
Fixed Points of Type Constructors

and Primitive Recursion

Andreas Abel?1 and Ralph Matthes2

1 Department of Computer Science, Chalmers University of Technology
abel@cs.chalmers.se

2 Department of Computer Science, University of Munich
matthes@informatik.uni-muenchen.de

Abstract. For nested or heterogeneous datatypes, terminating recur-
sion schemes considered so far have been instances of iteration, exclud-
ing efficient definitions of fixed-point unfolding. Two solutions of this
problem are proposed: The first one is a system with equi-recursive non-
strictly positive type constructors of arbitrary finite kinds, where fixed-
point unfolding is computationally invisible due to its treatment on the
level of type equality. Positivity is ensured by a polarized kinding system,
and strong normalization is proven by a model construction based on sat-
urated sets. The second solution is a formulation of primitive recursion
for arbitrary type constructors of any rank. Although without positiv-
ity restriction, the second system embeds—even operationally—into the
first one.

1 Introduction

Recently, higher-rank datatypes have drawn interest in the functional program-
ming community [Oka96,Hin01]. Rank-2 non-regular types, so-called nested data-
types, have been investigated in the context of the functional programming lan-
guage Haskell. To define total functions which traverse nested datastructures,
Bird et al. [BP99a] have developed generalized folds which implement an iter-
ation scheme and are strong enough to encode most of the known algorithms
for nested datatypes. In this work, we investigate schemes to overcome some
limitations of iteration which we expound in the following.

Since the work of Böhm et al. [BB85] it is well-known that iteration for rank-1
datatypes can be simulated in typed lambda calculi. The easiest examples are
iterative definitions of addition and multiplication for Church numerals. The
iterative definition of the predecessor, however, is inefficient: It traverses the
whole numeral in order to remove one constructor. Surely, taking the predecessor
should run in constant time.

Primitive recursion is the combination of iteration and efficient predecessor.
A typical example for a primitive recursive algorithm is the natural definition

? The first author gratefully acknowledges the support by both the PhD Programme
Logic in Computer Science (GKLI) of the Deutsche Forschungs-Gemeinschaft and
the CoVer project by the Stiftelsen för Strategisk Forskning (SSF).

of the factorial function. It is common belief that primitive recursion cannot be
reduced to iteration in a computationally faithful manner. This is because no en-
coding of natural numbers in the polymorphic lambda-calculus (System F) seems
possible which supports a constant-time predecessor operation (see Sp lawski and
Urzyczyn [SU99]).

In this article, we present two approaches to overcome the predecessor di-
lemma for higher-rank datatypes. A first solution, presented in Section 2, is
System Fixω of non-strictly positive equi-recursive type constructors, which han-
dles folding and unfolding for fixed points on the level of types, trivially yielding
an efficient predecessor. Fixω is proven strongly normalizing in Section 3. Even
though the system has no native means of recursion, a powerful scheme of primi-
tive recursion is definable in Fixω. This schema is embodied in our formulation of
a second system MRecω, given in Section 4. In Section 4.2 we give an extensive
example of a function which can most naturally be implemented with primitive
recursion—redecoration for triangular matrices. Finally, we give the details of
the definition of MRecω within Fixω, hence establishing strong normalization of
the primitive recursion scheme as well (Section 5).

2 System Fix
ω

Since Mendler [Men87], it is known that type equations of the form X = A with
X a type variable and A a type expression, can only be added to system F in
case X only occurs positively in A. Otherwise, strong normalization of typable
terms is lost. In this section, we show that the positive part of Mendler’s finding,
namely strong normalization in the case where X only occurs positively in A,
can be extended to equations for type constructors of arbitrary finite kind, hence
within the framework Fω of higher-order parametric polymorphism.

Equations in solved form, i. e., with a constructor variable on the left-hand
side, can equivalently be treated by an explicit type constructor for fixed-points
[Urz96]. In the case of fixed-points of types, the purported solution of X = C
would be written as the type fix X.C, with its characteristic equation being
fix X.C = [fix X.C/X]C. In the case of nested datatypes, we are interested in
equations like X A = A+X(A×A), where X now denotes a type transformation.
This would be solved by PList = fixX.λA. A + X(A × A). PListA stands for
powerlists over A, i. e., lists with 2n elements of type A, for some (unspecified)
n, which can clearly be seen to be the least fixed-point of the above equation.
With function kinds at hand, we can pass from fix X.C to fixF with F := λX.C,
which is a type transformer.

A manifest idea to isolate positive constructors systematically is to distin-
guish covariant (monotone), contravariant (antitone) and invariant (no informa-
tion about monotonicity) constructors through the kinding system. Such systems
have been found independently by L. Cardelli, B. C. Pierce, the first author
and others, but published only by Steffen [Ste98] and Duggan and Compagnoni
[DC98]. In both publications, polarized kinds are used to model subtyping of
container types like lists and arrays in object-oriented calculi. We are reusing

2

Polarities p ::= + covariant

| − contravariant

| ◦ invariant

Kinds κ ::= ∗ | pκ → κ
′

Constructors A,B, F, G ::= X | λX
pκ

. F | F G | A → B | ∀X
κ
. A | fix F

Objects (terms) r, s, t ::= x | λx.t | r s

Contexts ∆ ::= � | ∆, x :A | ∆, X
pκ

Table 1. Language of Fix
ω

their ideas to formulate positive recursive constructors in a strongly normalizing
language.

