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Réalité virtuelle, réalité augmentée, … 

• Réalité virtuelle : un oxymore
• Réalité augmentée : la réalité et l’ajout d’objets numériques
• Développement d’environnements / mondes virtuels 

• Immersion, stéréoscopie, interactions, haptique
• Présence / télé présence 
• Environnements distribués multi utilisateurs
• Objets réactifs
• Personnages autonomes
• Communautés virtuelles / communication



Environnements « peuplés »

• Quels type de comportements ?
• Comportements intelligents

• Individuels / collectifs
• Cohérents
• Dynamiques (évolutifs)

• Comportements coopératifs 
• Travailler en groupe
• Communiquer

• Comportements en interaction
avec des avatars (humains virtuels)
• Comportements « intelligents »
• Comportements coopératifs



Principe d’un système comportemental

• Un modèle comportemental est un mécanisme de décision 
local placé
• Dans chaque individu 
• Dans le groupe

• Chaque personnage de la simulation prend des décisions 
comportementales à un instant de la simulation :
• Concernant son mouvement au pas de temps suivant (parfois par 

anticipation)
• Selon son état 
• Selon l'état de l'environnement 
• De l’objectif à atteindre (local/global, individuel/collectif)



Contrôle local vs global

• Le contrôle local au niveau de l'individu
• Un contrôle différencié de chaque individu

• Spécialisation
• Chaque individu contrôlera et décidera de ses actions 

• De manière autonome
• Selon l'observation de son environnement local

• Le contrôle global au niveau de l'action du groupe
• Les systèmes utilisant un contrôle global ne vont plus considérer 

l'action individuelle mais uniquement celle du groupe 
• La simulation est alors le plus souvent gérée par une entité unique
• Cette entité, responsable de la simulation 

• Doit surveiller l'ensemble des individus
• Doit intégrer les données les concernant de façon à leur fournir 

des ordres d'action
• Ne fait pas partie de la simulation



Les personnages autonomes

• De l’individu aux foules
• Modèles 

• Macro / micro
• Inspirés de la physique, biologie, …
• Informatiques
• Basés sur l’observation
• …



"Stanley and Stella: Breaking the Ice" : 
une nuée d'oiseaux et un banc de poissons
• Nombreux acteurs : nouvelle définition des comportements 

• Pas d'attribution statique de trajectoires à chaque personnage mais :
• un comportement connu (trajectoires) aux personnages principaux
• des comportements individuels (obtenus lors de la simulation) aux 

autres acteurs. 
• Chaque individu définit ainsi son action de manière locale 

• en acquérant de l'information sur son environnement
• en déduisant de cette information sa nouvelle position par 

application de lois simples :
• éviter d'entrer en collision avec ses voisins et avec la scène,
• réguler sa vitesse sur celle de ses voisins les plus proches,
• rester à côté de ses voisins les plus proches.

• Chaque règle génère la nouvelle trajectoire 
• L'intégration produit le comportement final. 
• Prémisses de l'approche de Terzopoulos et

de nombreuses autres …



Les boids de Reynolds

• Applications dans les films
• 1987: Stanley and Stella in: Breaking the Ice, (short)
• 1988: Behave, (short)
• 1989: The Little Death, (short)
• 1992: Batman Returns, (feature)
• 1993: Cliffhanger, (feature)
• 1994: The Lion King, (feature)
• 1996: From Dusk Till Dawn, (feature)
• 1996: The Hunchback of Notre Dame, (feature)
• 1997: Hercules, (feature)
• 1997: Spawn, (feature)
• 1997: Starship Troopers, (feature)
• 1998: Mulan, (feature)
• 1998: Antz, (feature)
• 1998: A Bugs Life, (feature)
• 1998: The Prince of Egypt, (feature)
• 1999: Star Wars: Episode I--The Phantom Menace, (feature)
• 2000: Lord of the Rings: the Fellowship of the Ring (feature)

• Et beaucoup d’autres …



Modèles de particules

• Déplacements définis par des champs de forces
• Force d’attraction
• Force de contournement
• Force de fuite
• Force de cohésion

• Mécanique des fluides



Simulation comportementale

• Modèles informatiques
• Scripts, subsomption, arbres de décision
• Automates à états finis (et parallèles)
• Réseaux de neurones, systèmes experts
• Algorithmes génétiques, programmation génétique
• Systèmes de classeurs
• Réseaux de régulation génétique



