
New advances in image processing :
Some Inverse Problems in Biomedical

Imaging

Denis Kouamé

IRIT, Université Toulouse 3 - Paul Sabatier

IRIT - CRCA February 2023



Outline of the talk

Basic principles of Medical imaging

Inverse problems
Basics
Summary

Model-based approaches
Image restoration

Data-driven approaches / End-to-end : Deep Learning
SR for Quantitave acoustic microscopy

Data-driven approaches / Model-based unfolding Deep Learning
Flow estimation and clutter rejection

Denoising

Denis Kouamé New advances in image processing : Some Inverse Problems in Biomedical Imaging 2/ 47



Basic principles of Medical imaging

Medical imaging modalities

I Nuclear medicine (SPECT, PET)

I Radiology techniques (X-ray radiography, CT, MRI, Ultrasound)

I Scanners
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Basic principles of Medical imaging

Spatial resolution in medical imaging

I Ultrasound imaging
I Increase the frequency - trade-off with penetration depth

I Increase the number of fires - trade-off with frame rate
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Basic principles of Medical imaging

Spatial resolution in medical imaging

I Computed tomography
I Increase the radiation dose - trade-off with patient danger and

acquisition time
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Basic principles of Medical imaging

Summary

Spatial resolution in medical imaging

I Instrumentation definitely helps but at the cost of...
I Field of view
I Irradiation dose
I Frame rate
I Cost

I Can we (partially) compensate for the loss of spatial resolution
with post-processing methods ?

I Image restoration seen as an inverse problem

I This also applies to biological images
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Inverse problems

Basics

Schematic view
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Inverse problems

Basics

Ill-posedness

y = T (x) + n

I y ∈ CM is the observed data (image)
I x ∈ CN is the image of interest (not observed)
I n ∈ CM is the noise

T is the observation (forward) operator
I known : estimate x from y
I unknown : estimate x and T from y

I Prior information on T (linear, parametric,...)

Inverse problems in computational medical imaging are usually ill-posed
I T is not invertible
I An infinity of solutions may exist
I A small perturbation on the data may cause an important variation on

the estimate (e.g. Fourier measurements)
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Inverse problems

Summary
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Inverse problems

Summary

General path

From the forward model to its inversion

I Establish the forward model T linking the unknown (image) to the data
I Balance between fidelity to physics and computational tractability

I Define proper prior information about x and the noise
I Important impact on the solution’s pertinence

I Formalize the inverse problem as a cost function minimization
I Stochastic simulation or numerical optimization to find the minimizer

I Convexity of the cost function
I Form of the forward operator T
I Continuous and/or discrete variables

I Is the solution reliable ?
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Model-based approaches

Image restoration

Image restoration models

y = SHx + n

I x ∈ RN : image to reconstruct
I y ∈ RM : observable data
I H ∈ RN×N : 2D convolution matrix

Deconvolution
I S : identity matrix (M = N)

Super-resolution
I S : subsampling matrix (M = d2N)

Compressed deconvolution
I S : random subsampling matrix (M << N)

Denoising
I SH = I : identity matrix
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Model-based approaches

Image restoration

Application Light Sheet Imaging
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Restoration of light sheet fluorescence microscopy 3D images :
I large 3D images (2Mb per “slice”, usually 300-500 slices)
I optic defects (resolution, blur)
I acquisition noise (low photon emission)
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Model-based approaches

Image restoration

Forward Model

Assuming :

m︸︷︷︸
observed data

= P︸︷︷︸
Poisson noise

 H︸︷︷︸
convolution matrix

x︸︷︷︸
unknown data


With prior :

p(x) ∝
∏

voxels

exp (−αTV (x))

Boils down to the unconstrained problem :

arg min
x∈Rn
〈1,Hx〉 − 〈m, log(Hx)〉+ αTV (x)
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Model-based approaches

Image restoration

Inversion by ADMM

Let x ∈ Rn, y ∈ Rm, B a matrix with l rows and n columns, C a matrix
with l row and m columns and b ∈ Rl .

arg min
s.t.Bx−Cy=b,x∈X ,y∈Y

f1(x) + f2(y) (1)

L(x , y , λ) = < 1,w > − < y , log (w) > +α‖z‖1+

< λ,Bx − Cy − b > +
β

2
‖Bx − Cy − b‖2

2 ,
(2)

I xk+1 = arg minx∈Rn L(x , yk , λk ),
I yk+1 = arg miny∈Rm L(xk+1, y , λk ),
I λk+1 = λk + β(Bx + Cy − b),

until stopping criteria are met.
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Model-based approaches

Image restoration

In practice

xk+1 = F−1

F
(

HT (wk − λ1,k
β ) +∇T

(
zk − (λ2,k ,λ3,k ,λ4,k )

β

))
F (HT H +∇T∇)

 . (3)

wk+1 =
q − 1

β

2
+

1
2

√(
1
β
− q

)2

+
4m
β
, (4)

zk+1 = softα
β

(
∇xk+1 +

(λ2,k , λ3,k , λ4,k )

β

)
. (5)

With q = Hxk+1 +
λ1,k
β and softγ(u) ≡ u

‖u‖1
×max(‖u‖1 − γ,0).