Each function kind κ → κ′ is decorated with a polarity, yielding pκ → κ′

in Duggan and Compagnoni’s notation. For covariant constructors, p = +, for
contravariant, p = −, and p = ◦ if the constructor is neither co- nor contravariant
or its variance is unknown. Consequently, abstracted variables now carry kinding
and polarity information. For instance, we have

λX+(+∗→∗)λA+∗. X (X A) : +(+∗ → ∗) → (+∗ → ∗).

The kinding expresses that X ◦ X is covariant if X is, and that the “twice”
operation λX.X ◦X is itself covariant on covariant arguments, meaning that we
may form its fixed point, which would in turn be covariant.1 We can also classify
invariant constructors, e. g., λA◦∗. A → X (A × A) : ◦∗ → ∗ for invariant X
that occurs covariantly, indicated by X+(◦∗→∗) in the context, and contravariant
constructors like λX−∗. X → ⊥ : −∗ → ∗. Consequently, λX+∗. (X → ⊥) → ⊥ :
+∗ → ∗, which hence includes non-strictly positive type transformers.2

Language of Fixω. Table 1 shows the syntactic entities of System Fixω, an ex-
tension of Fω by polarized kinds and fixed-points of constructors. Typically, the
empty context “�” will be suppressed. Furthermore we assume all variables in a
context ∆ to be pairwise distinct. Capture-avoiding substitution of constructor
G for variable X in constructor F is written as [G/X]F , likewise substitution
in terms is denoted by [s/x]t. As usual, it is assumed that constructor applica-
tion and term application associate to the left, e. g., F G X denotes (F G) X and
(λx.r) s t denotes ((λx.r) s) t. Iterated applications may be “vectorized”, i. e.,
r t1 . . . tn will be written as rt with t := t1, . . . , tn. Then, |t| := n.

While we are using Curry-style objects to express solely the operational be-
havior, for the type constructors we decided on Church style in order to simplify

1 The kind of λX.X ◦X obtained here is a syntactic approximation and simplification
of the more logic-based concept of rank-2 monotonicity introduced in [Mat01].

2 Most dependently typed systems such as Coq do not allow non-strict positivity for
their native fixed points due to the consistency problem reported in [CP88].

3

the semantics definition in Section 3. The same decision has been taken by
Giannini et al. [GHR93], where equivalence with pure Church typing is also es-
tablished. Note, however, that impredicative systems with dependent types are
richer in this mixed style [vBL+97].

Operations on polarities and contexts. Negation of a polarity −p is given by the
three equations −(+) = −, −(−) = + and −(◦) = ◦. We define application p∆
of a polarity p to a polarized context ∆. Positive polarity is neutral and changes
nothing: +∆ = ∆. The operation −∆ reverses all polarities in ∆. Furthermore
◦∆ discards all co- and contravariant type variable bindings.

Kinding. We introduce a judgement ∆ ` F : κ which combines the usual notions
of wellkindedness and positive and negative occurrences of type variables. It
assures that fixed-points can only be formed over positive type constructors.

Xpκ ∈ ∆ p ∈ {+, ◦}

∆ ` X : κ

∆, Xpκ ` F : κ′

∆ ` λXpκ. F : pκ → κ′

∆ ` F : pκ → κ′ p∆ ` G : κ

∆ ` F G : κ′

−∆ ` A : ∗ ∆ ` B : ∗

∆ ` A → B : ∗

∆, X◦κ ` A : ∗

∆ ` ∀Xκ. A : ∗

∆ ` F : +κ → κ

∆ ` fixF : κ
Kinding is syntax-directed, and, since we are using Church-style constructors,
for given ∆ and F , the kind κ of F can be computed by structural recursion
on F . As a consequence, all rules are invertible in the strong sense that we can
recover the applied rule and all the parts of its premises from a given kinding
judgement.

The arrow in kinds and in types is assumed to associate to the right, e. g.,
A → B → C stands for A → (B → C) and +∗ → −κ → κ′ stands for
+∗ → (−κ → κ′).

Example 1. We can define standard type constructors via the usual impredica-
tive encodings and get more informative kinds:

× : +∗ → +∗ → ∗
× := λX+∗λY +∗∀Z∗. (X → Y → Z) → Z
+ : +∗ → +∗ → ∗
+ := λX+∗λY +∗∀Z∗. (X → Z) → (Y → Z) → Z
∃κ : +(◦κ → ∗) → ∗

∃κ := λF+(◦κ→∗)∀Z∗. (∀Xκ. F X → Z) → Z

Notice that all these examples use non-strict positivity. We will use + and ×
infix.

Example 2. The reader is invited to check the examples in the introduction,
using ⊥ := ∀X∗. X of kind ∗.

Kinding enjoys the usual properties of weakening and strengthening, as well as
substitution which respects polarities:

Lemma 1 (Substitution). If ∆, Xpκ ` F : κ′ and p∆ ` G : κ then ∆ `
[G/X]F : κ′.

Proof. By induction on ∆, Xpκ ` F : κ′.

4

Constructor equality. The β-equality F = F ′ of constructors F , F ′ is given by
the following rules, hence only in the qualified form with contexts:

Computation axioms.

∆, Xpκ ` F : κ′ p∆ ` G : κ

∆ ` (λXpκ. F) G = [G/X]F : κ′

∆ ` F : +κ → κ

∆ ` fix F = F (fix F) : κ

Congruences.

