0 ! \~� and � ` ! : \~� 0. Contradition by indution hypothesis. �Corollary 25 � 6` 
 : �.Proof If � ` 
 : � then also for some � 2 P . By Inversion, there is ~� and �suh that � 2 ~� and � ` ! : �! \~� and � ` ! : �. Sine � = \~� with ~� � P ,the previous lemma applies. �Exerise 16 Produe a weakly normalizing term whih annot be typedwith intersetion types.6.3 Strong Normalization of Typable TermsThe following proof is in the spirit of [JM99℄ whih dealt with permutativeonversions instead of intersetion types.Lemma 26 If r 2 SN and x =2 FV(r) then rx 2 SN.Proof Indution on SN. �Note that x =2 FV(r) is a superuous assumption. Nevertheless, we do not needa stronger statement, and therefore only onsider what an be proved so easily.Lemma 27 If r; s 2 SN and � ` s : � and �; x : � ` r : � then r[x := s℄ 2 SN.Proof We �rst de�ne a measure h(�) 2 N0 for every type � by reursion on �as follows: h(�) := 0h(�! �) := 1 + max(h(�); h(�))h(� \ �) := max(h(�); h(�))The proof is by main indution on h(�), side indution on r 2 SN and asedistintion aording to r 2 SN. (Observe that we also have � ` r[x := s℄ : � byLemma 21(a).)Case y~r. This has been derived from~r � SN. By multiple Inversion, we get�; x : � ` ~r : ~� for suitable ~�. By side indution hypothesis, ~r[x := s℄ � SN.Therefore, y~r[x := s℄ 2 SN. This �nishes with the ase y 6= x. So assumey = x. If ~r is empty, the laim is trivial. Otherwise, ~r = t;~t, hene�; x : � ` xt~t : �. xt~t = (z~t)[z := xt℄ for some \new" variable z. ByLemma 21(b), there is a type � suh that �; x : �; z : � ` z~t : � and�; x : � ` xt : �. � = \~�. Consider the element �k of ~�. �; x : � ` xt : �k.By Inversion, there is a type � 0k and types ~�k with �k 2 ~�k suh that�; x : � ` x : � 0k ! \~�k and �; x : � ` t : � 0k. With � = \~� and Inversion,we get � 0k ! \~�k 2 ~�. Therefore, h(�k) � h(\~�k) < h(� 0k ! \~�k) � h(�).Sine this holds for every k, also h(�) < h(�). We ontinue with k := 1,39



� 0 := � 01 and ~� := ~�1. Clearly, � ` s : � 0 ! \~�. By the previous lemma,sz 0 2 SN with a \new" variable z 0. By Weakening 1, �; z 0 : � 0 ` sz 0 : \~�.By Lemma 21(a): � ` t[x := s℄ : � 0. Sine h(� 0) < h(� 0 ! \~�) � h(�) wemay apply the main indution hypothesis for type � 0 and get st[x := s℄ 2SN. By Lemma 21(a), �; z : � ` z~t[x := s℄ : � and � ` st[x := s℄ : �. Clearly,z~t[x := s℄ 2 SN. Hene, by the main indution hypothesis for type �, we�nally get (x~r)[x := s℄ = st[x := s℄~t[x := s℄ 2 SN.Case �yr. This omes from r 2 SN. We have �; x : � ` �yr : �. Show(�yr)[x := s℄ 2 SN. We may assume that y =2 fxg [ FV(s). Therefore(�yr)[x := s℄ = �y:r[x := s℄, and it suÆes to show r[x := s℄ 2 SN. � = \~�and �; x : � ` �yr : �1 (the �rst element of ~�). By Inversion, �1 = �! � 0and �; x : �; y : � ` r : � 0. By Weakening 1, �; y : � ` s : �. The sideindution hypothesis yields r[x := s℄ 2 SN.Case (�yr)s~s. This is derived from r[y := t℄~t 2 SN and t 2 SN. Wehave �; x : � ` (�yr)t~t : � and have to show that (we assume that y =2fxg [ FV(s)) ((�yr)t~t)[x := s℄ = (�y:r[x := s℄)t[x := s℄~t[x := s℄ 2 SN. Forthis we need (r[x := s℄)[y := t[x := s℄℄~t[x := s℄ 2 SN and t[x := s℄ 2 SN.By multiple Inversion, we get �; x : � ` t : � for some type �. Theside indution hypothesis yields t[x := s℄ 2 SN. By Subjet Redution,�; x : � ` r[y := t℄~t : �. Hene, again by side indution hypothesis,(r[y := t℄~t)[x := s℄ 2 SN. We are done by Lemma 2 whih tells us that(r[y := t℄~t)[x := s℄ = (r[x := s℄)[y := t[x := s℄℄~t[x := s℄. �Corollary 28 (Main Theorem) If � ` r : � then r 2 SN.Proof By indution on `. In the ase (!E) use the indution hypothesis,rs = (rx)[x := s℄ and the preeding two lemmas. �Sine SN is the set of strongly normalizing terms (here we only need sound-ness of SN), every typable term is strongly normalizing. Sine typability withsimple types is more restritive than that with intersetion types, simple typa-bility also implies strong normalization.Note also that Corollary 25 is a trivial onsequene of our normalizationresult.Exerise 17 Let � and � be di�erent atomi types. Show that6` r : ((�! �) ! �)! �for every term r.Hint: It is advisable to solve the problem �rst for simple types. Thisase is well-known as the underivability of the Peire formula in minimallogi.
40



6.4 Typability of Strongly Normalizing TermsLet us write �+� for the ontext where the requirements on the variables in �and � are added. More formally, if � = ~x : ~�;~y : ~� and � = ~x : ~� 0;~z : ~� with ~x,~y and ~z pairwise disjoint and ~x of length n, then�+ � := x1 : �1 \ � 01; : : : ; xn : �n \ � 0n;~y : ~�;~z : ~�:From Weakening 1 and Weakening 2, it follows that � ` r : � implies �+� ` r : �.We will also form �1+: : :+�n in a similar way without aring about parentheses.Theorem 2 (Completeness) If r 2 SN then there are � and � suh that� ` r : �.Proof Indution on r 2 SN.x~r. By indution hypothesis, �i ` ri : �i for every i. Therefore�1+ : : :+ �n+ x : (�1 ! : : :! �n ! �) ` x~r : �for any type �.�xr. Let �xr 2 SN due to r 2 SN. By indution hypothesis, � ` r : �.Possibly by Weakening 1, we may assume that � = �; x : �. This yields� ` �xr : �! �.(�xr)s~s. Assume (�xr)s~s 2 SN has been derived from r[x := s℄~s 2 SN ands 2 SN. By indution hypothesis, � ` r[x := s℄~s : � and � 0 ` s : �.Setting � := � + � 0, we get � ` r[x := s℄~s : � and � ` s : �. Writingr[x := s℄~s = (y~s)[y := r[x := s℄℄ and applying Lemma 21(b), we �nd a type� suh that � ` y~s : � and � ` r[x := s℄ : �. Again by Lemma 21(b), thereis a type � 0 suh that �; x : � 0 ` r : � and � ` s : � 0. Hene, � ` (�xr)s : �and by Lemma 21(a), � ` (�xr)s~s : �. �Remark: One an also haraterize the weakly normalizing terms via in-tersetion types. For this, one has to add an atomi type (typially alled 
)whih is inhabited by every term (hene the typing rules have to be extended bythis simple rule). Then the weakly normalizing terms are exatly those whihare typable in the extended system with a type and a ontext where in both ofthem the speial atomi type does not our. (However, it may appear in thetyping derivation!)7 Parametri PolymorphismAlthough the situation with intersetion types is quite satisfying sine the as-soiated typing system exatly aptures the strongly normalizing terms, thereis interest for other typing systems whih type only strongly normalizing termsbut fail to type all of them. 41



