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Using ANN for power
consumption estimation




‘ Improving energy-efficiency of ICT

P
“J

Knowledge is Power

Power consumption knowledge is crucial

* Datacenter operators

* Power capping

e Billing in colocation centers

* Improving energy efficiency using autonomous systems
e Users and developers

* Increasing their awareness

* Choosing the best application or library

But power meters are costly
and

Linear classical model: error ~ 10-15%



@ Methodology
)

Context:

® power consumption knowledge
® watt meters are costful
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@. Current work and difficulties
&

* Feature reduction (hundreds of features)
e Correlation matrix
* Residual method
* PCA

* Explore other models

e Larger networks — rapl
* Polynomial models —— no rapl
* On-line learning

e Change the point of view i
* Impact of particular features on
speed and quality
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Smart DVFS




@ Each application has its preferred frequency
D

Applications are black boxes

Benchmark ep ratio

1. Detect the current resources consumed o
a. Hundreds of features 2000
2. Evaluate which is the best frequency for 3 10001
this particular resource consumption 1900
1600: +

Example: ., Benchmarkmg o
* Lots of memory access 2100
e Reduce the processor frequency gix
* Lots of CPU usage o
* Increases the processor frequency i




@ Current state
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* Large scale monitoring of features
* Done but slow

* Feature reduction
* Needed to increase precision and reduce overhead
e Correlation matrix
* PCA
* Not satisfactory

* Model to find the best frequency
* Decision tree
e Random Forest
* ANN




Reinforcement learning




@‘ Context and problem
&)

* Cloud elasticity
* Context CAAS

* An auto-scaler autonomously takes decisions to
e Optimize the latency
* Under the constraint of minimizing the number of allocated resources

Resources number

A

Monitored latency

/

Target latency

[

Over-provisioning Optimal-provisioning  Under-provisioning

Time




e Actions:
* U:increases the number
of containers by one

(reactive)
e s:stays with the same
number
 d: decreases the number
by one
e States:

 Number of containers
* 95th percentile latency
e Requests per second

* Cpu, ram mean

. Algorlthms
HSLinUCB (Contextual
Bandits family algorithm)
* Q-Learning
* Deep Q-learning

Reward R

@ Reinforcement learning approach

Environnement

Action A




Some results
. David Delande, Patricia Stolf, Raphaél Féraud, Jean-Marc Pierson, André Bottaro. HSLinUCB:
Horizontal Scaling in Cloud Using Contextual bandits. Europar 2021
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* (Q-Learning
e Learning-rate =0.1; discount-factor =0.9; increases by 0.000166 at
each step

. Deep Q-Learning
Context scaled between [ 0,1 ]
e 2 hidden layers (24 and 12 neurons) with RelLu activation function
* Learning-rate =0.01; discount-factor = 0.9 ; batch size = 50
e For simulated experiments: target network update every 100 steps ;
increases by 0.000333 at each step
 Comparison between Hot-start and cold-start: how the agent
performs on cold-start while learning a new environment ? how

the agent performs on an already learnt environment ?




@‘ Some conclusions
Q

* In the case of cold start, HSLinUCB outperforms the other
algorithms by quickly converging

* |n the case of hot start, for seen and unseen contexts HSLinUCB
obtains quite similar results than DQN (high learning performances
of Deep Neural Networks). Q-learning obtains worse results on
unseen contexts while it obtains similar results on seen contexts.

e Current work : Study workload and Cloud stationary changes




@‘ Difficulties, challenges
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Size of dataset to obtain

Feature reduction (correlation,
PCA...)

Data quality (sometimes imprecise
measurements)

Robustness and bias

Many data = time series with variable
time steps (aggregation relevant ?)
Feedback measurement online for RL
Study the impact of the structure of
the neural network

Need of online learning (re-learn
sometimes)...
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@ What about deep learning approaches
@ energy consumption ?

* Tradeoff between benefits and s o83
consumption for learning Human life. avg. | year 11.023

i ; ; American life, avg, | year 36.156
(exploratlon, eXpIOItatlon) Car, a:g incl. f:el. I lifetime 126.000

* |Ais consuming but also

permits some progress Tralulng e maddl {CEY)

. NLP pipeline (parsing, SRL) 39
 Compare different network w/ tuning & experimentation 78.468
; Transformer (big) 192
arch Itectu.re ( P€ rformance and wi/ neural architecture search 626.155
consumption)
* Sepia team has tools to https://arxiv.org/pdf/1906.02243.pdf
mon |t0 ra p p | | C atio ns Energy and Policy Considerations for Deep Learning in NLP

Emma Strubell, Ananya Ganesh, Andrew McCallum



https://arxiv.org/pdf/1906.02243.pdf