Xpκ ∈ ∆ p ∈ {+, ◦}

∆ ` X = X : κ

∆ ` F = F ′ : pκ → κ′ p∆ ` G = G′ : κ

∆ ` F G = F ′ G′ : κ′

∆, Xpκ ` F = F ′ : κ′

∆ ` λXpκ. F = λXpκ. F ′ : pκ → κ′

∆, X◦κ ` A = A′ : ∗

∆ ` ∀Xκ. A = ∀Xκ. A′ : ∗

−∆ ` A′ = A : ∗ ∆ ` B = B′ : ∗

∆ ` A → B = A′ → B′ : ∗

∆ ` F = F ′ : +κ → κ

∆ ` fix F = fix F ′ : κ

Symmetry and transitivity.

∆ ` F = F ′ : κ

∆ ` F ′ = F : κ

∆ ` F1 = F2 : κ ∆ ` F2 = F3 : κ

∆ ` F1 = F3 : κ

Lemma 2 (Reflexivity). If ∆ ` F : κ then ∆ ` F = F : κ.

Lemma 3 (Kindedness). If ∆ ` F = F ′ : κ then ∆ ` F : κ and ∆ ` F ′ : κ.

Wellformed contexts. ∆ cxt

� cxt

∆ cxt

∆, Xpκ cxt

∆ cxt ∆ ` A : ∗

∆, x :A cxt

Welltyped terms. ∆ ` t : A

(x :A) ∈ ∆ ∆ cxt

∆ ` x : A

∆, x :A ` t : B

∆ ` λx.t : A → B

∆ ` r : A → B ∆ ` s : A

∆ ` r s : B

∆, X◦κ ` t : A

∆ ` t : ∀Xκ. A

∆ ` t : ∀Xκ. A ◦∆ ` F : κ

∆ ` t : [F/X]A

∆ ` t : A ∆ ` A = B : ∗

∆ ` t : B

Welltyped terms are closed under substitution (as are constructors, cf. Lemma 1).
As opposed to iso-recursive types with “verbose” folding and unfolding, equi-

recursive types yield a leaner term language and hence a more succinct semantics.

Lemma 4. If ∆ ` t : A then ∆ cxt and ∆ ` A : ∗.

Proof. By induction on ∆ ` t : A.

Reduction. The one-step reduction relation t −→ t′ between terms t and t′ is
defined as the closure of the β-axiom (λx.t) s −→β [s/x]t under all term con-
structors. We denote the transitive closure of −→ by −→+. In the next section,
we will see that welltyped terms t0 admit no infinite reduction t0 −→ t1 −→ . . .

5

Constant-time predecessor. For the type Nat := fix λA+∗. 1+A (using +, defined
above, and 1 := ∀A∗. A → A), it is an easy exercise to define closed terms O : Nat

and S : Nat → Nat (using the injections into sums) that represent the natural
numbers, and a closed term P : Nat → Nat (using the definable case analysis
construct) such that P O −→+ O and P (S x) −→+ x.

3 Strong Normalization of Fix
ω

In this section we prove strong normalization of Fixω by a model construction
where constructors are interpreted as operators on saturated sets. Due to space
constraints, the proof necessarily remains sketchy, but all definitions and facts
are given which are required to recover the detailed proof.

As is usual for proving (strong) normalization by a model, only the type
system has to be reflected in its construction. In System Fω, this is just a
simply-typed lambda calculus, namely the (simply-)kinded type constructors.
Our system Fixω additionally has the notions of monotonicity and fixed point.
Essentially, we therefore have to give a model of a simply-typed calculus of “syn-
tactically monotone lambda terms”. Although the reader will not be surprised
by our solution, the authors were surprised that they were not able to find it in
the literature.

Following van Raamsdonk and Severi [vRS95,vRS+99] we define the set of
strongly normalizing lambda-terms inductively by the following rules (which are
implicity also contained in [Gog95]).

ti ∈ SN for 1 ≤ i ≤ |t|

x t ∈ SN

t ∈ SN

λx.t ∈ SN

[s/x]t s ∈ SN s ∈ SN

(λx.t) s s ∈ SN

This characterization is sound, i.e., if t0 ∈ SN then there is no infinite reduction
sequence t0 −→ t1 −→ . . ., for a proof see loc. cit. Our aim is to show t ∈ SN for
each welltyped term t.

3.1 Lattices of Operators on Saturated Sets

A set of terms A is called saturated, A ∈ SAT∗, if it contains only strongly nor-
malizing terms, A ⊆ SN, and A is closed under addition of strongly normalizing
neutral terms and strongly normalizing weak head expansion:

ti ∈ SN for 1 ≤ i ≤ |t|

x t ∈ A

[s/x]t s ∈ A s ∈ SN

(λx.t) s s ∈ A

For sets of terms A, B we define the function space A → B := {r ∈ SN |
r s ∈ B for all s ∈ A}. If A and B are saturated, so is A → B. Furthermore
the function space construction is antitone in the domain and monotone in the
codomain: if A′ ⊆ A and B ⊆ B′ then A → B ⊆ A′ → B′.