F. de Vieilleville, P. Weiss, V. Lobjois and D. Kouamé, Alternating Direction Method of Multipliers Applied to 3D Light Sheet Fluores-
cence Microscopy Image Deblurring Using GPU Hardware, IEEE EMBC’11.
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Model-based approaches

Image restoration

Drosophila

α = 0.002, β = 0.002, 50 iterations.
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Model-based approaches

Image restoration

Spheroids

α = 0.002, β = 0.002, 50 iterations.

Denis Kouamé New advances in image processing : Some Inverse Problems in Biomedical Imaging 20/ 47



Model-based approaches

Image restoration
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Model-based approaches

Image restoration

Forward model

y = SHx + n

I y ∈ RNl×1 : is the measured image, Nl = ml × nl
I x ∈ RNh×1 : super-resolved image to be estimated, Nh = d2Nl
I n ∈ RNl×1 : Gaussian noise

Degradation operators

I H ∈ RNh×Nh : 2D circulant convolution matrix (PSF of the transducer)
I S ∈ RNl×Nh : subsampling operator
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Model-based approaches

Image restoration

Proposed closed-form solution

min
x

1
2
‖y− SHx‖2

2 + τ‖Ax− v‖2
2

I Lemma

FSHSFH =
1
d2 (Jd · Iml ) · (Jd · Inl )

where Jd ∈ Rd×d is a matrix of ones, Iml and Inl are identity
matrices and · is the Kronecker product.

I Proposed solution O(Nh log Nh)

x̂ =
1
2τ

FHΨFr− 1
2τ

FHΨΛH
(

2τd INl +ΛΨΛH
)−1

ΛΨFr

where r = HHSHy + 2τAHv, Ψ = F
(
AHA

)−1 FH and Λ ∈ CNl×Nh

is block diagonal

N. Zhao, Q. Wei, A. Basarab, N. Dobigeon, D. KouamÃl’, J.-Y. Tourneret, Fast Single Image Super-resolution using a New Analytical
Solution for `2-`2 Problems, IEEE TIP, 2016
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Model-based approaches

Image restoration

Super-resolution result on in vivo data
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Data-driven approaches / End-to-end : Deep Learning
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Data-driven approaches / End-to-end : Deep Learning

SR for Quantitave acoustic microscopy

SR for Quantitave acoustic microscopy

Basics of acoustic microscopy

I Very high frequency : 250 and 500MHz
I Transmits short ultrasound pulses
I Receives the RF echo signals reflected from the sample

Sample

I Thin section of soft tissue (12µm) affixed to a microscopy slide
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Data-driven approaches / End-to-end : Deep Learning

SR for Quantitave acoustic microscopy

Spatial resolution in acoustic microscopy

Dependent on the central frequency

I Increasing the frequency comes with
I Increased costs associated with the transducer and then ecessary

electronics
I Experimental difficulties also arise (e.g., sensitivity to nm scale

vibrations and temperature)

Example of impedance images on a section of cancerous human lymph node

I Thin section of soft tissue (12µm) affixed to a microscopy slide

250MHz 500MHz

Denis Kouamé New advances in image processing : Some Inverse Problems in Biomedical Imaging 27/ 47



Data-driven approaches / End-to-end : Deep Learning

SR for Quantitave acoustic microscopy

Model-based super-resolution

USAF 1951 resolution phantom
I Super-resolution factor d = 2

Horizonthal profile
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Data-driven approaches / End-to-end : Deep Learning

SR for Quantitave acoustic microscopy

Model-based super-resolution

Fails on ex vivo samples

I Convolution with the PSF not sufficient to model the 250 MHz images

250 MHz 500 MHz Enhanced 250 MHz
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Data-driven approaches / End-to-end : Deep Learning

SR for Quantitave acoustic microscopy

Data-driven super-resolution

Fully convolution neural network (U-net) trained on 250 and 500 MHz images

J. Mamou, T. Pellegrini, D. KouamÃl’, A. Basarab, A convolutional neural network for 250-MHz quantitative acoustic-microscopy reso-
lution enhancement,IEEE EMBC, 2019.
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Data-driven approaches / End-to-end : Deep Learning

SR for Quantitave acoustic microscopy

Results

250 MHz 500 MHz Enhanced 250 MHz

Model-based vs Data driven
approach
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Data-driven approaches / Model-based unfolding Deep Learning
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Data-driven approaches / Model-based unfolding Deep Learning

Flow estimation and clutter rejection

Introduction

Background

I The contours of the tumor is important
during surgery because it is an area from
which the tumor recurs.

I Existing techniques do not allow to
precisely visualize this area.

