Efficient Reachability in Timed Automata

F. Herbreteau

Univ. Bordeaux, LaBRI, CNRS, UMR 5800

Séminaire DTIM Onera, Toulouse
January 28th, 2013

Joint work with: D. Kini, B. Srivathsan, I. Walukiewicz
Timed Automata and the Reachability Problem

Symbolic semantics and abstractions

Bounds based abstractions

Small bounds for abstractions

Conclusions and future work
Timed Automata [AD94]

Run: finite sequence of transitions,

\[(s_0, 0, 0) \xrightarrow{0.4,a} (s_1, 0.4, 0) \xrightarrow{0.5,c} (s_3, 0.9, 0.5)\]

Accepting run (reachability): ends in a green state.
Example #1: the CSMA/CD protocol

Property to check: detection of collisions

Reachability of a state with collision and wait$ _1$ or wait$ _2$?
Example #2: scheduling jobs (1/2)

- Jobs **compete** to execute tasks on machines

 \[J_1 : (m_1, 2) (m_2, 1) (m_3, 3) \]
 \[J_2 : (m_1, 1) (m_3, 3) \]

- Can the jobs be **scheduled within** 7s?
Example #2: scheduling jobs (2/2)

\[J_1 : (m_1, 2)(m_2, 1)(m_3, 3) \]
Example #2: scheduling jobs (2/2)

\[J_1 : (m_1, 2)(m_2, 1)(m_3, 3) \quad J_2 : (m_1, 1)(m_3, 3) \quad \text{within 7s.} \]
The problem we are interested in ...

Problem (Emptiness/State reachability)

Given a TA and a state q, is q reachable?
The problem we are interested in ...

<table>
<thead>
<tr>
<th>Problem (Emptiness/State reachability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a TA and a state q, is q reachable?</td>
</tr>
</tbody>
</table>

Restriction: guards only involve **integer constants**

<table>
<thead>
<tr>
<th>Theorem ([AD94, CY92])</th>
</tr>
</thead>
<tbody>
<tr>
<td>This problem is PSPACE-complete</td>
</tr>
</tbody>
</table>
The problem we are interested in ...

<table>
<thead>
<tr>
<th>Problem (Emptiness/State reachability)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a TA and a state q, is q reachable?</td>
</tr>
</tbody>
</table>

Restriction: guards only involve integer constants

<table>
<thead>
<tr>
<th>Theorem ([AD94, CY92])</th>
</tr>
</thead>
<tbody>
<tr>
<td>This problem is PSPACE-complete</td>
</tr>
</tbody>
</table>

This talk: challenges and advances for solving reachability in Timed Automata efficiently
Solving the reachability problem

\[s_0, 0, 0 \]

\[a, y := 0 \]
\[b, (y = 1) \]
\[c, (x < 1) \]
\[d, (x > 1) \]

Search space = reachability tree
Uncountable branching due to density of time
Solution: tree over sets of valuations instead of valuations
Solving the reachability problem

Search space = reachability tree
Solving the reachability problem

Search space = reachability tree

Uncountable branching due to density of time

Solution: tree over sets of valuations instead of valuations
Outline

Timed Automata and the Reachability Problem

Symbolic semantics and abstractions

Bounds based abstractions

Small bounds for abstractions

Conclusions and future work
Symbolic reachability tree

- **Zone:** set of valuations with efficient symbolic representation by DBMs
 - **e.g.** \((x - y \leq 1) \land (y < 2)\)
Symbolic reachability tree

- **Zone**: set of valuations with efficient symbolic representation by DBMs

 e.g. \((x - y \leq 1) \land (y < 2)\)

- **Covering tree** (\(\subseteq\) wrt zones)
Symbolic reachability tree

- **Zone:** set of valuations with efficient symbolic representation by DBMs

 - e.g. \((x - y \leq 1) \land (y < 2)\)

- **Covering tree** \((\subseteq \text{ wrt zones})\)