Given an index set I and a family Ai (i ∈ I) of saturated sets, the infimum
⋂

i∈I Ai is also saturated. Formation of the infimum is monotone: Given a second

6

family A′
i of pointwise greater members, Ai ⊆ A′

i, the infimum is also greater
⋂

i∈I Ai ⊆
⋂

i∈I A
′
i. Taking set SN as top element, the saturated sets, together

with inclusion, (SAT∗,⊆), constitute a complete lattice.
In our model for Fixω, types (= constructors of kind “∗”) will be interpreted

as saturated sets. To model constructors of higher kinds κ, we need to define a
poset (SATκ,vκ) of (higher-order) operators on saturated sets for each kind κ.
For the base kind, let A v∗ A′ :⇐⇒ A,A′ ∈ SAT∗ and A ⊆ A′. To require
A,A′ ∈ SAT∗ is convenient because the reflexive elements of v∗ are now exactly
the saturated sets: A ∈ SAT∗ ⇐⇒ A v∗ A. The notion of saturated set
SATpκ→κ′

and inclusion vpκ→κ′

for higher kinds is defined by induction on the

kind. Let F ,F ′ ∈ SATκ → SATκ′

be set-theoretic functions.

F vpκ→κ′

F ′ :⇐⇒ F(G) vκ′

F ′(G′) for all G,G′ ∈ SATκ with G vpκ G′

F ∈ SATpκ→κ′

:⇐⇒ F vpκ→κ′

F

Here, we used the abbreviations

G v+κ G′ :⇐⇒ G vκ G′,
G v−κ G′ :⇐⇒ G′ vκ G,
G v◦κ G′ :⇐⇒ G vκ G′ and G′ vκ G.

(An easy induction on κ shows that G v◦κ G′ implies G = G′, but the present
definition is more suitable for a uniform treatment of all variances in the proofs
to follow.)

Each SATκ has a top element and infima: For the base kind, >∗ = SN andd∗ =
⋂

; for higher kinds they are defined pointwise: Let Fi ∈ SATpκ→κ′

for

each i ∈ I . Then >pκ→κ′

∈ SATpκ→κ′

with >pκ→κ′

(G) := >κ′

, and
dpκ→κ′

i∈I Fi ∈

SATpκ→κ′

with (
dpκ→κ′

i∈I Fi)(G) :=
dκ′

i∈I Fi(G). With these definitions, each poset
(SATκ,vκ) forms a complete lattice.

By Tarski’s fixed-point theorem, each monotone operator F on a complete
lattice has a least fixed point lfpF . Indeed, given F ∈ SAT+κ→κ, we can define
the least fixed point by lfpF :=

dκ
{G ∈ SATκ | F(G) vκ G}, i.e., as the least

pre-fixed point of F , which, by the theorem, is indeed a pre-fixed point of F ,
and also a post-fixed point: lfpF vκ F(lfpF). We will use lfp to interpret fixed
points fixF of wellkinded constructors F .

3.2 Interpretation of Constructors

In the following part we will define an interpretation [[F]]θ ∈ SATκ for each
constructor of kind κ, where θ is a valuation for the free constructor variables
in F . For convenience, a valuation θ is a set-theoretical object which maps both
constructor variables X to sets F and term variables x to terms t. Update of
a valuation is written as θ[X 7→ F] resp. θ[x 7→ t]. We extend inclusion and
saturatedness to valuations by defining:

θ v∆ θ′ :⇐⇒ θ(X) vpκ θ′(X) for all Xpκ ∈ ∆

θ ∈ SAT∆ :⇐⇒ θ v∆ θ

7

Lemma 5. If θ v∆ θ′, then θ v+∆ θ′, θ′ v−∆ θ, θ v◦∆ θ′ and θ′ v◦∆ θ.

Proof. By induction on the generation of ∆.

For the following definition and lemma which is the crucial part of this nor-
malization proof, let ∆ ` F : κ. For θ ∈ SAT∆, we define the interpretation
[[F]]θ ∈ SATκ by induction on the structure of F . Simultaneously we need to
prove monotonicity of [[F]], the cases for definition and proof are given below.

Lemma 6 (Monotonicity). If θ v∆ θ′ then [[F]]θ vκ [[F]]θ′ .

For θ = θ′, immediate consequence of monotonicity is welldefinedness of the
interpretation, [[F]]θ ∈ SATκ.

Corollary 1 (p-Monotonicity). Let p∆ ` F : κ. If θ v∆ θ′ then [[F]]θ vpκ

[[F]]θ′ .

Proof (of the corollary). In case p = + the corollary just restates monotonicity
(Lemma 6). If p = − then θ′ v−∆ θ by Lemma 5. Using monotonicity, [[F]]θ′ vκ

[[F]]θ. This is by definition equivalent to [[F]]θ v−κ [[F]]θ′ . If otherwise p = ◦,
then by Lemma 5 both θ v◦∆ θ′ and θ′ v◦∆ θ. By monotonicity [[F]]θ vκ [[F]]θ′

and [[F]]θ′ vκ [[F]]θ which entail by definition [[F]]θ v◦κ [[F]]θ′ .

Definition of [[F]]θ and proof of monotonicity. By induction on the shape of F .

– ∆ ` X : κ. Set [[X]]θ := θ(X). By assumption, Xpκ ∈ ∆ with p ∈ {+, ◦}.
The requirement θ v∆ θ′ implies θ(X) vκ θ′(X), hence [[X]]θ vκ [[X]]θ′ by
definition.