Exerise 18 In [Urz96℄ it is shown that (�f�x:f(fx))(�f�x:f(fx))(�x�y:x) isnot typable in the system of universal types presented below. Show that itis strongly normalizing.Why is there an interest? By intersetion typing, one an model that a termhas �nitely many types in parallel. But very often, terms have in�nitely manytypes all being instanes of some pattern. The easiest example is the identity�xx whih may reeive any type of the form �! � in the empty ontext. It is anatural idea to allow universal quanti�ation over type identi�ers (the elementsof VT). In this example, we would assume � 2 VT and give the type 8�:�! �to �xx (in the empty ontext). And we may instantiate this for any type �instead of � to get ` �xx : � ! �. The universal quanti�er thus expressesthe parametri polymorphism of the identity: For every type � (whih is theparameter) the identity ats as an element of the funtion spae � ! �, henebelongs in some sense to many di�erent spaes, but in a uniform fashion, namelyin spaes desribed uniformly by a type expression depending on the parameter�. In the following, this intuition will be made preise. And sine we want tostudy the idea of parametri polymorphism in isolation, we abandon the ad hopolymorphism stemming from intersetion typing.De�nition 19 (Universal types) The set Tu of universal types is indu-tively given by (we will always assume that VT is an in�nite set):� If � 2 VT then � 2 Tu.� If � 2 Tu and � 2 Tu then (�! �) 2 Tu.� If � 2 VT and � 2 Tu then 8�� 2 Tu.Note that the usual name for type identi�ers is now hanged from � to � (� and will also be used) whih emphasizes their variable nature.De�nition 20 (Free type variables) De�ne the set FV(�) of type vari-ables ourring free in � by reursion on �:� FV(�) := f�g.� FV(�! �) := FV(�) [ FV(�).� FV(8��) := FV(�) n f�g.As is indiated by the preeding de�nition, the universal quanti�er 8 isonsidered as a binder like the � in terms. We will follow the same onventionsonerning the irrelevane of the given variable name, e. g., we syntatiallyidentify the types 8�:� ! � and 8�:� ! � and also use (like in the previousexamples) the dot notation for \invisible parentheses".De�nition 21 (Type substitution) De�ne the result �[� := �℄ of repla-ing every free ourrene of the variable � in � by the type � reursively asfollows: 42



� �[� := �℄ := �.� �[� := �℄ := � for � 6= �.� (�! �)[� := �℄ := �[� := �℄ ! �[� := �℄.� (8��)[� := �℄ := 8�:�[� := �℄ where we may assume by renaming ofthe bound type variable � that � =2 f�g [ FV(�).Lemma 29 If � =2 FV(�) then �[� := �℄ = �.Proof Indution on �. �Lemma 30 FV(�[� := �℄) � FV(8��) [ FV(�).Proof Indution on �. �Let us desribe the typing system known under the name \system F inCurry-style [Bar93℄", and overload the symbol ` one more.De�nition 22 (Universal typing) The relation � ` r : � (term r has type� in ontext �) is indutively de�ned by the following rules:�; x : � ` x : � (V) �; x : � ` r : �� ` �xr : �! � (!I) � ` r : �! � � ` s : �� ` rs : � (!E)� ` r : � � =2 FV(�)� ` r : 8�� (8I) � ` r : 8�� � 2 Tu� ` r : �[� := �℄ (8E)The onventions onerning ontexts are as before, and sine ontexts arelists of delarations for term variables, � =2 FV(�) shall mean that � =2FV(�) for � being one of the assigned types in �.The rule (8I) of 8-introdution has the proviso alled \eigenvariable ondition"that nothing depending on � may have been assumed on the free variables inr. Otherwise, we would derive x : � ` x : 8��, then x : � ` x : � for anytype �, and �nally ` �xx : � ! � for any � whih we never had in mind. The8-elimination rule (8E) expresses that every instane of � (with � replaed byany type �) is also a type of r if it reeived the type 8��. Note that the type� may again involve universal quanti�ers, e. g., we have that` �xx : (8�:�! �) ! (8�:�! �)and hene ` �xx : 8�:(8�:�! �) ! (8�:� ! �). We may also type !: E. g.,` ! : 8��! 8��.We again have Exhange 1 (p. 34) as part of our understanding of ontexts.It is quite easy to establish Weakening 1, Strengthening (see Lemma 20) andLemma 21(a). Subjet Redution (see Lemma 23) also holds but requires amore intriate Inversion Lemma (see e. g. [Bar93, p. 174℄).Exerise 19 [Bar93, p. 165℄ Show that our favourite example term ! re-eives the types 8�:8�� ! �, 8�:8�� ! � ! � and 8�� ! 8�� in theempty ontext. 43



7.1 Strong Normalization of Typable TermsWe again want to establish strong normalization, i. e., that whenever � ` r : �then r 2 SN. For proof-theoreti reasons whih require the strength of themetatheory exeeding that of seond-order arithmeti12, our diret proof for in-tersetion typing in setion 6.3 that SN is losed under typed substitution an-not work. Therefore, the powerful and versatile andidate method (also alledomputability prediates method) is introdued by whih a stronger statementthan r 2 SN for every typable term r is proved. For this we need the oneptof saturated sets whih are subsets of SN with good losure properties. Firstwe de�ne them, then explain the method, and �nally apply the method to oursetting.7.1.1 Saturated SetsThe following onept was �rst used by Tait [Tai75℄.De�nition 23 (Saturated set) A set M of terms is saturated if the fol-lowing onditions are met:1. If r 2M then r 2 SN.2. If ~r � SN then x~r 2 M.3. If r[x := s℄~s 2M and s 2 SN then (�xr)s~s 2M.This de�nition is nearly the same as that in [Bar93, p. 177℄.13 Let SAT be theset of saturated sets. Trivially, SN 2 SAT.The transformation of the de�nition of SN into that of saturatedness iswell motivated by typing onsiderations: It would be possible to relativize thede�nition to �-saturatedness for a type � by restriting to terms of type � (ina given ontext) only. For this to work it is essential to have no requirementin the rules that a term of a di�erent type shall be in M in order to onludethat some term belongs to M. Therefore we omit the rule whih hanges thetype (hene leave out the abstration rule), and in the other rules replae everyourrene of SN by M in the onlusion and for the terms in the premissesreeiving the same type. In general, the other terms do not get the same typeand therefore an only be required to belong to SN.The andidate method goes as follows: By means of saturated sets we de-�ne (by reursion on types) prediates of strong omputability with respetto an assignment of saturated sets for type variables (a andidate assignment)and �nally show (by indution on typings) that every typable term is stronglyomputable under substitution. Hene every typable term is ontained in asaturated set (the omputability prediate) whih only onsists of strongly nor-malizing terms (due to SN � sn).12a onsequene of G�odel's seond inompleteness theorem, see hapter 15 in [GLT89℄13Note, however, that in our de�nition SN stands for the syntax-direted de�nition, whereas[Bar93℄ onsiders strong normalization whih is intensionally di�erent (and extensionally thesame). 44