The tree may be **infinite**!
The tree may be infinite

\[(y = 1), y := 0\]

\[x, y := 0\]

\[s_0 \rightarrow s_1\]

\[(s_0, x - y = 0)\]
The tree may be infinite

\[(y = 1), y := 0\]

\[x, y := 0\]

\[s_0 \rightarrow s_1\]

\[(s_0, x - y = 0)\]

\[(s_1, x - y = 0)\]
The tree may be infinite

\[(y = 1), y := 0 \]

\[x, y := 0 \]

\[s_0 \rightarrow s_1 \]

\[(s_0, x - y = 0) \]

\[(s_1, x - y = 0) \]

\[(s_1, x - y = 1) \]
The tree may be infinite

\[(y = 1), y := 0 \]

\[x, y := 0 \]

\[(s_0, x - y = 0) \]

\[(s_1, x - y = 0) \]

\[(s_1, x - y = 1) \]

\[(s_1, x - y = 2) \]
The tree may be infinite

\[(y = 1), y := 0\]

\[x, y := 0\]

\[s_0 \rightarrow s_1\]

\[(s_0, x - y = 0)\]

\[(s_1, x - y = 0)\]

\[(s_1, x - y = 1)\]

\[(s_1, x - y = 2)\]

\[(s_1, x - y = 3)\]
Introducing abstractions

Don’t explore \((s_1, Z'_1)\): all its runs are possible from \((s_1, Z_1)\)
Introducing abstractions

Don’t explore \((s_1, Z'_1)\): all its runs are possible from \((s_1, Z_1)\)

Correctness: abstractions preserve runs, only add “equivalent” valuations
Introducing abstractions

Don’t explore \((s_1, Z'_1)\): all its runs are possible from \((s_1, Z_1)\)

Correctness: abstractions preserve runs, only add “equivalent” valuations

Termination: ensure finitely many abstracted zones
Outline

Timed Automata and the Reachability Problem

Symbolic semantics and abstractions

Bounds based abstractions

Small bounds for abstractions

Conclusions and future work
Regions [AD94]

Bound M: guards $x \leq c$, $x \geq c$ only use constants $c \leq M(x)$

Region: set of valuations that enable the *same* sequences of transitions
Regions [AD94]

Bound M: guards $x \leq c$, $x \geq c$ only use constants $c \leq M(x)$

Region: set of valuations that enable the same sequences of transitions

Correct:

\[
\begin{align*}
\nu_1 & \xrightarrow{x \geq 2} y \leq 1 \\
\nu_2 & \xrightarrow{x \geq 2} y \leq 1 \\
\nu_3 & \xrightarrow{x \geq 2} y \leq 1 \\
\end{align*}
\]
Regions [AD94]

Bound M: guards $x \leq c$, $x \geq c$ only use constants $c \leq M(x)$

Region: set of valuations that enable the same sequences of transitions

Correct:

$$
\begin{align*}
 v_1 & \quad x \geq 2 \quad y \leq 1 \\
 v_2 & \quad x \geq 2 \quad y \leq 1 \\
 v_3 & \quad x \geq 2 \quad y \leq 1
\end{align*}
$$

Incorrect:

$$
\begin{align*}
 v_4 & \quad x \leq 4 \\
 v_5 & \quad x \leq 4
\end{align*}
$$
Region based abstraction

\[M(x) \]

\[M(y) \]

\[0 \]

\[x \]

\[y \]
Region based abstraction

\[M(y) \]

\[M(x) \]

\[Z \]

\[\not \text{be convex: } \text{how can inclusion?} \]
Region based abstraction

\[a_M(Z) \] is the union of regions that \(Z \) intersects.
Region based abstraction

\[a_M(Z) \]

\[M(y) \]

\[M(x) \]

\[0 \]

\[x \]

\[y \]

\[a_M(Z) \]

\[Z \]

\[a_M(Z) \] is the **union of regions** that \(Z \) intersects

- **Correctness**: \(Z \) and \(a_M(Z) \) have the same executions

- **Termination**: finitely many regions
Region based abstraction

Early termination: $Z' \not\subseteq Z$ but $Z' \subseteq a_M(Z)$
Region based abstraction

Early termination: \(Z' \not\subseteq Z \) but \(Z' \subseteq a_M(Z) \)

\(a_M(Z) \) may not be \textbf{convex}: how to check inclusion?
Abstractions [DT98, BBLP06]

Standard restriction: use abstractions such that $a(Z)$ is a zone (inclusion in $O(|X|^2)$)

Extra $+$ LU (Z)

Extra $+$ M (Z)

Convex (zone)

Non convex
Abstractions [DT98, BBLP06]