– ∆ ` λXpκ. F : pκ → κ′. The interpretation is a set-theoretic function

[[λXpκ. F]]θ ∈ SATκ → SATκ′

, [[λXpκ. F]]θ(G) := [[F]]θ[X 7→G] . To show mono-

tonicity, assume G,G′ ∈ SATκ with G vpκ G′. By inversion of the typing
derivation, ∆, Xpκ ` F : κ′, and, since θ[X 7→ G] v∆,Xpκ

θ′[X 7→ G′], by
induction hypothesis [[F]]θ[X 7→G] v

κ′

[[F]]θ′[X 7→G′]. Hence, [[λXpκ. F]]θ(G) vκ′

[[λXpκ. F]]θ′(G′) by definition. To conclude, [[λXpκ. F]] is monotone.

– ∆ ` F G : κ′. Set [[F G]]θ := [[F]]θ([[G]]θ). Monotonicity and welldefinedness
can be seen as follows. By inversion of the kinding derivation, ∆ ` F : pκ →
κ′ and p∆ ` G : κ. Assume θ v∆ θ′. By the first induction hypothesis,
[[F]]θ vpκ→κ′

[[F]]θ′ . By the second induction hypothesis, with Corollary 1,

[[G]]θ vpκ [[G]]θ′ . Putting things together, [[F]]θ([[G]]θ) vκ′

[[F]]θ′([[G]]θ′),
which by definition entails our goal.

– ∆ ` A → B : ∗. Set [[A → B]]θ := [[A]]θ → [[B]]θ. By inversion, −∆ ` A : ∗
and ∆ ` B : ∗. By induction hypothesis and Corollary 1, [[A]]θ v−∗ [[A]]θ′ ,
hence [[A]]θ′ ⊆ [[A]]θ. Again, by induction hypothesis, [[B]]θ v∗ [[B]]θ′ , hence
[[B]]θ ⊆ [[B]]θ′ Together, [[A → B]]θ ⊆ [[A → B]]θ′ . Since the functional
construction is saturated, we conclude with [[A → B]]θ v∗ [[A → B]]θ′ .

8

– ∆ ` ∀Xκ. A : ∗. Set [[∀Xκ. A]]θ :=
⋂

F∈SATκ [[A]]θ[X 7→F]. By inversion, ∆, X◦κ `

A : ∗. For arbitrary F ∈ SATκ, θ[X 7→ F] v∆,X◦κ

θ′[X 7→ F], hence
[[A]]θ[X 7→F] v

∗ [[A]]θ′[X 7→F] by induction hypothesis. This entails [[∀Xκ. A]]θ v∗

[[∀Xκ. A]]θ′ by monotonicity and saturatedness of the infimum.

– ∆ ` fix F : κ. Set [[fix F]]θ := lfp([[F]]θ). By inversion, ∆ ` F : +κ →
κ, hence, by induction hypothesis, F := [[F]]θ ∈ SAT+κ→κ is a monotone
operator on SATκ, and by Tarski’s theorem the least fixed-point lfpF ∈ SATκ

exists. To show monotonicity, we assume θ v∆ θ′ and define F ′ := [[F]]θ′ .
By monotonicity of [[F]], F v+κ→κ F ′. In particular, F(G) vκ F ′(G) for
every G ∈ SATκ. Since lfpF is a monotone function in its argument F , we
are done. ut

The interpretation is compatible with substitution and constructor equality,
as we show in the following lemmata.

Lemma 7 (Soundness of substitution). If ∆, Xpκ ` F : κ′ and p∆ ` G : κ,
then [[[G/X]F]]θ = [[F]]θ[X 7→[[G]]θ] for all θ ∈ SAT∆.

Proof. By induction on the structure of F .

Lemma 8 (Soundness of equality). If ∆ ` F = F ′ : κ then [[F]]θ = [[F ′]]θ
for all θ ∈ SAT∆.

Proof. By induction on constructor equality, using the previous lemma for the
first computation rule.

3.3 Interpretation of Terms

To complete our model, we define an interpretation LtMθ of terms and then show
LtMθ ∈ [[A]]θ for welltyped terms ∆ ` t : A and sound valuations θ. For wellformed

contexts ∆ cxt a valuation is sound, θ ∈ [[∆]], if θ ∈ SAT∆ and θ(x) ∈ [[A]]θ for
each (x :A) ∈ ∆. The term interpretation LtMθ is simply the term t itself where all
free variables x have been replaced by their value θ(x) in valuation θ. Note that
theses values are strongly normalizing for sound valuations already; it remains
to show that the full term LtMθ is strongly normalizing for well-typed θ. This is
a consequence of the following theorem.

Theorem 1 (Soundness of typing). If ∆ ` t : A and θ ∈ [[∆]] then LtMθ ∈
[[A]]θ.

Proof. By induction on ∆ ` t : A. Note that by Lemma 4 the context ∆ and
the type A are wellformed if the typing judgement is derivable. Since our term
language is just pure lambda calculus, the proof is standard, for the rule of type
equality use Lemma 8.

Corollary 2. If ∆ ` t : A, the term t is strongly normalizing.

Proof. By Theorem 1, choosing a valuation θ with θ(X) = >κ for all Xpκ ∈
∆ and θ(x) = x for all (x : B) ∈ ∆. This valuation is sound since the type
interpretation [[B]]θ is saturated, hence, contains x.