Approches descendantes

• Architecture de subsomption
• Automate à état fini

• Etat, transitions, entrée, sortie
• Hiérarchique, parallèle, flou

• Réseaux de neurones
• Pour chaque neurone : sortie = f(entrées),
• Paramètres : nombre de couches, 
topologie de connections, poids, …
• Apprentissage supervisé / non

• Systèmes expert
• Bases connaissances, faits
• Règles, moteurs d’inférence

• Arbres de décision
• …



Approches ascendantes (évolutionnistes)

• Algorithmes Génétiques
• Chaque individu est constitué de chromosomes qui déterminent 

son comportement
• Individu évalué à l'aide d'une fonction de fitness
• Les chromosomes codent le comportement individuel
• Individus créés à partir de règles non déterministes

• La programmation génétique est une instanciation
des algorithmes génétiques
• GA : population de solutions, PG : population des programmes

• Génération automatique de programmes
• Génération automatique de comportements 
(programmes exécutables)
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Systèmes  de classeurs

• Codage des informations de l'environnement
• Messages entrants

• Sélection du classeur
• Pré sélection
• Liste des messages
• Sélection

• Activation du comportement
• Partie action de la règle sélectionnée

• Rétribution du classificateur activé
• Forcer la mise à jour

• Créer de nouvelles règles grâce à un algorithme génétique
• Croisement et mutation



Apprentissage machine

• Capture de mouvements
• Individus, groupes, foules

• Analyses de trajectoires
• Identification, suivi, continuité
• Segmentation / regroupement

• Apprentissage
• Entrainement
• Liens mouvement/causes/buts
• Produire des mouvements à partir :

de la scène, du contrôle / des buts

(a) Hotel Sequence

(b) Gallery Sequence

Fig. 8. Qualitative results of different video sequences
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Fig. 9. Application of the proposed tool set

system. Therefore every simulation model requires empirical
evidences for the validation. For example, in several crowd
simulation models, it is desirable to model a real scenario, and
in order to study how the physical environment would affect
the flow of the people. In this case, it is important to achieve
information about the motion of people, density, dominant
directions, velocity. The manual extraction of this kind of
information is very tedious, time consuming and usually prone
to errors. This motivates the use of proposed computer vision
tool set that can provide useful information that could be
helpful in initial configuration of simulation models and also
provide support in the validation phase.

In Figure 10, we presented an example where we capture
information from the real time video, where the people are

Fig. 10. (a) trajectories extraced during the particle advection process on real
time video, (b) final circular flow in real time video, (c) trajectories extracted
through particle advection process in simulated video, (d) final circular flow
in simulated video

circulating around the Kaaba performing a religious ritual. In
this example, we capture movements of the people by employ-
ing our method discussed in section IV, where a optical flow
based dynamical system is initiated followed by the particle
advection. As result of advection process, trajectories are ob-
tained as shown in Figure 10(a). The acheieved trajectories are
clustered into a single dominant and coherent flow as shown
in Figure 10 (b). This information is feeded to the simulator
in order to reproduce spiral movements of the people around
a central object. The pedestrian motion is modelled by using
cellular automata (CA). A more realistic behaviour is obtained
by incorporating floor field to the wall avoidance and lane
formation as in [19]. In order to validate the circular movement
of the people, we also initialize an optical flow base dynamical
system followed by particle advection for the simulated video
as shown in Figure 10(c). Trajectories achieved after applying
particle advection process on a simulated video, are clustered
into a single flow as shwon in Figure 10(d). The circular flow
detected in simulated video highlights the fact that the spiral
movements of pedestrians are accurately modelled.
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Figure 6: A side stepping motion produced from a velocity profile
from some test data and an angular velocity profile drawn by Maya.

7.2 Motion Stylization in Hidden Unit Space

Our framework for editing the motion in the hidden space can also
be applied to transform the style of the motion using an example
motion clip as a reference. Gatys et al. [2015] describe that the
artistic style of an image is encoded in the Gram matrix of the hid-
den layers of a neural network and presents examples of combining
the content of a photograph and the style of a painting. By finding
hidden unit values which produce a Gram matrix similar to the ref-
erence data, the input image can be adjusted to some different style,
while retaining the original content. We can use our framework to
apply this technique to motion data and produce a motion that has
the timing and content of one input, with the style of another.