Standard restriction: use abstractions such that $a(Z)$ is a zone (inclusion in $O(|X|^2)$)

Can we check $Z \subseteq a_{LU}(Z')$ efficiently?
Efficient algorithm for a_{LU} and a_M

Theorem

$Z \subseteq a_{LU}(Z')$ is decided in $O(|X|^2)$ (same as \subseteq)

Idea: do not compute $a_{LU}(Z)$

- define $\subseteq_{a_{LU}}$ s.t. $Z \subseteq_{a_{LU}} Z'$ iff $Z \subseteq a_{LU}(Z')$
- $\subseteq_{a_{LU}}$ is easy for 2 clocks
- n clocks: check all pairs of clocks

Theorem

a_{LU} is the **coarsest abstraction** if bounds are the only parameter
Outline

Timed Automata and the Reachability Problem

Symbolic semantics and abstractions

Bounds based abstractions

Small bounds for abstractions

Conclusions and future work
Back to regions

Take the smallest bounds you can!

Recall: M preserve the sequence of transitions with guards $x \leq c, x \geq c$ that only use constants $c \leq M(x)$.
Back to regions

Take the **smallest bounds** you can!

Recall: M **preserve** the sequence of transitions with guards $x \leq c$, $x \geq c$ that only use **constants** $c \leq M(x)$
Global bounds

s_0 \quad a, y := 0

s_1

- b, (y \leq 1)
- c, (x < 1)

s_2

- a, (y < 3), y := 0

s_3

- d, (x > 2)

M-bounds [AD94]:

LU-bounds [BBLP06]:

(s, v) \sim M(s, v') if the system satisfies the same sequences of transitions.
Global bounds

\[(y \leq 1) \quad (x < 1) \quad (x < 1)\]

\[(y < 3) \quad (x > 2)\]

M-bounds [AD94]:

\[
\begin{array}{ccc}
 x & y & M \\
 2 & 3 & M
\end{array}
\]

LU-bounds [BBLP06]:

\[
\begin{array}{ccc}
 L & 2 & -\infty \\
 U & 1 & 3
\end{array}
\]
Global bounds

\[(y \leq 1) \quad (x < 1) \quad (x < 1) \]

\[(y < 3) \quad (x > 2) \]

M-bounds [AD94]:

\[
\begin{array}{ccc}
\times & y \\
M & 2 & 3
\end{array}
\]

LU-bounds [BBLP06]:

\[
\begin{array}{ccc}
x & y \\
L & 2 & -\infty \\
U & 1 & 3
\end{array}
\]

\[(s, v) \sim_M (s, v') \text{ iff they enable the same sequences of transitions} \]
Idea: bounds are local to each state in the automaton.
Idea: bounds are **local to each state** in the automaton

\[
\begin{align*}
M(x) &= 2 & M(x) &= 2 \\
\text{(s, v)} &\sim_M (s, v') & \text{iff they enable the same sequences of transitions}
\end{align*}
\]
Local bounds [BBFL03]

Idea: bounds are **local to each state** in the automaton

\[
\begin{align*}
M(x) &= 2 \quad & M(x) &= 2 \\
M(x) &= 1 \quad & M(x) &= 2
\end{align*}
\]

\(s_0 \xrightarrow{x \geq 1} s_1 \quad x \leq 2 \quad s_0 \xrightarrow{x \geq 1} s_1 \quad x \leq 2\)

\((x = 1.5) \not\sim (x = 3) \quad (x = 1.5) \sim (x = 3) \)

\((s, v) \sim_M (s, v')\) iff they enable the **same sequences of transitions**

Computation: static analysis on the automaton
Better abstraction: look at semantics

\[x = 1 \]
\[x := 0 \]

\[x \geq 2 \]

\[x < 1 \]

\[y = 10^6 \]
Better abstraction: look at semantics

Static analysis: $M(y) = 10^6$

\[x = 1 \]
\[x := 0 \]
\[x \geq 2 \]
\[x < 1 \]

$y = 10^6$
Better abstraction: look at semantics

Static analysis: $M(y) = 10^6$

More than 10^6 zones at s_0 not necessary!
On-the-fly bounds

- Bounds M local to the nodes in the reachability tree
- M are updated on-the-fly by propagation
- Abstraction using local bounds: $Z_2 \subseteq \alpha_{M_1}(Z_1)$