9

4 Primitive Recursion for Heterogeneous Datatypes

In this section, we propose a second way to equip System Fω with fixed points
of higher rank. Therein, we follow Mendler [Men87] who also—besides consid-
ering type equations in System F—gave an extension of F by least and greatest
fixed points, together with elimination schemes which we refer to as Mendler
(co)recursion. We carry Mendler’s schemes to higher ranks and define a system
MRecω as an extension of Fω by least fixed points of type constructors, also called
higher-order inductive types. In contrast to Fixω which possesses equi-recursive
types, MRecω is in the style of iso-recursive type systems and has explicit in-
troduction and elimination terms for inductive types. In analogy to Sp lawski
and Urzyczyn [SU99] we conjecture that MRecω has no reduction preserving
embedding into Fω. However, it embeds into Fixω, as we will show in Section 5.

Our starting point is Curry-style System Fω , enriched with unit type 1, bi-
nary products A × B and sums A + B and the usual term constructors: 〈〉 for
the inhabitant of the unit type, 〈t1, t2〉, fst r and snd r for pairs and left and
right projection, and inl t, inr t and case (r, x. s, y. t) for left and right injection
and case distinction. Note that there are no polarized kinds and no fixed-point
constructors. An exposition of the exact rules for typing Γ ` t : A and reduction
t −→ t′ can be found in the appendix of Abel et al. [AMU03]. Since Fω’s notion
of constructor equivalence is just plain β-equality, we even identify constructors
with their β-normal form on the syntactic level.

4.1 Definition of System MRec
ω

For every kind κ of Fω , we add the constructor constant µκ of kind (κ → κ) → κ
to the system of constructors of Fω, denoting least fixed-point formation. The
term system of Fω is extended by two families of constants: inκ (fixed-point
introduction) and MRecκ (fixed-point elimination) for every kind κ. In order to
give their types, we need a notion of constructor containment: Every kind κ can
uniquely be written in the form κ1 → . . . κn → ∗, in short κ → ∗. Define

F ⊆κ G := ∀X
κ. FX → GX : κ → κ → ∗,

for constructors F, G : κ = κ → ∗. The typing of the constants can now be given
by inκ : ∀F κ→κ. F (µκF) ⊆κ µκF and

MRecκ : ∀F κ→κ∀Gκ. (∀Xκ. X ⊆κ µκF → X ⊆κ G → F X ⊆κ G) → µκF ⊆κ G.

The notion −→ of reduction for untyped terms is extended by the additional
basic reduction rule of primitive recursion

MRecκ s (inκ t) −→β s id (MRecκ s) t,

where id := λx.x is the identity. Intuitively, subject reduction still holds because
the type ∀Xκ. X ⊆κ µκF → X ⊆κ G → F X ⊆κ G of the term s is instantiated
with the fixed-point constructor µκF itself. Therefore, the identity id qualifies as

10

first argument to s. In general, the transformation from the blank type X back
into the fixed-point, i. e., of type X ⊆κ µκF , which is the first formal argument
of s, provides access to the predecessor of the recursion argument. This is the
feature which distinguishes primitive recursion from iteration.

For κ = ∗, we have just restated Mendler’s rules for recursive types [Men87].
At this point, let us remark that Mendler-style inductive types µκF—although
not observed by Mendler—do not require positivity for F . This contrasts with the
recursive types of Fixω. It also contrasts with formulations of primitive recursion
in conventional style that have to rely on positivity or, less syntactically, on a
monotonicity requirement such as that in [Mat01] for κ = ∗ or ∗ → ∗.

4.2 Example: Redecoration of Finite Triangular Matrices

As a non-trivial example of the use of MRecω for heterogeneous datatypes, we
consider a redecoration operation for the diagonal elements of finite triangular
matrices. In previous work with Uustalu, we have treated redecoration for infinite
triangular matrices by higher-order coiteration [AMU03], and the finite ones by a
computationally unsatisfactory encoding of recursion within iteration [AMU04].

Fix a type E : ∗ of matrix elements. The type Tri A of finite triangular
matrices with diagonal elements in A and ordinary elements E can be obtained
as follows, with κ1 := ∗ → ∗:

TriF := λXκ1λA∗. A × (1 + X (E × A)) : κ1 → κ1
Tri := µκ1TriF : κ1

We think of these triangles decomposed columnwise: The first column is a sin-
gleton of type A, the second a pair of type E × A, the third a triple of type
E × (E × A), the fourth a quadruple of type E × (E × (E × A)) etc. Hence, if
some column has some type A′ we obtain the type of the next column as E×A′.
By taking the left injection into the sum 1 + . . ., one can construct an element
without further recurrence, the last column. We can visualize triangles like this:

A E E E E
A E E E

A E E
A E

A

The vertical lines hint at the decomposition scheme. In general, elements of type
Tri A are constructed by means of

sg := λa. inκ1 〈a, inl 〈〉〉 : ∀A∗. A → Tri A
cons := λaλt. inκ1 〈a, inr t〉 : ∀A∗. A → Tri (E × A) → Tri A

The function top : ∀A∗. Tri A → A = Tri ⊆κ1 λA∗. A that yields the topmost
diagonal element, is defined as top := MRecκ1(λiλtopλp. fst p). As reduction
behavior, we get

top (sg a) −→+ a
top (consa t) −→+ a

11

If we remove the first column of a triangle Tri A, we obtain a trapezium
Tri (E ×A). We can get back a (smaller) triangle if we cut off the top row of the
trapezium using the function cut : ∀A∗. Tri (E×A) → Tri A. The exact definition
of this function, which is like fcut in [AMU04, Example 34], has to be omitted
due to lack of space.