This all works if there are onstrutions for saturated sets orrespondingto the type onstruts of the system for whih the introdution rules and theelimination rules are sound. (This is presented at length in [Mat98℄.)7.1.2 Calulating with Saturated SetsIt is always possible to produe a saturated set from any set M of terms by thesaturated losure l(M), de�ned by indution as follows:� If r 2M \ SN then r 2 l(M).� If ~r � SN then x~r 2 l(M).� If r[x := s℄~s 2 l(M) and s 2 SN then (�xr)s~s 2 l(M).Sine l(M) � SN (proved by indution on the de�nition), it is the least satu-rated set ontaining M \ SN. In the remainder of the normalization proof, letM and N denote saturated sets.We want to onstrut a saturated set M ! N whih will later serve tode�ne strong omputability for funtion types. De�neSx(M;N ) := fr j 8s 2 M r[x := s℄ 2 N g;I(M;N ) := f�xr j x 2 V and r 2 Sx(M;N )g andE(M;N ) := fr j 8s 2M; rs 2 N g:We get the introdution-based de�nition M !I N and the elimination-basedde�nition M!E N of saturated sets:M!I N := l(I(M;N )) and M!E N := l(E(M;N )).Lemma 31 I(M;N ) � SN, E(M;N ) \ SN 2 SAT, and I(M;N ) � E(M;N ).Proof(1) Let r 2 Sx(M;N ). Then for s := x 2 M, we get r = r[x := s℄ 2 N � SN,hene also �xr 2 SN.(2) Chek the onditions of saturatedness for E(M;N ) \ SN:1. Trivial.2. Let ~r � SN and s 2M. Sine s 2 SN and N 2 SAT, x~rs 2 N .3. Simply append s and use saturatedness of N .(3) Let r 2 Sx(M;N ) and s 2 M. Show that (�xr)s 2 N . Sine N 2 SAT,it suÆes to show r[x := s℄ 2 N and s 2 SN whih follow by de�nition ofSx(M;N ) and M� SN. �From the lemma, we get I(M;N ) �M!I N , M!E N = E(M;N )\SN and,due to monotoniity of l, M!I N �M!E N .De�ne M ! N := M !X N with X 2 fI; Eg. We never use any propertydepending on this hoie but only the following three properties whih are validfor both hoies and follow immediately from the preeding remarks:45



(SAT) M! N 2 SAT.(!I) If r 2 Sx(M;N ) then �xr 2 M! N .(!E) r 2 M! N ^ s 2 M) rs 2 N :Exerise 20 Show that M !I N 6= M !E N is possible by onsideringM := SN and N := l(f(�xx)t j t 2 SNg).Hint: Study how abstrations may enter the saturated losure and applythis to the identity.7.1.3 Strong ComputabilityIn order to speify strong omputability for universally quanti�ed types 8��,we have to de�ne strong omputability for the type �, but have to providean arbitrary andidate for the strong omputability of its argument �. Ourandidates are the saturated sets, and the andidate assignments provide therelativization needed to put the proof through.De�nition 24 (Candidate assignment) Any �nite set of pairs (written� :M), onsisting of a type variable and a saturated set, suh that no typevariable ours twie.Candidate assigments are the ounterpart to ontexts. We will again use theletter � to denote a andidate assignment and write �; � : M for the extendedandidate assignment (with the impliit proviso that � does not our in �).De�nition 25 (Strong omputability) De�ne the saturated set SC�[�℄ ofstrongly omputable terms w. r. t. type � and the andidate assigment � byreursion on �:� SC�[�℄ := � M if � :M2 �,SN otherwise.� SC�!�[�℄ := SC�[�℄! SC�[�℄.� SC8��[�℄ := TM2SAT SC�[�; � : M℄ (with set-theoreti intersetion thatlearly does not lead outside SAT; note that we may assume that �does not our in �).The de�nition of SC�!�[�℄ is a variant of the omputability prediate de�nitionin the famous [Tai67℄, its relativization to a andidate assignment and the bigintersetion in the de�nition of SC8��[�℄ have been invented in [Gir72℄ andonly today seem to be the straightforward extension of Tait's ideas. It hasto be stressed that exatly this big intersetion shows the imprediativity ofthe system of universal types: We need the intersetion over any saturated setM in order to de�ne a spei� saturated set, namely SC8��[�℄. This de�nitionannot be dealt with by seond-order arithmeti, and, as remarked above, strongnormalization also annot be established by other means taken from seond-order arithmeti. Finally note that we ould easily reprove strong normalizationfor the system of intersetion types by setting SC�\� := SC� \ SC� and byabandoning the notion of andidate assignment altogether.46



Lemma 32 (Coinidene) If � =2 FV(�) then SC�[�; � :M℄ = SC�[�℄.Proof Indution on �.14 �Lemma 33 (Substitution) SC�[�:=�℄[�℄ = SC�[�; � : SC�[�℄℄.Proof Indution on �, using the previous lemma. �We want to show that every typable term is strongly normalizing. By usingthe indutive haraterization, we only need to show that they are in SN. Sinesaturated sets are ontained in SN, it suÆes to show that r 2 SC�[;℄ wheneverr gets type �. This is ahieved by applying the following lemma to the identitysubstitution. Unfortunately, we �rst have to extend the notion of substitutionr[x := s℄ to the simultaneous substitution r[~x := ~s℄ of all ourrenes of xiby si (for every i, with di�erent variables xi) in r whih may be de�ned byreursion on r like ordinary substitution. We will also use the notation ~x : ~� forx1 : �1; : : : ; xn : �n and ~s 2 SC~�[�℄ for s1 2 SC�1 [�℄; : : : ; sn 2 SC�n [�℄.Lemma 34 If ~x : ~� ` r : � and ~s 2 SC~�[�℄ then r[~x := ~s℄ 2 SC�[�℄.Proof By indution on ~x : ~� ` r : � simultaneously for every andidate assign-ment �.(V) r : � = xi : �i. Obvious.(!I) Let ~x : ~� ` �xr : � ! � thanks to ~x : ~�; x : � ` r : �. We haveto show that (�xr)[~x := ~s℄ 2 SC�[�℄ ! SC�[�℄. We may assume thatx =2 ~x [ FV(~s), and hene (�xr)[~x := ~s℄ = �x:r[~x := ~s℄. It suÆes toshow that r[~x := ~s℄ 2 Sx(SC�[�℄; SC�[�℄). So assume s 2 SC�[�℄ and showr[~x := ~s℄[x := s℄ 2 SC�[�℄. This follows from the indution hypothesissine r[~x := ~s℄[x := s℄ = r[~x; x := ~s; s℄ by our assumption.(!E) This is an immediate onsequene of the indution hypothesis andthe rule (!E) for saturated sets.(8I) Let ~x : ~� ` r : 8�� thanks to ~x : ~� ` r : � and � =2 FV(~�). Let M 2SAT. We have to show that r[~x := ~s℄ 2 SC�[�; � : M℄. Sine � =2 FV(~�),we may apply the Coinidene Lemma and get ~s 2 SC~�[�; � :M℄. Hene,we are done by the indution hypothesis.(8E) Let ~x : ~� ` r : �[� := �℄ thanks to ~x : ~� ` r : 8��. By indutionhypothesis, r[~x := ~s℄ 2 SC8��[�℄. Set M := SC�[�℄. Then r[~x := ~s℄ 2SC�[�; � :M℄ = SC�[�:=�℄[�℄ by the Substitution Lemma. �By setting si := xi 2 SC�i [;℄ for � = ~x : ~�, and by using SC�[;℄ � SN, we getthe followingTheorem 3 (Strong normalization) If � ` r : � then r 2 SN. �14Clearly, our hoie whether M ! N equals M !I N or M !E N has to be madeonsistently. To be on the safe side, we assume that it has been made one and for all.47