The cost function in this case is defined by two terms relating to
the content and style of the output. Given some motion data C

which defines the content of the produced output, and another S

which defines the style of the produced output, the cost function
over hidden units H is given as the following:

Style(H) = skG(�(S))�G(H)k22 + ck�(C)�Hk22 (14)

where c and s dictate the relative importance given to content and
style, which are set to 1.0 and 0.01, respectively in our experiments,
and the function G computes the Gram matrix, which is the mean
of the inner product of the hidden unit values across the temporal
domain i and can be thought of as the average similarity or co-
activation of the hidden units:

G(H) =

Pn
i HiH

|
i

n
. (15)

Unlike in Section 7.1, where H is found via motion synthesis or
the forward operation of the autoencoder, to avoid a bias toward
either content or style, H is initialized from white noise and a styl-
ized motion is found by optimizing Eq. (14) until convergence us-
ing adaptive gradient descent with automatic derivatives calculated
via Theano. The computed motion is then edited using Eq. (13) to
satisfy kinematic constraints.

8 Experimental Results

We now show some experimental results of training and synthe-
sizing character movements. We first show examples of animating
character movements using high level parameters and the frame-
work described in Section 6, with projection to the null space of
constraints as described in Section 7.1. We next show examples of
applying stylization using the framework described in Section 7.2.
As our system has a fast execution at runtime it is suitable for creat-
ing animation of large crowds. We therefore show such an example
of this. We then evaluate the autoencoder representation by com-
paring its performance with comparable network structures. Finally

Figure 7: A locomotion including transition from walk to stop and
run.

Figure 8: The character performs punching and kicking to attack
the given targets.

we present a breakdown of the computation at the end of this sec-
tion. The readers are referred to the supplementary video for the
details of the produced animation.

Locomotion on the Terrain The feedforward network is trained
such that a curve drawn on the terrain is used to generate the ac-
tual locomotion of the character. Among the data in the database,
various types of locomotion data with different speed and stepping
patterns are used to train the system. Using the training data, the
trajectory of the root is projected onto the ground to produce a ter-
rain curve to be used as an input.

During runtime, curves drawn by Maya are first used to produce
walking and running animation. In the first two examples, the speed
of the character is constant. The timing that the heels and toes are in
contact with the ground is automatically generated from the curve
and used as the input to the feedforward network. The character
walks when the velocity is low and runs when the velocity is high
(see Fig. 1). In the next example, we take the body velocity profile
from some test set not used in the training. We also add some turn-
ing motion by drawing the angular velocity profile by Maya (see
Fig. 6). In the final example, we use a speed profile from a test data
item where the character accelerates and decelerates. This is ap-
plied to a terrain curve drawn by Maya. A transition from walking
to stopping and running appears as a result (see Fig. 7).

Punching and Kicking Control We show another example
where the feedforward network is set up such that the character
punches and kicks to follow end effector trajectories provided by
the user. We tested the system using test data not included in the
training set. The character generates full body movements that fol-
low the trajectories of the end effectors. Some snapshots of the
animation are shown in Fig. 8.

Motion Editing in the Hidden Unit Space Here we show the
motions before and after applying the constraints to the those gen-
erated by the feedforward network. We also compare the motion
edited in the hidden unit space with those edited in the Cartesian
space by inverse kinematics. The former produces much smoother
results as the motion is edited on the leanred manifold. The results

Figure 2: The outline of our method. High level parameteriza-
tions are disambiguated and used as input to feed forward neural
networks. These networks produce motion in the space of the hid-
den units of a convolutional autoencoder which can be further used
to edit the generated motion.

interpolated movements while reducing drifting. These are time-
series approaches, where computing the entire motion requires in-
tegration from the first frame. We find this framework is not very
suitable for the purpose of animation production as animators wish
to see the entire motion at once and then sequentially apply mi-
nor edits while revising the motion. They do not wish to see edits
happening at early frames being propagated into the future, which
will be the case when time-series approaches are adopted. For this
reason, in this paper we adopt and improve on the convolutional
autoencoder representation [Holden et al. 2015] which can produce
motion at once, in parallel, without performing any integration pro-
cess.