Let T A denote some sort of A-decorated (or A-labelled) trees. Redecoration
[UV02] is an operation that takes an A-decorated tree t : T A and a redecora-
tion rule f : T A → B and returns a B-decorated tree t′ : T B. For triangles,
redecoration works as follows: In the triangle

A E E E E
A E E E

A E E
A E

A

the underlined A (as an example) gets replaced by the B assigned by the redec-
oration rule to the sub triangle cut out by the horizontal line; similarly, every
other A is replaced by a B.

For the definition of redecoration, we will need a means of lifting a redeco-
ration rule on triangles to one on trapeziums.

lift := λfλt. 〈fst (top t), f (cut t)〉
: ∀A∗∀B∗. (Tri A → B) → Tri (E × A) → E × B

For a detailed explanation in which sense this is a lifting, see [AMU04]. Finally,
we can define redecoration

redec : ∀A∗∀B∗. Tri A → (Tri A → B) → Tri B = Tri ⊆κ1 G

with G := λA∗∀B∗. (TriA → B) → TriB. The definition makes essential use of
primitive recursion in that it also uses the variable i : X ⊆κ1 Tri in the body of
argument to MRecκ1:

redec := MRecκ1
(

λiλredecλtλf. case
(

snd t,

u. sg (f (sg (fst t))),

r. cons (f (cons (fst t) (i r))) (redec r (lift f))
)

)

Its reduction behavior is easy to calculate:

redec (sg a) f −→+ sg (f (sg a))
redec (consa r) f −→+ cons (f (cons a r)) (redec r (lift f))

The reader is invited to compare this concise behaviour with the one obtained
in [AMU04] within definitional extensions of system Fω that therefore can only
provide iteration schemes and no primitive recursion. Notice that the number of
reduction steps does not depend on the terms a, r and f since these may just be
variables. By a modification of the definition of redec above, it is easy to define
a constant-time predecessor operation on triangles (a left inverse of inκ1 for Tri

even with respect to reductions of open terms): The access to r in the cons case
of the reduction will be type-correct by using (i r) instead of r, just as for redec.

12

5 Embedding of Mendler-Style Recursion into Fix
ω

In this section, we prove—via an embedding into Fixω—that Mendler recursion
for higher ranks is strongly normalizing. The proof proceeds in two steps: First,
we show that all constructions of MRecω can be defined in Fixω such that re-
duction is simulated. Then we map each welltyped term of MRecω onto a still
welltyped term of Fixω of exactly the same shape (the translation is purely ho-
momorphic). Thus, each infinite reduction sequence of MRecω would map onto
an infinite sequence of Fixω, which is a contradiction to the result of Section 3.

Products and sums can be defined in Fixω via the standard impredicative
encoding (see Example 1). The interesting part is the definition of least fixed-
points µκF within Fixω. We give their definition only for kinds carrying no
polarity information, i.e., kinds of the form κ = ◦κ → ∗. This suffices because
their purpose is just to serve as images in the translation of the least fixed points
in the polarity-free system MRecω. We define µκ := λF ◦(◦κ→κ). fixΦF with

ΦF := λY +κλX
◦κ∀Gκ. (∀Xκ. X ⊆κ Y → X ⊆κ G → F X ⊆κ G) → G X.

It is not hard to see that F ◦(◦κ→κ) ` ΦF : +κ → ◦κ → ∗, since the variable Y
occurs twice to the left of an arrow in the body of the definition of ΦF . Thus,
for any F : ◦κ → κ we have ΦF : +κ → κ, and µκ : ◦(◦κ → κ) → κ as required.

Once we have found a suitable representation of µκ in Fixω , the definition of
elimination and introduction falls into place:

MRecκ := λsλr. r s
inκ := λtλs. s id (MRecκs) t

Note that the right-hand sides do not depend on κ. These definitions yield sim-
ulation of primitive recursion within Fixω, as we can confirm by performing four
β-reduction steps: MRecκ s (inκ t) −→+ s id (MRecκ s) t.

Now, System MRecω can be translated into Fixω by replacing each arrow
kind κ → κ′ by ◦κ → κ′, and each annotated abstraction λXκ by λX◦κ. All
other syntactical constructions remain unchanged. Certainly, we can only map
the constants inκ and MRecκ of MRecω onto their defined counterparts in Fixω,
if the types of source and target match. This can been seen by type-checking,
for which the following chart might be an aid.

∆ := F ◦(◦κ→κ), G◦κ, X◦κ,
s : ∀Xκ. X ⊆κ µκF → X ⊆κ G → F X ⊆κ G,
r : µκF X = ΦF (µκF) X,
t : F (µκF) X

∆ ` r s : G X

∆ ` λs. s id (MRecκs) t : ΦF (µκF) X = µκF X

Theorem 2. In System MRecω of Mendler recursion for arbitrary kinds there
exists no infinite reduction sequence t0 −→ t1 −→ . . . starting with a welltyped
term t0.

Proof. By Corollary 2, using the abovementioned translation into Fixω.

13

6 Conclusion and Future Work

We have presented two systems for total functions over higher-order and nested
datatypes where the predecessor runs in constant time. The first system, Fixω,
supports positive equi-recursive types of higher order. No primitive combina-
tor for recursive functions is built in, but due to the strength of equi-recursive
types in combination with impredicativity, customary recursion schemes can be
defined. One instance is Mendler-style primitive recursion MRec, which for ex-
ample can be used to define a redecoration algorithm for triangular matrices.
We have shown that Mendler-style primitive recursion can be simulated in Fixω.