Note that by help of the interative theorem-proving environment LEGOa variant to this proof has been produed [Alt93℄ whih demonstrates the a-pability of those systems to deal with essentially ompliated mathematialtheorems.Exerise 21 Show that there is no term r suh that ` r : 8��.7.2 Undeidability of Type ChekingThe problem of type heking is to �nd out whether � ` r : � holds for given�, r and �. The problem of typability is to �nd out if there is a type � forgiven � and r, suh that � ` r : �. For both of these problems it was an openquestion whether they may be solved algorithmially [Bar93, p. 183℄. It wasgenerally believed that they are both undeidable. Nevertheless, the result wasan ahievement muh applauded at the 1994 LICS15 onferene.Theorem 4 ([Wel94℄) Type heking and typability are undeidable for thesystem of universal types.Proof See the 46 pages paper [Wel99℄ whih rests on the undeidability ofsemi-uni�ation. �Therefore, in the sequel we will study a variant of the pure alulus with uni-versal typing to be alled system F. It has type information inside the termsystem making type heking deidable again.7.3 An Expliit System of Parametri PolymorphismThis time, we do not alter the type system but the term system.De�nition 26 (Terms of system F) The set TF of terms is indutively givenby: � If x 2 V then x 2 TF.� If x 2 V, � 2 Tu and r 2 TF then �x�r 2 TF.� If r 2 TF and s 2 TF then (rs) 2 TF.� If r 2 TF and � 2 VT then ��r 2 TF.� If r 2 TF and � 2 Tu then (r�) 2 TF.The idea is to add type information to the terms. �x�r is �xr but with anindiation whih was the type in the extended ontext for the typing of r (seethe typing rules below). ��r is r but with its polymorphism in the parameter� made expliit. (r�) is r but with a delaration that it is used with type �.Again parentheses are omitted as muh as possible (with appliations asso-iating to the left).15Annual IEEE Symposium on Logi in Computer Siene48



De�nition 27 (Free variables) De�ne the set FV(r) of variables our-ring free in r by reursion on r:� FV(x) := fxg.� FV(�x�r) := FV(r) n fxg.� FV(rs) := FV(r) [ FV(s).� FV(��r) := FV(r).� FV(r�) := FV(r).As before, �x� binds the free ourrenes of x in r, and we syntatially identifyterms whih only di�er in the names of their bound variables.Sine types may form parts of a term, we now have an additional onept offree type variables of a term:De�nition 28 (Free type variables of a term) De�ne the set FTV(r) oftype variables ourring free in r by reursion on r:� FTV(x) := ;.� FTV(�x�r) := FV(�) [ FTV(r).� FTV(rs) := FTV(r) [ FTV(s).� FTV(��r) := FTV(r) n f�g.� FTV(r�) := FTV(r) [ FV(�).Clearly, �� binds the free ourrenes of � in r. We also identify terms whihdi�er only in the names of their bound type variables.It is straightforward to rede�ne substitution of terms for term variables interms:De�nition 29 (Substitution) De�ne the result r[x := s℄ of replaing everyfree ourrene of the variable x in r by the term s reursively as follows:� x[x := s℄ := s� y[x := s℄ := y for y 6= x.� (�y�r)[x := s℄ := �y�:r[x := s℄ where we may assume as usual thaty =2 fxg [ FV(s).� (rt)[x := s℄ := r[x := s℄t[x := s℄.� (��r)[x := s℄ := ��:r[x := s℄ where we assume that � =2 FTV(s).� (r�)[x := s℄ := r[x := s℄�.But we also have substitution of types for type variables in terms:49



De�nition 30 (Type substitution) De�ne the result r[� := �℄ of replaingevery free ourrene of the type variable � in r by the type � reursivelyas follows:� x[� := �℄ := x.� (�y�r)[� := �℄ := �y�[�:=�℄:r[� := �℄.� (rt)[� := �℄ := r[� := �℄t[� := �℄.� (��r)[� := �℄ := ��:r[� := �℄ where we assume that � =2 f�g [ FV(�).� (r�)[� := �℄ := r[� := �℄�[� := �℄.Lemma 35 If x =2 FV(r) then r[x := s℄ = r. If � =2 FTV(r) then r[� := �℄ = r.Proof Indution on r. �The riher term syntax allows a new redution in the spirit of �-redution,namely (��r)� ! r[� := �℄ whih perfetly �ts with our intuition of �-abstration and type appliation. For oding purposes, this is yet not enough (aswill be lear later). Therefore, we also inlude the following �-redution rules:�x�:rx ! r if x =2 FV(r), and ��:r� ! r if � =2 FTV(r). Clearly, we ouldhave added the �rst rule (without the type supersript) to the pure untyped�-alulus. Unfortunately, the addition of �x:rx!� r for x =2 FV(r) would havedestroyed Subjet Redution: Take three di�erent type variables �;�;  andapply rule (!I) to z : �! 8�; x : � ` zx : � or to z : �! �; x : � ` zx : 8�.Note that neither z : �! 8� ` z : �! � nor z : �! � ` z : �! 8� holds.De�nition 31 (��-redution) Indutively de�ne the relation !�� as fol-lows:(�) (�x�r)s!�� r[x := s℄ (outer �-redution).(�) �x�:rx!�� r if x =2 FV(r) (outer �-redution).(�F) (��r)�!�� r[� := �℄ (outer type-�-redution).(�F) ��:r�!�� r if � =2 FTV(r) (outer type-�-redution).(�) r!�� r 0 ) �x�r!�� �x�r 0 (redution under a �-abstration).(�F) r!�� r 0 ) ��r!�� ��r 0 (redution under a �-abstration).(r) r!�� r 0 ) rs!�� r 0s (right appliation).(l) r!�� r 0 ) sr!�� sr 0 (left appliation).(t) r!�� r 0 ) r�!�� r 0� (type appliation).If r!�� s we say that r redues by one ��-redution step to s.Lemma 36 If r!�� r 0 then FV(r 0) � FV(r) and FTV(r 0) � FTV(r).50



Proof Indution on !��. For (�), one �rst has to prove FV(r[x := s℄) �(FV(r) n fxg) [ FV(s) and FTV(r[x := s℄) � FTV(r) [ FTV(s). For (�F), weneed FV(r[� := �℄) = FV(r) and FTV(r[� := �℄) � (FTV(r) n f�g) [ FV(�). �Lemma 6 and Lemma 7 also hold for the extended syntax. Moreover, we getsubstitutivity w. r. t. type substitution:Lemma 37 (Substitutivity and ompatibility)If r!�� r 0 then r[x := s℄!�� r 0[x := s℄ and r[� := �℄ !�� r 0[� := �℄.If s!�� s 0 then r[x := s℄ !��� r[x := s 0℄, and r[x := s℄ !�� r[x := s 0℄ ifx ours exatly one free in r.Proof Substitutivity is proved by indution on r !�� r 0, ompatibility isproved by indution on r. �Unfortunately, !�� is not loally onuent: Consider�x�:(�y�r)x��
wwnnnnnnnnnnnn ��

%%L
LLLLLLLLL�x�:r[y := x℄ �y�r�y�rwith � 6= � and x =2 FV(�yr). This problem will be overome by typing.De�nition 32 (Typing for system F) The relation � ` r : � (term r hastype � in ontext �) is indutively de�ned by the following rules:�; x : � ` x : � (V) �; x : � ` r : �� ` �x�r : �! � (!I) � ` r : �! � � ` s : �� ` rs : � (!E)� ` r : � � =2 FV(�)� ` ��r : 8�� (8I) � ` r : 8�� � 2 Tu� ` r� : �[� := �℄ (8E)The usual onventions onerning ontexts apply.Note how we restored the property that we always know whih typing rule hasbeen applied last (like with simple typing and unlike intersetion typing or evenuniversal typing).Lemma 38 If � ` r : � then FV(�) � FV(�)[ FTV(r).Proof Indution on `. Note that in ase (!I) we need that the information onthe type of the abstrated variable is inluded in the syntax: If � 2 FV(�! �)then � 2 FV(�) or � 2 FV(�). In the �rst ase, � 2 FTV(�x�r). In theseond ase, the indution hypothesis gives that � 2 FV(�)[FV(�)[FTV(r) =FV(�)[ FTV(�x�r). The ase (8E) uses Lemma 30. �51