3 System Overview

The outline of the system is shown in Fig. 2. Using data from a
large human motion database (see Section 4), a convolutional au-
toencoder is trained and thus a general motion manifold is found
(green box in Fig. 2, see Section 5). After this training, motion can
be represented by the hidden units of the network. Given this repre-
sentation, a mapping is produced between high level control param-
eters and the hidden units via a feedforward neural network stacked
on top of the convolutional autoencoder (orange box in Fig. 2, see
Section 6). The high level control parameters shown in this work
are the trajectory of the character over the terrain and the move-
ment of the end effectors. As these parameterizations can contain
ambiguities, another small network is used to compute parameters
which disambiguate the input (red box in Fig. 2, see Section 6.3).
Just the subset of the motion capture data relevant to the task is
used to train these feedforward networks. Using this framework,
the user can produce an animation of the character walking and
running by drawing a curve on the terrain, or the user can let the
character punch and kick by specifying the trajectories of the hands
and feet. Once a motion has been generated, it can be edited in the
space of hidden units, such that the resulting motion satisfies con-
straints such as positional constraints for foot-skate cleanup (see
Section 7.1). Using this technique we describe a method to trans-
form the style of the character motion using a short stylized clip as
a reference (Section 7.2).

4 Data Acquisition

In this section we describe our construction of a large motion
database suitable for deep learning.

4.1 The Motion Dataset for Deep Learning

We construct a motion dataset for deep learning by collecting many
freely available large online databases of motion capture [CMU ;
Müller et al. 2007; Ofli et al. 2013; Xia et al. 2015], as well as
adding data from our internal captures, and retargeting them to a
uniform skeleton structure with a single scale and the same bone
lengths. The retargeting is done by first copying any corresponding
joint angles in the source skeleton structure to the target skeleton
structure, then scaling the source skeleton to the same size as the
target skeleton, and finally performing a full-body inverse kinemat-
ics scheme [Yamane and Nakamura 2003] to move the joints of the
target skeleton to match any corresponding joint positions in the
source skeleton. Once constructed, the final dataset is about twice
the size of the CMU motion capture database and contains around
six million frames of high quality motion capture data for a single
character sampled at 120 frames per second.

4.2 Data Format for Training

We convert the dataset into a format that is suitable for training. We
subsample all of the motion in the database to 60 frames per second
and convert the data into the 3D joint position format from the joint
angle representation in the original dataset. The joint positions are
defined in the body’s local coordinate system whose origin is on the
ground where root position is projected onto. The forward direction
of the body (Z-axis) is computed using the vectors across the left
and right shoulders and hips, averaging them and computing the
cross product with the vertical axis (Y-axis). This is smoothed using
a Gaussian filter to remove any high frequency movements. The
global velocity in the XZ-plane, and rotational velocity of the body
around the vertical axis (Y-axis) in every frame is appended to the
input representation. These can be integrated over time to recover
the global translation and rotation of the motion. Foot contact labels
are found by detecting when either the toe or heel of the character
goes below a certain height and velocity [Lee et al. 2002], and are
also appended to input representation. The mean pose is subtracted
from the data and the joint positions are divided by the standard
deviation to normalize the scale of the character. The velocities, and
contact labels are also divided by their own standard deviations.

We find the joint position representation effective for several rea-
sons: the Euclidean distance between two poses in this represen-
tation closely matches visual dissimilarity of the poses, multiple
poses can be interpolated with simple linear operators, and many
constraints are naturally formulated in this representation.

In general, our model does not require motion clips to have a fixed
length, but having a fixed window size during training can improve
the speed, so for this purpose we separate the motion database
into overlapping windows of n frames (overlapped by n/2 frames),
where n = 240 in our experiments. This results in a final input vec-
tor, representing a single sample from the database, as X 2 Rn⇥d

with n being the window size and d the degrees of freedom of the
body model, which is 70 in our experiments. After training the win-
dow size n is not fixed in our framework, thus it can handle motions
of arbitrary lengths.

5 Building the Motion Manifold

To construct a manifold over the space of human motion we build
an autoencoding convolutional neural network and train it on the
complete motion database. We follow the approach by Holden et
al. [2015], but adopt a different setup for optimizing the network
for motion synthesis. First, we only use a single layer for encoding
the motion, as multiple layers of pooling/de-pooling can result in
blurred motion after reconstruction due to the pooling layers of the



A suivre …


