

CNRS - INP - UT3 - UT1 - UT2J

Institut de Recherche en Informatique de Toulouse

Learning@SEPIA: Machine learning pour l'efficacité énergétique

Journée Deep Learning @ IRIT 1er juillet 2021

Table of contents

- Deep learning for power consumption estimation
- Deep learning for DVFS usage
- Reinforcement learning for resource optimization
- Deep learning and energy consumption

Using ANN for power consumption estimation

Improving energy-efficiency of ICT

Knowledge is Power

Power consumption knowledge is crucial

- Datacenter operators
 - Power capping
 - Billing in colocation centers
 - Improving energy efficiency using autonomous systems
- Users and developers
 - Increasing their awareness
 - Choosing the best application or library

But power meters are costly and

Linear classical model: error ~ 10-15%

Methodology

Context:

- power consumption knowledge
- watt meters are costful
- Linear classical model: error ~ 10-15%
- 1. Data preprocessing
 - a. Multiple parallel time series with imperfect hardware

Da Costa, G., Pierson, J. M., & Fontoura-Cupertino, L. (2017). Mastering system and power measures for servers in datacenter. SUSCOM

2. Network topology

a. Impact of number of neurons on 2 hidden levels (fully connected)

Costa, G. D., Pierson, J. M., & Fontoura-Cupertino, L. (2020). Effectiveness of Neural Networks for Power Modeling for Cloud and HPC: It's Worth It!. TOMPECS

3. Large scale of experiments

- a. One experiment: 1.3 Go/node
- b. Need of variable reduction
- c. Specific benchmark for learning

Da Costa, G., Pierson, J. M., & Fontoura-Cupertino, L. (2020). Fast maximum coverage of system behavior from a performance and power point of view. CCPE

Current work and difficulties

- Feature reduction (hundreds of features)
 - Correlation matrix
 - Residual method
 - PCA
 - •
- Explore other models
 - Larger networks
 - Polynomial models
 - On-line learning
- Change the point of view
 - Impact of particular features on speed and quality

Smart DVFS

Each application has its preferred frequency

Applications are black boxes

- Detect the current resources consumed a. Hundreds of features
- 2. Evaluate which is the best frequency for this particular resource consumption

Example:

- Lots of memory access
 - Reduce the processor frequency
- Lots of CPU usage
 - Increases the processor frequency

Current state

- Large scale monitoring of features
 - Done but slow
- Feature reduction
 - Needed to increase precision and reduce overhead
 - Correlation matrix
 - PCA
 - Not satisfactory
- Model to find the best frequency
 - Decision tree
 - Random Forest
 - ANN

Reinforcement learning

Context and problem

- Cloud elasticity
- Context CAAS
- An auto-scaler autonomously takes decisions to
 - Optimize the latency
 - Under the constraint of minimizing the number of allocated resources

Resources number

Reinforcement learning approach

Actions:

- u: increases the number of containers by one (reactive)
- s: stays with the same number
- d: decreases the number by one

• States:

- Number of containers
- 95th percentile latency
- Requests per second
- cpu, ram mean

Algorithms

- HSLinUCB (Contextual Bandits family algorithm)
- Q-Learning
- Deep Q-learning

Some results

David Delande, Patricia Stolf, Raphaël Féraud, Jean-Marc Pierson, André Bottaro. HSLinUCB: Horizontal Scaling in Cloud Using Contextual bandits. Europar 2021

- Q-Learning
 - Learning-rate = 0.1; discount-factor = 0.9; increases by 0.000166 at each step
- Deep Q-Learning
 - Context scaled between [0,1]
 - 2 hidden layers (24 and 12 neurons) with ReLu activation function
 - Learning-rate = 0.01; discount-factor = 0.9; batch size = 50
 - For simulated experiments: target network update every 100 steps; increases by 0.000333 at each step
- Comparison between Hot-start and cold-start: how the agent performs on cold-start while learning a new environment? how the agent performs on an already learnt environment?

Some conclusions

- In the case of cold start, HSLinUCB outperforms the other algorithms by quickly converging
- In the case of hot start, for seen and unseen contexts HSLinUCB obtains quite similar results than DQN (high learning performances of Deep Neural Networks). Q-learning obtains worse results on unseen contexts while it obtains similar results on seen contexts.
- Current work : Study workload and Cloud stationary changes

Difficulties, challenges

- Size of dataset to obtain
- Feature reduction (correlation, PCA....)
- Data quality (sometimes imprecise measurements)
- Robustness and bias
- Many data = time series with variable time steps (aggregation relevant ?)
- Feedback measurement online for RL
- Study the impact of the structure of the neural network
- Need of online learning (re-learn sometimes)...

What about deep learning approaches energy consumption?

- Tradeoff between benefits and consumption for learning (exploration, exploitation)
- IA is consuming but also permits some progress
- Compare different network architecture (performance and consumption)
- Sepia team has tools to monitor applications

Consumption	CO2e (lbs)
Air travel, 1 passenger, NY↔SF	1984
Human life, avg, 1 year	11,023
American life, avg, 1 year	36,156
Car, avg incl. fuel, 1 lifetime	126,000
	120,000
Training one model (GPU)	
Training one model (GPU) NLP pipeline (parsing, SRL)	39
Training one model (GPU)	39 78,468 192

https://arxiv.org/pdf/1906.02243.pdf

Energy and Policy Considerations for Deep Learning in NLP Emma Strubell, Ananya Ganesh, Andrew McCallum