Lemma 39 Every typable term, i. e., every term r suh that there are �and � with � ` r : �, has exatly one of the following forms:x~S �x�r (�x�r)s~S ��r (��r)�~Swhere ~S shall denote a �nite list of terms and types (we will later also use~R for suh a list).Proof It is lear that every term has exatly one of the following forms:x~S �x�r (�x�r)s~S (�x�r)�~S ��r (��r)s~S (��r)�~S:Typability rules out the fourth and sixth possibility (note that the typabilityof r~S implies that of r). �One again we have Exhange 1 (p. 34) as part of our understanding ofontexts, and it is again quite easy to establish Weakening 1, Strengthening (seeLemma 20) and Lemma 21(a). Moreover, we have a version of Lemma 21(a)pertaining to type substitution:Lemma 40 If � ` r : � then �[� := �℄ ` r[� := �℄ : �[� := �℄.Proof �[� := �℄ learly denotes the ontext where all the types of the variablesare substituted. The proof is by indution on `. �Lemma 41 (Subjet redution) If r!�� r 0 and � ` r : � then � ` r 0 : �.Proof Indution on !��. We only onsider the initial ases.(�) Let � ` (�x�r)s : �. Then � ` �x�r : � ! � and � ` s : �. Hene�; x : � ` r : �, and by the analogue of Lemma 21(a), � ` r[x := s℄ : �.(�) Let � ` �x�:rx : � ! �. Hene, �; x : � ` rx : �, and therefore,�; x : � ` r : �! �. By Strengthening, � ` r : �! �.(�F) Let � ` (��r)� : �. Then � ` ��r : 8�� and �[� := �℄ = �.Consequently, � ` r : � and � =2 FV(�). Hene �[� := �℄ = � and by thepreeding lemma � ` r[� := �℄ : �[� := �℄ = �.(�F) Let � ` ��:r� : 8�� with � =2 FTV(r). Then � ` r� : � and � =2FV(�). Hene, � ` r : 8�� and �[� := �℄ = �. If � = �, then we are done.Otherwise, by Lemma 38, � =2 FV(�), hene 8�� = 8�� by renaming ofthe bound variable. �Note that the examples on page 50 are no longer ritial: The �rst one yieldsz : � ! 8� ` �x�:zx : � ! �, the seond z : � ! � ` �x��:zx : �! 8�.In both ases, we annot apply an outer �-redution.Before studying onuene and strong normalization of the typable terms,we onsider several examples showing the expressivity of system F.Examples 11 1. Set 0 := 8��. Then � ` r : 0 implies � ` r� : �.52



2. Set 1 := 8�:�! � and IN1 := ���x�x. Then ` IN1 : 1.3. Set � � � := 8�:(� ! � ! �) ! � for some � =2 FV(�) [ FV(�). Sethr; si�;� := ���z�!�!�:zrs for some z =2 FV(r) [ FV(s) and assumethat � =2 FTV(r) [ FTV(s). Hene, if � ` r : � and � ` s : � then � `hr; si�;� : � � �. Set rL�;� := r�(�x��y�:x) and rR�;� := r�(�x��y�:y).Hene, if � ` r : � � � then � ` rL�;� : � and � ` rR�;� : �. Moreover,hr; si�;�L�;� !��� r and hr; si�;�R�;� !��� s.4. Set � + � := 8�:(�! �)! (�! �)! � for some � =2 FV(�) [ FV(�).Set INL�;�r := ���x�!��y�!�:xr and INR�;�r := ���x�!��y�!�:yrfor some x; y =2 FV(r) (we assume that � =2 FTV(r)). Hene, if � `r : � then � ` INL�;�r : � + �, and if � ` r : � then � ` INR�;�r : � + �.Moreover, if � ` r : � + �, � ` s : � ! � and � ` t : � ! � then� ` r�st : � whih gives a onstrut for ase distintion as follows:INL�;�r�st!��� sr and INR�;�r�st!��� tr.5. Set 9�� := 8�:(8�:� ! �) ! � for some � =2 f�g [ FV(�). SetC9��;�r := ���x8�:�!�:x�r for some x =2 FV(r) and � =2 FTV(r) [FV(�). Hene, if � ` r : �[� := �℄ then � ` C9��;�r : 9��. Also, if� ` r : 9�� and � ` s : 8�:� ! � with � =2 FV(�), then � ` r�s : �.Moreover, C9��;�r�s!��� s�r.6. Set nat := 8�:(� ! �) ! � ! �. Set 0 := ���x�!��y�y (thisshould not be onfused with the type 0 = 8��). Then ` 0 : nat. SetSr := ���x�!��y�:x(r�xy) for some x; y =2 FV(r) and � =2 FTV(r).Hene, if � ` r : nat then � ` Sr : nat. This gives bak iteration onnaturals as follows: If � ` r : nat, � ` s : � ! � and � ` t : � then� ` r�st : �. Moreover, 0�st !��� t and (Sr)�st !��� s(r�st), hene tis the initial term of the iteration, and s is the step term.Note that the examples with exeption of the last one may all be seen as intu-itionisti variants of lassial enodings. If instead of the universally quanti�ed�, we only had the falsum ?, we ame to the following lassial identities (writ-ing :� for �! ?, ? for 0, > for 1, �^� for ��� and �_� for �+�): ? = ?,> = ?! ?, �^ � = :(�! :�), �_ � = :�! ::�, 9�� = :8�:�.7.4 Strong Normalization and Typed Conuene of FWe will see that loal onuene holds for typable terms and that every typableterm is strongly normalizing and �nally onlude that typable terms even enjoyonuene.Lemma 42 (Typed loal onuene) If � ` r : �, r !�� r 0 and r !�� r 00then there is a term t suh that r 0 !�� t and r 00 !�� t.Proof Indution on r, ase distintion aording to the last rule of !�� usedto establish r!�� r 0 and r!�� r 00. Hene, we have to distinguish 81 ases.53



The 9 ases in whih the same rule is applied in both redutions either holdtrivially (in the initial ases) or are immediate by the indution hypothesis. Theother 72 ases ome in 36 pairs of symmetri situations. We only onsider thepairs where the �rst rule omes �rst in the list of rules. Note that the following30 ases are syntatially impossible:� � with �, �F, �F, �, �F and t� � with �F, �F, �F, r, l and t� �F with �F, �, �F, r and l� �F with �, r, l and t� � with �F, r, l and t� �F with r, l and t� r with t� l with tHene, only 6 ases have to be onsidered:�=r. We have (�x�r)s��
yyss

sss
ss

sss ��
""F

FF
FF

FF
FFr[x := s℄ ts with �x�r!�� t.If t = �x�r 0 with r!�� r 0 then by substitutivity r[x := s℄!�� r 0[x := s℄,hene we get r[x := s℄

��
��

::
::

::
::

::
::

::
::

:
ts(�x�r 0)s��

xxrrrrrrrrrrr 0[x := s℄
.

Otherwise, r = tx with x =2 FV(t). Then r[x := s℄ = t[x := s℄s = ts.�=l. Use ompatibility as in the ase l=� in the proof of Lemma 5.�=�. We have �x�:rx��
||yy

yy
yy

yy
y ��

$$I
IIIIIIIIr �x�t with rx!�� t.If t = r 0x with r !�� r 0, then also x =2 FV(r 0), hene �x�t !�� r 0,yielding r �� ��

>>
>>

>>
>>

�x�t��}}zz
zz

zz
zzr 0 .

54



Otherwise, r = �y�s and t = s[y := x℄. Sine �x�:rx is typable16, thereare � and � suh that � ` �x�:(�y�s)x : �! �. This omes from �; x : � `(�y�s)x : �, hene �; x : � ` �y�s : � ! �. We onlude � = �. Finally,sine x =2 FV(r), �x�t = �x�:s[y := x℄ = �y�s = r.�F=t. We have (��r)���
yyssssssssss ��

##F
FF

FF
FF

FFr[� := �℄ t� with ��r!�� t.If t = ��r 0 with r !�� r 0 then by Lemma 37, r[� := �℄ !�� r 0[� := �℄,hene we get r[� := �℄
��
��

;;
;;

;;
;;

;;
;;

;;
;;

;;
t�(��r 0)s��

xxrrrrrrrrrrr 0[� := �℄
.