Bounds can be updated as abstractions are not stored
On-the-fly bounds propagation

\[M(x) = -\infty \]

\((q, Z), M\)

All tentative nodes consistent \(\rightarrow\) no more exploration

→ Terminate!
On-the-fly bounds propagation

\[M(x) = -\infty \]

\[(q, Z), M \]

\[x \leq 3 \]
On-the-fly bounds propagation

\[M(x) = 3 \]

\[(q, Z), M \]

\[x \leq 3 \]
On-the-fly bounds propagation

\[M(x) = 3 \]

\[(q, Z), M \]

\[x \leq 3 \]
On-the-fly bounds propagation

\[M(x) = 5 \]

\[(q, Z), M\]

\[x \leq 3 \]
On-the-fly bounds propagation

\[M(x) = 5 \]

\[(q, Z), M \]

\[Z' \subseteq a_M(Z) \]
On-the-fly bounds propagation

\[M(x) = 5 \]

\[(q, Z), M \]

\[Z' \subseteq a_M(Z) \]

\[(q, Z'), M' \]

\[x \leq 3 \]

\[x > 6 \]
On-the-fly bounds propagation

\[M(x) = 6 \]

\[(q, Z), M \]

\[x \leq 3 \]

\[x > 6 \]

\[Z' \subseteq \alpha_M(Z) \]
On-the-fly bounds propagation

\(M(x) = 6 \)

\(Z' \subseteq a_M(Z) \)

\((q, Z), M \)

\((q, Z'), M' \)

\(x \leq 3 \)

\(x > 6 \)
On-the-fly bounds propagation

\[M(x) = 6 \]

\[Z' \subseteq a_M(Z) \]

\[(q, Z), M \]

\[x \leq 3 \]

\[x > 6 \]
On-the-fly bounds propagation

\[M(x) = 6 \]

\[(q, Z), M \]

\[Z' \subseteq a_M(Z) \]

\[x \leq 3 \]

\[x > 6 \]

\[x \geq 11 \]
On-the-fly bounds propagation

\[M(x) = 11 \]

\[Z' \subseteq a_M(Z) \]

\[(q, Z), M \]

\[x \leq 3 \]

\[x \geq 6 \]

\[x \geq 11 \]
On-the-fly bounds propagation

\[M(x) = 11 \]

\[Z' \subseteq a_M(Z) \]

\[(q, Z), M \]

\[x \leq 3 \]

\[x > 6 \]

\[x \geq 11 \]
On-the-fly bounds propagation

\[M(x) = 11 \]

\[(q, Z), M \]

\[Z' \subseteq a_M(Z) \]

\[x \leq 3 \]
\[x > 6 \]
\[x \geq 11 \]
On-the-fly bounds propagation

\[M(x) = 11 \]

\[(q, Z), M \]

\[x \leq 3 \]

\[x > 6 \]

\[x \geq 11 \]

\[Z' \subseteq a_M(Z) \]
On-the-fly bounds propagation

\[M(x) = 11 \]

All tentative nodes consistent
+ No more exploration
→ Terminate!

\[Z' \subseteq a_M(Z) \]
On-the-fly bounds propagation (cont’d)

Theorem
The algorithm is correct and it terminates

- **Non tentative nodes:** $M = \max\{M_{succ}\}$ (resets)
- **Tentative nodes:** $M = M_{covering}$
- M only increases and is bounded by [BBFL03]

$(s, v) \sim_M (s, v')$ iff they enable the **same sequences of transitions**
Experiments I

\[A_1 \]

\begin{align*}
q_0 & \quad y \geq 20 \land x = 2 \\
q_1 & \quad x = 1 \\
q_2 & \quad y = 10000 \\
q_3 & \quad x = 5 \land x = 0
\end{align*}

<table>
<thead>
<tr>
<th></th>
<th>nodes</th>
<th>s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\text{Extra}_{LU, sa}^+)</td>
<td>4001</td>
<td>6.16</td>
</tr>
<tr>
<td>(a_{LU, otf})</td>
<td>9</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Experiments II

\(\mathcal{A}_2 \)

<table>
<thead>
<tr>
<th></th>
<th>nodes</th>
<th>s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra(_L_U, sa)</td>
<td>10014</td>
<td>95.62</td>
</tr>
<tr>
<td>(a_{LU, otf})</td>
<td>3</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Experiments III

\[A_3 \]

<table>
<thead>
<tr>
<th>(A_3)</th>
<th>nodes</th>
<th>s.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Extra}^+_\text{LU, sa})</td>
<td>20006</td>
<td>99.26</td>
</tr>
<tr>
<td>(a_{LU, otf})</td>
<td>4</td>
<td>0.00</td>
</tr>
</tbody>
</table>
But we can do even better...