This simulation could have been extended to also account for coinductive type
constructors, by defining Mendler-style corecursion for higher ranks in Fixω. A
naturally corecursive program is substitution for the infinite version of de Bruijn
terms coded as a nested datatype [AR99,BP99b]. Due to space restrictions we
have to leave this direction to future work.

The systematic use of nested datatypes to represent datastructures with in-
variants is rather new [Hin98] (but also see [Oka96, Sections 10, 11] for earlier
work). As an example, Hinze [Hin01] implemented Okasaki’s functional version
of red-black trees [Oka99] by help of a nested datatype to actually ensure the
balancing properties of red-black trees by the type system. Most algorithms for
nested datatypes published so far require just iteration, hence can be imple-
mented in the framework of generalized folds [BP99a] or efficient folds [MGB04]
or Mendler iteration [AMU04]. As more classical algorithms will find functional
implementations using nested datatypes, we imagine many more examples re-
quiring primitive recursion for higher-rank datatypes, and thus may infer termi-
nation of the respective algorithms.

References

[AMU03] A. Abel, R. Matthes, and T. Uustalu. Generalized iteration and coiteration
for higher-order nested datatypes. In A. Gordon, ed., Proc. of FoSSaCS

2003 , vol. 2620 of LNCS , pp. 54–69. 2003.
[AMU04] A. Abel, R. Matthes, and T. Uustalu. Iteration and coiteration schemes for

higher-order and nested datatypes. Theoretical Computer Science, 2004. 79
pages, accepted for publication.

[AR99] T. Altenkirch and B. Reus. Monadic presentations of lambda terms using
generalized inductive types. In Proceedings of CSL ’99 , vol. 1683 of LNCS ,
pp. 453–468. 1999.

[BB85] C. Böhm and A. Berarducci. Automatic synthesis of typed λ-programs on
term algebras. Theoretical Computer Science, 39:135–154, 1985.

[BP99a] R. Bird and R. Paterson. Generalised folds for nested datatypes. Formal

Aspects of Computing , 11(2):200–222, 1999.
[BP99b] R. S. Bird and R. Paterson. De Bruijn notation as a nested datatype. Journal

of Functional Programming , 9(1):77–91, 1999.
[CP88] T. Coquand and C. Paulin. Inductively defined types—preliminary version.

In P. Martin-Löf and G. Mints, eds., Proceedings of COLOG ’88 , vol. 417 of
LNCS , pp. 50–66. 1988.

14

[DC98] D. Duggan and A. Compagnoni. Subtyping for object type constructors,
1998. Presented at FOOL 6.

[GHR93] P. Giannini, F. Honsell, and S. Ronchi Della Rocca. Type inference: some
results, some problems. Fundamenta Informaticae, 19(1-2):87 – 125, 1993.

[Gog95] H. Goguen. Typed operational semantics. In M. Dezani-Ciancaglini and
G. Plotkin, eds., Proc. of TLCA ’95 , vol. 902 of LNCS , pp. 186–200. 1995.

[Hin98] R. Hinze. Numerical representations as higher-order nested datatypes. Tech.
Rep. IAI-TR-98-12, Institut für Informatik III, Universität Bonn, 1998.

[Hin01] R. Hinze. Manufacturing datatypes. Journal of Functional Programming ,
11(5):493–524, 2001.

[Mat01] R. Matthes. Monotone inductive and coinductive constructors of rank 2. In
L. Fribourg, ed., Proc. of CSL 2001 , vol. 2142 of LNCS , pp. 600–614. 2001.

[Men87] N. P. Mendler. Recursive types and type constraints in second-order lambda
calculus. In Proceedings of LICS ’87 , pp. 30–36. 1987.

[MGB04] C. Martin, J. Gibbons, and I. Bayley. Disciplined, efficient, generalised folds
for nested datatypes. Formal Aspects of Computing , 16(1):19–35, 2004.

[Oka96] C. Okasaki. Purely Functional Data Structures. Ph.D. thesis, Carnegie
Mellon University, 1996.

[Oka99] C. Okasaki. Red-black trees in a functional setting. Journal of Functional

Programming , 9(4):471–477, 1999.
[Ste98] M. Steffen. Polarized Higher-Order Subtyping . Ph.D. thesis, Technische

Fakultät, Universität Erlangen, 1998.
[SU99] Z. Sp lawski and P. Urzyczyn. Type fixpoints: Iteration vs. recursion. In

Proceedings of ICFP’99 , pp. 102–113. SIGPLAN Notices, 1999.
[Urz96] P. Urzyczyn. Positive recursive type assignment. Fundamenta Informaticae,

28(1–2):197–209, 1996.
[UV02] T. Uustalu and V. Vene. The dual of substitution is redecoration. In K. Ham-

mond and S. Curtis, eds., Trends in Functional Programming 3 , pp. 99–110.
Intellect, Bristol, Portland, OR, 2002.

[vBL+97] S. van Bakel, L. Liquori, S. Ronchi Della Rocca, and P. Urzyczyn. Comparing
cubes of typed and type assignment systems. Annals of Pure and Applied

Logic, 86(3):267–303, 1997.
[vRS95] F. van Raamsdonk and P. Severi. On normalisation. Tech. Rep. CS-R9545,

CWI, 1995.
[vRS+99] F. van Raamsdonk, P. Severi, M. H. Sørensen, and H. Xi. Perpetual reduc-

tions in lambda calculus. Inf. and Comp., 149(2):173–225, 1999.

15