Otherwise, r = t� with � =2 FTV(t), hene r[� := �℄ = t[� := �℄� = t�.�F=�F. We have ��:r���
||yy

yy
yy

yy
y ��

$$I
IIII

III
Ir ��t with r�!�� t.If t = r 0� with r !�� r 0 then also � =2 FTV(r 0), hene ��t !�� r 0,yielding r �� ��

>>
>>

>>
>>

��t��}}{{
{{

{{
{{r 0 .Otherwise, r = ��s and t = s[� := �℄. If � = �, then we are done.Otherwise, � =2 FTV(s) and hene also ��t = ��s by renaming of thebound type variable.r=l. See the same ase in the proof of Lemma 5. �In order to prove that even typed onuene holds, we �rst establish strongnormalization: First we rede�ne the sets SN and SAT, and then show essentiallythe same results for SN and SAT as for the system of universal types.17De�nition 33 De�ne the set SN indutively by:� If the terms among ~R are in SN then x~R 2 SN.� If r 2 SN then �x�r 2 SN.� If r 2 SN then ��r 2 SN.16This is the only plae where we need the typability assumption.17One ould also derive strong normalization from that of the system of universal types.We prefer the diret proof, sine it will be extended to the system of �xed-point types.55



� If r[x := s℄~S 2 SN and s 2 SN then (�x�r)s~S 2 SN.� If r[� := �℄~S 2 SN then (��r)�~S 2 SN.De�nition 34 A set M of terms of system F is saturated if the followingholds:1. If r 2M then r 2 SN.2. If the terms among ~R are in SN then x~R 2M.3. If r[x := s℄~S 2 M and s 2 SN then (�xr)s~S 2 M.4. If r[� := �℄~S 2M then (��r)�~S 2M.Let again SAT be the set of saturated sets. Again, SN 2 SAT.Lemma 43 SN � sn := a!�� .Proof We have to show that sn has all the de�ning properties of SN, i. e., wehave to show that� If the terms among ~R are in sn then x~R 2 sn.� If r 2 sn then �x�r 2 sn.� If r 2 sn then ��r 2 sn.� If r[x := s℄~S 2 sn and s 2 sn then (�x�r)s~S 2 sn.� If r[� := �℄~S 2 sn then (��r)�~S 2 sn.The ase with the variable in the head is obvious sine every redution in x~Rtakes plae in one of the ~R.The abstration ase is more ompliated: Do indution on r 2 sn. Assume�x�r!�� t. Either t = �x�r 0 with r!�� r 0, and t 2 sn by indution hypoth-esis, or r = tx and t 2 sn sine it is a subterm of r 2 sn. A similar argument isneeded for the �-abstration.The ase of (�x�r)s~S is as for untyped lambda alulus (see the proof ofLemma 18): By main indution on s 2 sn and side indution on r[x := s℄~S 2 snwe prove that (�x�r)s~S 2 sn. Therefore, we have to show for every t with(�x�r)s~S !�� t that t 2 sn. The only new ase ompared to the treatmentof untyped lambda alulus is r = r 0x with x =2 FV(r 0) and an �-redutionapplied to �x�:r 0x, leading to r 0s~S. However, this is not really a new ase, sine�-redution of (�x�:r 0x)s also yields (�x�r)s~S!�� r 0[x := s℄s~S = r 0s~S.Finally onsider (��r)�~S. Show that this term is in sn by indution onr[� := �℄~S 2 sn. Assume that (��r)�~S !�� t. Show that t 2 sn. Eithert = (��r)�~S with r!�� r 0, hene r[� := �℄~S!�� r 0[� := �℄~S, and we are doneby the indution hypothesis. Or t = (��r)�~S 0 with redution of one of the termsin ~S. Then r[� := �℄~S !�� r[� := �℄~S 0, and again the indution hypothesisapplies. Or t = r[� := �℄~S 2 sn. Or, �nally, r = r 0� with � =2 FTV(r 0) andt = r 0�~S. But t = (r 0x)[� := �℄~S 2 sn by assumption. �56



Note that SN = sn does not hold (see Lemma 39).Again, it is always possible to produe a saturated set from an arbitrary setM of terms by the saturated losure l(M), de�ned by indution as follows:� If r 2M \ SN then r 2 l(M).� If the terms among ~R are in SN then x~R 2 l(M).� If r[x := s℄~S 2 l(M) and s 2 SN then (�x�r)s~S 2 l(M).� If r[� := �℄~S 2 l(M) then (��r)�~S 2 l(M).Sine, again, l(M) � SN (proved by indution on the de�nition), it is the leastsaturated set ontaining M \ SN.Given a saturated set M and a saturated set N , we onstrut a saturatedset M! N : De�neSx(M;N ) := fr j 8s 2 M r[x := s℄ 2 N g;I(M;N ) := f�x�r j x 2 V , � 2 Tu and r 2 Sx(M;N )g andE(M;N ) := fr j 8s 2M; rs 2 N g:We get the introdution-based de�nition M !I N and the elimination-basedde�nition M!E N of saturated sets:M!I N := l(I(M;N )) and M!E N := l(E(M;N )).We get the same properties as before (ompare Lemma 31).Lemma 44 I(M;N ) � SN, E(M;N ) \ SN 2 SAT, and I(M;N ) � E(M;N ).Proof(1) See the proof of Lemma 31.(2) Chek the onditions of saturatedness for E(M;N ) \ SN:1. Trivial.2. Let the terms among ~R be in SN and s 2 M. Sine s 2 SN andN 2 SAT, x~Rs 2 N .3./4. Simply append s and use saturatedness of N .(3) See the proof of Lemma 31. �From the lemma, we get I(M;N ) �M!I N , M!E N = E(M;N )\SN and,due to monotoniity of l, M!I N �M!E N .De�ne M ! N := M !X N with X 2 fI; Eg. As before, we never use anyproperty depending on this hoie but only the following three properties whihare valid for both hoies and follow immediately from the preeding remarks:(SAT) M! N 2 SAT. 57



(!I) If r 2 Sx(M;N ) then �x�r 2M! N .(!E) r 2 M! N ^ s 2 M) rs 2 N :Sine we now have an expliit 8-introdution and 8-elimination in the termsystem, we also have to provide an expliit onstrution of universal quanti�a-tion on saturated sets. Given a funtion � from SAT to SAT, we de�neS�(�) := fr j 8� 2 Tu8M 2 SAT r[� := �℄ 2 �(M)g;I(�) := f��r j � 2 VT and r 2 S�(�)g andE(�) := fr j 8� 2 Tu8M 2 SAT r� 2 �(M)g:We get the introdution-based de�nition 8I� and the elimination-based de�ni-tion 8E� of saturated sets:8I� := l(I(�)) and 8E� := l(E(�)).We get similar properties:Lemma 45 I(�) � SN, E(�) \ SN 2 SAT, and I(�) � E(�).Proof(1) Let r 2 S�(�). Then for � := � and M := SN, we get r = r[� := �℄ 2�(M) � SN, hene also ��r 2 SN.(2) Chek the onditions of saturatedness for E(�) \ SN:1. Trivial.2. Let the terms among ~R be in SN, � 2 Tu and M 2 SAT. Sine�(M) 2 SAT, x~R� 2 �(M).3./4. Append � and use saturatedness of �(M).(3) Let r 2 S�(�), � 2 Tu and M2 SAT. Show that (��r)� 2 �(M). Sine�(M) 2 SAT, if suÆes to show r[� := �℄ 2 �(M) whih follows byde�nition of S�(�). �From the lemma, we get I(�) � 8I�, 8E� = E(�)\SN and 8I� � 8E�. De�ne8� := 8X� with X 2 fI; Eg. As usual, we never use any property depending onthis hoie but only:(SAT) 8� 2 SAT.(8I) If r 2 S�(�) then ��r 2 8�.(8E) r 2 8�^ � 2 Tu ^M2 SAT) r� 2 �(M):The notion of andidate assignment remains unhanged:De�nition 35 (Candidate assignment) Any �nite set of pairs (written� :M), onsisting of a type variable and a saturated set, suh that no typevariable ours twie. 58