Idea: only the **disabled edges** matter!

- Take bounds from the **disabled edges** only
- **Optimize** propagation
Outline

Timed Automata and the Reachability Problem

Symbolic semantics and abstractions

Bounds based abstractions

Small bounds for abstractions

Conclusions and future work
Benchmarks

<table>
<thead>
<tr>
<th>Model</th>
<th>nb. of clocks</th>
<th>UPPAAL (-C) nodes</th>
<th>UPPAAL (-C) sec.</th>
<th>Extra(^+)(_{LU}) sa nodes</th>
<th>Extra(^+)(_{LU}) sa sec.</th>
<th>a(_{LU}) off nodes</th>
<th>a(_{LU}) off sec.</th>
<th>a(_{LU}) dis. nodes</th>
<th>a(_{LU}) dis. sec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sched(_7)</td>
<td>14</td>
<td>18654</td>
<td>11.6</td>
<td>18654</td>
<td>8.1</td>
<td>213</td>
<td>0.0</td>
<td>72</td>
<td>0.0</td>
</tr>
<tr>
<td>Sched(_8)</td>
<td>16</td>
<td>120845</td>
<td>1.9</td>
<td>120844</td>
<td>6.3</td>
<td>78604</td>
<td>6.1</td>
<td>51210</td>
<td>4.0</td>
</tr>
<tr>
<td>Sched(_70)</td>
<td>140</td>
<td>311310</td>
<td>5.4</td>
<td>311309</td>
<td>16.8</td>
<td>198669</td>
<td>16.1</td>
<td>123915</td>
<td>10.2</td>
</tr>
<tr>
<td>CSMA/CD 10</td>
<td>11</td>
<td>786447</td>
<td>14.8</td>
<td>786446</td>
<td>44.0</td>
<td>493582</td>
<td>41.8</td>
<td>294924</td>
<td>25.2</td>
</tr>
<tr>
<td>CSMA/CD 11</td>
<td>12</td>
<td>12605</td>
<td>52.9</td>
<td>12606</td>
<td>29.4</td>
<td>5448</td>
<td>14.7</td>
<td>401</td>
<td>0.8</td>
</tr>
<tr>
<td>CSMA/CD 12</td>
<td>13</td>
<td>135485</td>
<td>2.4</td>
<td>135485</td>
<td>8.9</td>
<td>135485</td>
<td>11.4</td>
<td>135485</td>
<td>14.8</td>
</tr>
<tr>
<td>FDDI 50</td>
<td>151</td>
<td>136632</td>
<td>1.7</td>
<td>136632</td>
<td>9.4</td>
<td>82182</td>
<td>8.2</td>
<td>29964</td>
<td>2.9</td>
</tr>
<tr>
<td>FDDI 70</td>
<td>211</td>
<td>1323193</td>
<td>26.2</td>
<td>1323193</td>
<td>109.0</td>
<td>602762</td>
<td>84.9</td>
<td>278120</td>
<td>37.6</td>
</tr>
<tr>
<td>FDDI 140</td>
<td>421</td>
<td>135485</td>
<td>2.4</td>
<td>135485</td>
<td>8.9</td>
<td>135485</td>
<td>11.4</td>
<td>135485</td>
<td>14.8</td>
</tr>
<tr>
<td>Fischer 9</td>
<td>9</td>
<td>447598</td>
<td>10.1</td>
<td>447598</td>
<td>34.0</td>
<td>447598</td>
<td>42.8</td>
<td>447598</td>
<td>56.9</td>
</tr>
<tr>
<td>Fischer 10</td>
<td>10</td>
<td>1464971</td>
<td>40.4</td>
<td>1464971</td>
<td>126.8</td>
<td>1464971</td>
<td>126.8</td>
<td>1464971</td>
<td>126.8</td>
</tr>
<tr>
<td>Fischer 11</td>
<td>11</td>
<td>135485</td>
<td>2.4</td>
<td>135485</td>
<td>8.9</td>
<td>135485</td>
<td>11.4</td>
<td>135485</td>
<td>14.8</td>
</tr>
<tr>
<td>Stari 2</td>
<td>7</td>
<td>7870</td>
<td>0.1</td>
<td>6993</td>
<td>0.4</td>
<td>5779</td>
<td>0.4</td>
<td>4202</td>
<td>0.3</td>
</tr>
<tr>
<td>Stari 3</td>
<td>10</td>
<td>136632</td>
<td>1.7</td>
<td>113958</td>
<td>9.4</td>
<td>82182</td>
<td>8.2</td>
<td>29964</td>
<td>2.9</td>
</tr>
<tr>
<td>Stari 4</td>
<td>13</td>
<td>1323193</td>
<td>26.2</td>
<td>983593</td>
<td>109.0</td>
<td>602762</td>
<td>84.9</td>
<td>278120</td>
<td>37.6</td>
</tr>
</tbody>
</table>