⇓
"ElastoGli" project

I To characterize in vivo the elasticity and
perfusion of the cerebral gliomas and this
peritumoral zone. Photographed by Chloe, another intern at the INSERM.
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Data-driven approaches / Model-based unfolding Deep Learning

Flow estimation and clutter rejection

Data Pre-processing

Casorati matrix

FIGURE: The construction of the Casorati matrix S from a 3D data block

data(Nz ,Nx ,Nt ) =⇒ S(Nz×Nx ,Nt )

I Axis Nz : the propagation direction of the ultrasound ;
I Axis Nx : the opening of the ultrasound array ;
I Axis Nt : the acquisition of 2D ultrasound plans.
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Data-driven approaches / Model-based unfolding Deep Learning

Flow estimation and clutter rejection

The inversion algorithm

Model Set-up
RPCA : A method to find the optimal sparse (Blood) and low rank (Tissue)
estimation from the sequences converted to Casorati matrix, by solving a
simple convex estimation problem.

S = T + B + N

I S ∈ CNz Nx×Nt is the Casorati matrix obtained from the experimental 3D
Doppler data with depth Nz , probe width Nx and acquisition time Nt ;

I T ∈ CNz Nx×Nt , B ∈ CNz Nx×Nt and N ∈ CNz Nx×Nt the tissue, blood and
noise respectively.

Inversion

(B̂, T̂ ) = arg min
B,T
||S − H1B − H2bmT ||2F + λ||B||1 + ||T ||∗

⇓
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Data-driven approaches / Model-based unfolding Deep Learning

Flow estimation and clutter rejection

ISTA algorithm (could also be done by ADMM)

Iterations

I two main steps

Oren Solomon, Regev Cohen, Yi Zhang, Yi Yang, He Qiong, Jianwen Luo, Ruud J.G. van Sloun, and Yonina C. Eldar, Deep Unfolded
Robust PCA with Application to Clutter Suppression in Ultrasound, IEEE Trans. Med. Imging,2020
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Data-driven approaches / Model-based unfolding Deep Learning

Flow estimation and clutter rejection

Deep Unfolded version

Convolution come in the iterations

I Thus,

Oren Solomon, Regev Cohen, Yi Zhang, Yi Yang, He Qiong, Jianwen Luo, Ruud J.G. van Sloun, and Yonina C. Eldar, Deep Unfolded
Robust PCA with Application to Clutter Suppression in Ultrasound, IEEE Trans. Med. Imging,2020
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Data-driven approaches / Model-based unfolding Deep Learning

Flow estimation and clutter rejection
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Data-driven approaches / Model-based unfolding Deep Learning

Flow estimation and clutter rejection

Some results

Classical vs unfolded
I Illustrations,

I Some more illustrations

Oren Solomon, Regev Cohen, Yi Zhang, Yi Yang, He Qiong, Jianwen Luo, Ruud J.G. van Sloun, and Yonina C. Eldar, Deep Unfolded
Robust PCA with Application to Clutter Suppression in Ultrasound, IEEE Trans. Med. Imging,2020Denis Kouamé New advances in image processing : Some Inverse Problems in Biomedical Imaging 40/ 47



Data-driven approaches / Model-based unfolding Deep Learning

Denoising
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Data-driven approaches / Model-based unfolding Deep Learning

Denoising

Hamiltonian operator

I Construct an adaptive basis using the solutions of SchrÃűdinger
equation.

I The Schroedinger equation :

− ~2

2m∇
2ψ = −V (a)ψ + Eψ

I Can be rewritten as an eigenvalue problem :
HQABψ = Eψ,

where HQAB = − ~2

2m∇
2 + V is the Hamiltonian operator.

I Main idea : replace V (a), the potential of the system, by an
image pixels’ values.

I The Hamiltonian operator associated to an image

HQAB[i , j] =


x [i] + 4 ~2

2m for i = j ,
− ~2

2m for i = j ± 1,
− ~2

2m for i = j ± n,
0 otherwise,
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Data-driven approaches / Model-based unfolding Deep Learning

Denoising

Quantum adaptive transform
I The set of eigenvectors corresponding to the Hamiltonian operator represents the adaptive transform and is

denoted as the quantum adaptative basis (QAB).
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Data-driven approaches / Model-based unfolding Deep Learning

Denoising

Denoising results

I (a) Clean Fruits image, (b) Image corrupted with Gaussian noise corresponding to a SNR of 15 dB.
I Denoising results obtained using : (c) wavelet hard thresholding, (d) wavelet soft thresholding, (e) total

variation regularization, (f) graph signal processing, (g) non-local means, (h) dictionary learning and (i)
proposed method.
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Data-driven approaches / Model-based unfolding Deep Learning

Denoising

TDeep unfolding

The architecture of the proposed Deep-Quantum-based image denoising
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Data-driven approaches / Model-based unfolding Deep Learning

Denoising

Some results

Classical vs unfolded
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