De�nition 36 (Strong omputability) De�ne the saturated set SC�[�℄ ofstrongly omputable terms w. r. t. type � and the andidate assigment � byreursion on �:� SC�[�℄ := � M if � :M2 �,SN otherwise.� SC�!�[�℄ := SC�[�℄! SC�[�℄.� De�ne � : SAT ! SAT by setting �(M) := SC�[�; � : M℄. SetSC8��[�℄ := 8�.Lemma 46 (Coinidene) If � =2 FV(�) then SC�[�; � :M℄ = SC�[�℄.Proof Indution on �. �Lemma 47 (Substitution) SC�[�:=�℄[�℄ = SC�[�; � : SC�[�℄℄.Proof Indution on �, using the previous lemma. �As in Lemma 34, we make use of the simultaneous substitution r[~x := ~s℄ of allourrenes of xi by si (for every i, with di�erent variables xi) in r and moreoverof the simultaneous substitution r[~� := ~�℄ of all ourrenes of �i by �i (forevery i, with di�erent variables �i) in r whih both may be de�ned by reursionon r like the ordinary notions of substitution. We will again use the notation~x : ~� for x1 : �1; : : : ; xn : �n, ~s 2 SC~�[�℄ for s1 2 SC�1 [�℄; : : : ; sn 2 SC�n [�℄, andmoreover, ~� : ~M for �1 :M1; : : : ; �m :Mm.Lemma 48 If ~x : ~� ` r : �, ~s 2 SC~�[~� : ~M℄ and ~� is a list of types orre-sponding to ~� then r[~� := ~�℄[~x := ~s℄ 2 SC�[~� : ~M℄.Proof By indution on ~x : ~� ` r : � simultaneously for every andidate assign-ment.(V) r : � = xi : �i. Obvious.(!I) Let ~x : ~� ` �x�r : � ! � thanks to ~x : ~�; x : � ` r : �. We have toshow that (�x�r)[~� := ~�℄[~x := ~s℄ 2 SC�[~� : ~M℄ ! SC�[~� : ~M℄. We mayassume that x =2 ~x [ FV(~s), and hene(�x�r)[~� := ~�℄[~x := ~s℄ = �x�[~�:=~�℄:r[~� := ~�℄[~x := ~s℄:It suÆes to show that r[~� := ~�℄[~x := ~s℄ 2 Sx(SC�[~� : ~M℄; SC�[~� : ~M℄). Soassume s 2 SC�[~� : ~M℄ and show r[~� := ~�℄[~x := ~s℄[x := s℄ 2 SC�[~� : ~M℄.This follows from the indution hypothesis sine, by our assumption,r[~� := ~�℄[~x := ~s℄[x := s℄ = r[~� := ~�℄[~x; x := ~s; s℄:(!E) This is an immediate onsequene of the indution hypothesis andthe rule (!E) for saturated sets.59



(8I) Let ~x : ~� ` ��r : 8�� thanks to ~x : ~� ` r : � and � =2 FV(~�). We mayassume that � =2 ~� [ FV(~�) [ FTV(~s). Therefore, (��r)[~� := ~�℄[~x := ~s℄ =��:r[~� := ~�℄[~x := ~s℄. Let � 2 Tu and M 2 SAT. We have to show thatr[~� := ~�℄[~x := ~s℄[� := �℄ 2 SC�[~� : ~M; � : M℄. Sine � =2 FV(~�), we mayapply the Coinidene Lemma and get ~s 2 SC~�[~� : ~M; � : M℄. We aredone by the indution hypothesis siner[~� := ~�℄[~x := ~s℄[� := �℄ = r[~�;� := ~�; �℄[~x := ~s℄:(8E) Let ~x : ~� ` r� : �[� := �℄ thanks to ~x : ~� ` r : 8��. By indutionhypothesis, r[~� := ~�℄[~x := ~s℄ 2 SC8��[~� : ~M℄. Set M := SC�[~� : ~M℄.Then r[~� := ~�℄[~x := ~s℄�[~� := ~�℄ 2 SC�[~� : ~M; � : M℄ = SC�[�:=�℄[~� : ~M℄by the Substitution Lemma. �By setting si := xi 2 SC�i [;℄ for � = ~x : ~�, and by using SC�[;℄ � SN, we getthe followingTheorem 5 (Strong normalization of F) If � ` r : � then r 2 SN. �As an appliation, we prove:Lemma 49 (Typed onuene) If � ` r : �, r !��� r 0 and r !��� r 00 thenthere is a term t suh that r 0 !�� t and r 00 !�� t.Proof Indution on r 2 sn.18 If r = r 0 or r = r 00 then the laim is trivial(set t = r 00 or t = r 0, respetively). Otherwise, r !�� r 00 !��� r 0 and r !��r 000 !��� r 00 for some terms r 00 and r 000 . By typed loal onuene, there is a terms suh that r 00 !��� s and r 000 !��� s. By Subjet Redution, � ` r 00 : � and� ` r 000 : �. Hene, by indution hypothesis for r 00, there is s 0 suh that r 0 !��� s 0and s!��� s 0, hene r 000 !��� s 0. We now apply the indution hypothesis to r 000and get the term t with and r 00 !��� t and s 0 !��� t, hene also r 0 !��� t. �Exerise 22 Show that there is no term r suh that ` r : 8��.8 Monotone Indutive TypesThe expressiveness of system F is highlighted by the fat that least pre-�xedpoints of monotone operators an be represented|even with respet to redu-tion behaviour. Its main pratial onsequene arises in the �eld of programextration: The omputational ontent of intuitionisti proofs with indutivede�nitions onsists of terms of system F whose normalization yields the objetswhose existene has been proved.19 Later we will see that one also needs tomodel �xed-points (not only pre-�xed points) in order to get primitive reur-sion (not only iteration), and those �xed-points are not available in system Fas is generally believed and greatly supported by [SU99℄.18This proof is in essene the proof of Newman's Lemma saying that a loally onuentand strongly normalizing binary relation is onuent.19Unfortunately, beause of lak of spae, this laim annot be substantiated in these notes.60



8.1 The Example of ContinuationsThe guiding example for the treatment of indutive types will be the one in[Hof95℄ treating a lassial problem in algorithm design by a non-stritly positiveindutive type: The labels of a �nite labelled binary tree shall be put into a listbreadth-�rst, i. e., �rst the root label, then the labels of its hildren, then thelabels of the next layer, . . .The following SML program will be studied in great detail:datatype nat = O | S of nat;(* natural numbers *)val one= S O;val two = S one;val three = S two;val four = S three;val five = S four;val six = S five;val seven = S six;val eight = S seven;val nine = S eight;(* example numbers *)datatype btree = L of nat | N of nat*btree*btree;(* binary trees *)val extree = N(one,N(two,L seven,N(three,L five,L four)),N(four,N(six,L two,L nine),L eight));(* the example tree *)datatype list = nil | ons of nat*list;(* lists of natural numbers *)datatype ont = D | C of (ont -> list) -> list;(* non-stritly positive !! *)fun apply(D,g) = g D |apply(C f,g) = f g;(* definition without reursion but with inversion *)fun breadth(L x,k) = C(fn(g)=>ons(x,apply(k,g))) |breadth(N(x,s,t),k) = C(fn(g)=>ons(x,(apply(k,fn(m)=>g(breadth(s,(breadth(t,m))))))));(* iteration on the tree argumentfn(g)=> is the notation for lambda-abstration of g *)fun ex(D) = nil | ex(C f) = f ex;61