Both non-convex abstractions \(a_M/a_{LU}\) and on-the-fly bounds computation help.
Conclusions

- New reachability algorithm with **non-convex abstractions** and **on-the-fly computation** of bounds
- **Optimal abstraction** when only bounds are considered
- **Tightening** of bounds
Future Work

\((s_0, Z_0) a_0 \)

\((s, Z_1) a_1 \)

\((s, Z_2) a_2 \)

\(Z_1 \) defines the subtree, which in turn defines \(a_1 \)
Future Work

\[Z_1 \text{ defines the subtree, which in turn defines } a_1 \]

- **Optimal** bounds: better propagation
Future Work

Z_1 defines the subtree, which in turn defines a_1

- **Optimal** bounds: better propagation
- **Beyond bounds**: define a from constraints, . . .
Future Work

\[(s_0, Z_0) \ a_0\]

\[(s, Z_1) \ a_1\]

\[(s, Z_2) \ a_2\]

\[Z_1 \text{ defines the subtree, which in turn defines } a_1\]

- **Optimal** bounds: better propagation
- **Beyond bounds**: define \(a\) from constraints, . . .
- Extend to **infinite runs** (beyond reachability)
Future Work

\[Z_1 \text{ defines the subtree, which in turn defines } a_1 \]

- **Optimal** bounds: better propagation
- **Beyond bounds**: define \(a \) from constraints, . . .
- Extend to **infinite runs** (beyond reachability)
- Prototype **tool**
References

R. Alur and D.L. Dill.
A theory of timed automata.

Static guard analysis in timed automata verification.

Lower and upper bounds in zone-based abstractions of timed automata.

C. Courcoubetis and M. Yannakakis.
Minimum and maximum delay problems in real-time systems.

C. Daws and S. Tripakis.
Model checking of real-time reachability properties using abstractions.

François Laroussinie and Philippe Schnoebelen.
The state explosion problem from trace to bisimulation equivalence.
When is \(Z' \subseteq a_M(Z) \)?

Recall: \(a_M(Z) \) is the union of regions that intersect \(Z \)
When is \(Z' \subseteq \alpha_M(Z) \)?

Recall: \(\alpha_M(Z) \) is the union of regions that intersect \(Z \).
When is $Z' \subseteq \alpha_M(Z)$?

Recall: $\alpha_M(Z)$ is the union of regions that intersect Z.
When is $Z' \subseteq a_M(Z)$?

Recall: $a_M(Z)$ is the union of regions that intersect Z.

$Z' \not\subseteq a_M(Z)$ iff there exist 2 clocks x, y s.t. $\text{Proj}_{xy}(Z') \not\subseteq a_M(\text{Proj}_{xy}(Z))$.

$\exists R. R$ intersects Z', but R does not intersect Z.
When is $Z' \subseteq a_M(Z)$?

Recall: $a_M(Z)$ is the union of regions that intersect Z

$Z' \nsubseteq a_M(Z)$ if and only if there exist 2 clocks x, y s.t.

$\text{Proj}_{xy}(Z') \nsubseteq a_M(\text{Proj}_{xy}(Z))$

Theorem