Activités en deep learning de l'équipe SC

Cédric Févotte

DeepLearning@IRIT 1er juillet 2020

Content

- Optimisation for the training of neural networks PhD Camille Castera
- Deep generative models for Monte Carlo sampling PhD Florentin Cœurdoux
- ► Deep learning for music recommendation Postdoc Paul Magron
- ▶ Deep learning for embedded satellite image compression PhD Vinicius Alves de Oliveira

Algorithms for Training Neural Networks 1/2

Motivation

- Deep Neural Networks usually trained with noisy first-order information (stochastic gradients)
- Hard technical limitations, in particular expensive computational cost and limited storage
- Lack of guarantees (convergence of algorithms, etc.)

Goals

- Build new algorithms for this task, efficiently exploiting second-order information.
- Prove the convergence and other satisfying properties of these algorithms.

Collaborators

 $IRIT: Camille \ Castera \ (SC) - C\'{e}dric \ F\'{e}votte \ (SC) - Edouard \ Pauwels \ (ADRIA)$

TSE: Jérôme Bolte

Algorithms for Training Neural Networks 2/2

Problem to solve: $\min_{\theta \in \mathbb{R}^P} \mathcal{J}(\theta)$

Idea: Taking inspiration from Newton's second law of dynamics

$$\underbrace{\frac{\mathrm{d}^2 \theta}{\mathrm{d}t^2}(t)}_{\mathrm{Accel.}} + \underbrace{\alpha}_{\mathrm{Friction}} \underbrace{\frac{\mathrm{d} \theta}{\mathrm{d}t}(t)}_{\mathrm{Transvers.\ damping}} + \underbrace{\nabla \mathcal{J}(\theta(t))}_{\mathrm{Gravity}} = 0$$

Equivalent formulation where the Hessian is implicit!

$$\begin{cases} \frac{\mathrm{d}\theta}{\mathrm{d}t}(t) + \beta \nabla \mathcal{J}(\theta(t)) & +(\alpha - \frac{1}{\beta})\theta(t) + \frac{1}{\beta}\psi(t) = 0\\ \frac{\mathrm{d}\psi}{\mathrm{d}t}(t) & +(\alpha - \frac{1}{\beta})\theta(t) + \frac{1}{\beta}\psi(t) = 0 \end{cases}$$

Discretize to obtain **INNA**, a new 2nd order algorithm with two hyper-parameters α and β driven by Newton's laws.

C. Castera, J. Bolte, C. Févotte, E. Pauwels, *An Inertial Newton Algorithm for Deep Learning*. Journal of Machine Learning Research (To appear)

Deep generative models for Monte Carlo sampling

- F. Coeurdoux, N. Dobigeon, P. Chainais
 - ▶ Goal: Estimate a set of parameters θ from empirical data \mathcal{X} .
 - ▶ ABC algorithm estimates the posterior of a parameter by simulating the model to produce artificial data sets $\mathcal X$ from distribution $p(\theta)$.

Bayes formula for posterior inference:

Posterior
$$\propto$$
 Prior \times Likelihood $p(\theta \mid \mathcal{X}) \propto p(\theta) p(\mathcal{X} \mid \theta)$

► Problem: A data simulator can be extremely computationally expensive or even not always available

Proposal: Leverage deep generative models (e.g Auto-Encoder, GAN, Normalizing Flows) for simulating data conditionally to the parameters of interest : $\mathcal{X} \sim p(\mathcal{X} \mid \theta)$.

Deep generative models for Monte Carlo sampling

F. Coeurdoux, N. Dobigeon, P. Chainais

Deep learning for music recommendation (P. Magron, C. Févotte)

- ► Goal: predict songs that a user might enjoy.
- Main idea: exploiting similarities between users (and/or songs) from the observed preferences P.
- ► The cold-start problem: how to handle new songs with no preference data?

Content-aware collaborative filtering:

$$p_{u,s} = \psi(\mathbf{w}_u, \mathbf{h}_s)$$
 with $\mathbf{h}_s \approx \phi(\mathbf{x}_s)$

- Decompose the observed data with latent factors that characterize user preferences \mathbf{w}_u and songs attributes \mathbf{h}_s .
- ▶ Regularize the song factor \mathbf{h}_s with side content information (=acoustic features \mathbf{x}_s) to enable cold-start recommendation.

Proposal: Leverage deep learning for modeling both ψ (refined user/song interactions) and ϕ (extract relevant content features).

Deep learning for music recommendation (P. Magron, C. Févotte)

State-of-the-art performance (NDCG in %, higher is better):

Interaction	Content extractor	Warm-start	Cold-start
Linear	None	27.9	_
	Deep	30.4	23.8
Deep	None	38.8	_
	Deep	40.9	25.9

P. Magron, C. Févotte, "Neural content-aware collaborative filtering for cold-start music recommendation", submitted to the ACM Transactions on Information Systems, 2021 (https://arxiv.org/abs/2102.12369).

Deep learning for embedded satellite image compression (1/2)

Motivations

- Impressive performance, in terms of rate-distortion trade-off, of learned image compression methods based on convolutional neural networks (CNN).
- Strong computational constraints on board satellites.

► Goals

- Design a reduced-complexity CNN-based image compression framework that outperforms current embedded compression algorithms.
- Design a CNN-based framework that could integrate other functionalities of the satellite image processing chain e.g. denoising.

Collaborators: Vinicius Alves de Oliveira^[1,2], Marie Chabert^[1], Thomas Oberlin^[3], Charly Poulliat^[1], Mickael Bruno^[4], Christophe Latry^[4], Mikael Carlavan^[5], Simon Henrot^[5], Frederic Falzon^[5], Roberto Camarero^[6]

¹University of Toulouse IRIT/INP-ENSEEIHT, ²TéSA Toulouse, ³University of Toulouse ISAE-SUPAERO, ⁴CNES Toulouse, ⁵Thales Alenia Space Cannes, ⁶ESA Noordwijk

Deep learning for embedded satellite image compression (2/2)

Two contributions:

- Reduced-complexity end-to-end variational autoencoder for on board satellite image compression.
 - Starting from a state-of-the-art framework, drastic dimension reduction targeting the number of layers, of filters, the size of the filters and the activation functions.
 - Proposition of a simplified entropy model adapted to the representation learned from satellite images.
- ► Learned-based satellite image denoising and compression. Two proposals for different types of Earth observation missions:
 - Joint compression and denoising using a single on board framework.
 - Sequential learned compression (on board) and denoising (on ground).