(* iteration on the datatype ont !! *)fun breadthfirst t = ex(breadth(t,D));val result = breadthfirst(extree);val exlist= ons(one, ons(two, ons(four, ons(seven, ons(three,ons(six, ons(eight, ons(five, ons(four, ons(two,ons(nine,nil)))))))))));val ok=(result=exlist);This leads to the following output:Standard ML of New Jersey,Version 110.0.6, Otober 31, 1999 [CM; autoload enabled℄- use("hofmann.sml");[opening hofmann.sml℄datatype nat = O | S of natval one = S O : natval two = S (S O) : natval three = S (S (S O)) : natval four = S (S (S (S O))) : natval five = S (S (S (S (S #)))) : natval six = S (S (S (S (S #)))) : natval seven = S (S (S (S (S #)))) : natval eight = S (S (S (S (S #)))) : natval nine = S (S (S (S (S #)))) : natdatatype btree = L of nat | N of nat * btree * btreeval extree = N (S O,N (S #,L #,N #),N (S #,N #,L #)) : btreedatatype list = ons of nat * list | nildatatype ont = C of (ont -> list) -> list | Dval apply = fn : ont * (ont -> list) -> listval breadth = fn : btree * ont -> ontval ex = fn : ont -> listval breadthfirst = fn : btree -> listval result = ons (S O,ons (S #,ons #)) : listval exlist = ons (S O,ons (S #,ons #)) : listval ok = true : boolval it = () : unit-The �rst questions to raise:1. Are the results always orret?2. Does the program terminate for every input tree?62



3. Is it eÆient? (Compare it with the state-based implementation with aqueue.)4. How an we understand a de�nition of a funtion ex having the formex(C f) = f ex? The funtion about to be de�ned is passed over as anargument in the reursive all!There are pleasing answers:1. The program is orret, and an be shown so by suitable indutive argu-ments.2. The program terminates sine it an be expressed in an extension of sys-tem F by �xed-point types, and every term typable in that system isstrongly normalizing, to be shown by a straightforward extension of theproof for system F whih has been designed so as to failitate this exten-sion.3. It is running in linear time like the implementation with a queue. Enod-ings in system F are extremely unlikely to give linear time. The problem iswith the de�nition of apply where apply(C f,g) = f g needs to isolatef out of C f, and whih is an instane of inversion.4. The reursive all an be understood quite well: It is indeed an instane ofiteration whih an be modeled inside system F. And even muh more de-manding indutive types an be treated: every monotone indutive type.The proof of monotoniity provides the iteration priniple.The theoretial understanding goes further: The embedding of iteration onmonotone indutive types into system F an be read o� a areful proof of Tarski's�xed-point theorem stating that a monotone operator on a omplete lattie hasa least �xed-point (see the explanation in [Mat99b℄). Moreover, we only neednon-interleaving non-stritly positive �xed-point types to derive full primitivereursion on monotone indutive types beause of system F's imprediativeapabilities [Mat99a℄.Unfortunately, this all an only be addressed in a future version of theseleture notes. The plan is to enlarge this setion until it onsumes about onethird of the total time of the leture ourse on lambda alulus, a ase forindutive de�nitions.Referenes[Alt93℄ Thorsten Altenkirh. A formalization of the strong normalizationproof for system F in LEGO. In Bezem and Groote [BG93℄, pages13{28.[ASU86℄ Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers, prin-iples, tehniques, and tools. Addison-Wesley, 1986.63



[Bar84℄ Henk P. Barendregt. The Lambda Calulus: Its Syntax and Se-mantis. North{Holland, Amsterdam, seond revised edition, 1984.[Bar93℄ Henk P. Barendregt. Lambda aluli with types. In Samson Abram-sky, Dov M. Gabbay, and Tom S. E. Maibaum, editors, Bakground:Computational Strutures, volume 2 of Handbook of Logi in Com-puter Siene, pages 117{309. Oxford University Press, 1993.[BG93℄ Mar Bezem and J.F. Groote, editors. Typed Lambda Caluli andAppliations, volume 664 of Leture Notes in Computer Siene.Springer Verlag, 1993.[CDC78℄ Mario Coppo and Mariangiola Dezani-Cianaglini. A new type as-signment for �-terms. Arhive for Mathematial Logi, 19:139{156,1978.[Gir72℄ Jean-Yves Girard. Interpr�etation fontionnelle et �elimination desoupures dans l'arithm�etique d'ordre sup�erieur. Th�ese de Dotoratd'�Etat, Universit�e de Paris VII, 1972.[GLT89℄ Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types,volume 7 of Cambridge Trats in Theoretial Computer Siene.Cambridge University Press, 1989.[Hin97℄ J. Roger Hindley. Basi Simple Type Theory, volume 42 of Cam-bridge Trats in Theoretial Computer Siene. Cambridge Uni-versity Press, 1997.[Hof95℄ Martin Hofmann. Approahes to reursive datatypes|a ase study.5 pages. Unpublished, April 1995.[JM99℄ Felix Joahimski and Ralph Matthes. Short proofs of normalizationfor the simply-typed lambda-alulus, permutative onversions andG�odel's T. Submitted to the Arhive for Mathematial Logi, 1999.[Kri93℄ Jean-Louis Krivine. Lambda-alulus, types and models. Masson,Paris and Ellis Horwood, Hemel Hempstead, 1993. English translationof Lambda-alul, types et mod�eles, Masson, 1990.[Loa98℄ Ralph Loader. Notes on simply typed lambda alulus. Reports of theLaboratory for Foundations of Computer Siene ECS-LFCS-98-381,University of Edinburgh, 1998.[Mat98℄ Ralph Matthes. Extensions of System F by Iteration and Primi-tive Reursion on Monotone Indutive Types. Doktorarbeit (PhDthesis), University of Munih, 1998. Available via the homepagehttp://www.ts.informatik.uni-muenhen.de/~matthes/.[Mat99a℄ Ralph Matthes. Monotone (o)indutive types and positive�xed-point types. Theoretial Informatis and Appliations,33(4/5):309{328, 1999. 64



[Mat99b℄ Ralph Matthes. Tarski's �xed-point theorem and lambda aluli withmonotone indutive types. To appear in: Benedikt L�owe and FlorianRudolph, Foundations of the Formal Sienes, Refereed Papers ofa Researh Colloquium, Humboldt-Universit�at zu Berlin, May 7-9,1999.[Mit96℄ John C. Mithell. Foundations for Programming Languages. Foun-dations of Computing. The MIT Press, 1996.[SU99℄ Zdzis law Sp lawski and Pawe l Urzyzyn. Type Fixpoints: Iterationvs. Reursion. SIGPLAN Noties, 34(9):102{113, 1999. Proeed-ings of the 1999 International Conferene on Funtional Programming(ICFP), Paris, Frane.[Tai67℄ William W. Tait. Intensional interpretations of funtionals of �nitetype I. The Journal of Symboli Logi, 32(2):198{212, 1967.[Tai75℄ William W. Tait. A realizability interpretation of the theory ofspeies. In R. Parikh, editor, Logi Colloquium Boston 1971/72,volume 453 of Leture Notes in Mathematis, pages 240{251.Springer Verlag, 1975.[Urz96℄ Pawe l Urzyzyn. Positive reursive type assignment. FundamentaInformatiae, 28(1{2):197{209, 1996.[Wel94℄ Joe B. Wells. Typability and type heking in the seond-orderlambda-alulus are equivalent and undeidable. In Proeedings ofthe 9th Annual IEEE Symposium on Logi in Computer Siene,pages 176{185. IEEE Computer Soiety Press, 1994.[Wel99℄ Joe B. Wells. Typability and type heking in system F are equivalentand undeidable. Annals of Pure and Applied Logi, 98(1{3):111{156, 1999.

65


