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Traditional view of signal processing

[Wikipedia]



Modern signal processing

measurements sampled

signal

• numerical linear algebra

• optimization

• subspaces

• sparsity



In many applications, the most natural signal models are 

inherently continuous

Translating this to a discrete, finite setting can be subtle

Modeling on the continuum



Bandlimited functions

Perhaps the most basic model is that          is bandlimited

The continuous-time Fourier transform of a function          

is given by

We say that          is bandlimited (with bandlimit ) if 

for



Sampling bandlimited functions

More specifically, let      denote the sampling period and let

denote the sequence of samples we obtain

The sampling theorem shows us that no information is lost 

provided

“If we sample a signal at twice its highest    

frequency, then we can recover it exactly.”

Whittaker-Nyquist-Kotelnikov-Shannon 



Windows of samples

To simplify our notation, we will assume without loss of 

generality that               so that

: sampling at the Nyquist rate

: sampling faster than the Nyquist rate

degrees of freedom

degrees of freedom?



Models for bandlimited signals

If              , we expect that     has           degrees of freedom

How can we represent this mathematically? 

From bandlimitedness we have

The discrete Fourier transform (DFT) gives a representation of 

the form



Models for bandlimited signals

If              , we expect that     has           degrees of freedom

How can we represent this mathematically? 

The DFT should be sparse



Models for bandlimited signals

If              , we expect that     has           degrees of freedom

How can we represent this mathematically? 

The DFT should be sparse – but it usually isn’t…

spectral

leakage



A better model

The DFT is simply the wrong basis for compactly representing 

this structure

A much better choice: discrete prolate spheroidal sequences

Slepian basis. Defined by the vectors that

satisfy the eigenvalue equation

The first               eigenvalues .

The remaining eigenvalues .



Suppose that we wish to minimize

over all subspaces of dimension 

Another perspective: Subspace fitting

Optimal subspace is spanned by 

the first    Slepian basis elements



The prolate matrix

From either perspective, it is not hard to show that the 

Slepian basis elements are the eigenvectors of the prolate 

matrix



Bottom line

Windowed and sampled bandlimited signals live in

a subspace with an effective dimension of 

Other frequency bands handled by simply modulating the 

Slepian basis elements to different center frequencies



Narrowband DOA

Consider the problem of estimating the direction-of-arrival 

(DOA) of a narrowband source using a linear array of sensors

sensors



Narrowband DOA – Far field

Assume we can approximate the source as a plane wave 



Narrowband DOA – Far field

Assume we can approximate the source as a plane wave 



Narrowband DOA – Far field

Assume we can approximate the source as a plane wave

Sinusoid at frequency Sinusoid at frequency 



DOA as spectral estimation

What happens when we have multiple sources?
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Three sources, equal magnitude



DOA as spectral estimation
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Magnitudes 1.0, 0.05, 0.01

What happens when we have multiple sources?



Iterative source localization

Essential procedure

1. Find a source 

2. Null it out 

(remove its effect from the measurements)

3. Repeat until no more sources

Nulling must be performed with care… 



Iterative source localization
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Iterative source localization
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Iterative source localization
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“Nulling” procedure

Given several sources, we observe their sum

We do not expect to estimate the angle     (or equivalently, 

the frequency     ) corresponding to source     exactly

Suppose that we have an estimate                              

Then      lives in a subspace of dimension            , spanned by 

the Slepian basis elements modulated to 

We can null by projecting onto the orthogonal complement of 

this subspace 

• choose slightly more than         basis elements to null 

nearly all of the energy

• can choose    to account for non-point sources



“Rolling Slepian” spectral estimation

We may also wish to use a Slepian-inspired approach to 

estimating the source angles as follows:

1. Project onto the “Slepian subspace” corresponding to an 

interval of bandwidth

2. Compute the energy in this projection

3. Sweep over all frequencies

By choosing slightly fewer than         basis elements, we can 

nearly eliminate spectral leakage



Example

Two 10 MHz bandwidth sources:

One centered at 5.04 GHz … … one 100x lower at 5.0 GHz



Example

Residual when we “null” using DFT vectors



Example

“Rolling Slepian” spectral estimate



Example

Slepian projection cleanly reveals smaller source



Thomson’s multitaper method

Is the “Rolling Slepian” spectral estimate related to 

Thomson’s multitaper method?

They are equivalent!

windowing

DFT energy

Average over windows



Thomson’s multitaper method

Is the “Rolling Slepian” spectral estimate related to 

Thomson’s multitaper method?

They are equivalent!

Slepian basis element

projection energy

Sum across all basis elements 



Summary so far

The Slepian basis provides a natural tool for working with 

(finite windows) of sampled bandlimited signals 

• Subspace modeling

projecting a vector in        onto span of the first

Slepian basis elements to enforce/exploit bandlimited 

model

• Applications in DOA estimation 

• Applications in spectral estimation (Thomson’s method)

How can we do this at a speed comparable with the FFT?



Motivating example



Motivating example

• Radar array whose goal is to track every object of size 10 

cm or larger in low-Earth orbit

• First radar site expected to go online this year in Marshall 

Islands, another planned for Australia

• Each radar site has a digital phased array consisting of 

~100,000 (S-band) receivers

• TREMENDOUS data volume, need for scalable algorithms



Towards fast Slepian computations

Recall that the Slepian basis can be computed via an 

eigendecomposition of the so-called prolate matrix

Let            be the matrix whose columns correspond to the 

lowest frequency length- DFT vectors 

One can show that                                                     , where 



Number of eigenvalues in transition region

The rank of      gives as a nonasymptotic bound on the number 

of eigenvalues of            in the “transition region” 

Specifically, 

Improves on previous asymptotic bounds by Slepian and 

nonasymptotic bounds by Zhu and Wakin



Fast Slepian Projection

Let        be the matrix formed by the first     columns of

Theorem

For any                    ,                  , and      such that

, there exist matrices     and      such 

that

where



Fast Slepian Projection

We can apply the approximation                     to a vector in 

operations

Similar fast algorithms can be developed for Thomson’s 

method as well as solving related problems 

Toeplitz

low rank

small



Extensions

• Higher dimensions

– array geometry and source environment can be two- or three-

dimensional

• DOA with unknown frequencies

– given a sequence of samples in time, we can consider a joint 

search over both angle-of-arrival and frequency

• Compressive acquisition

– subsample array elements in time

– subsample using spatial coded aperture techniques



Simple compression: Subsampling



Compressive beamforming
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Full sample beam sweep Compressive beam sweep



Iterative (compressive) source localization
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Iterative (compressive) source localization
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Iterative (compressive) source localization
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Large scale simulation

• 64 x 64 antenna array

• 100 sources, each 10 MHz, located in [2 GHz, 12 GHz]

• 0 dB SNR, keep only 12% of samples  

These results simply would not be possible without 

(fast) Slepian projections

Ground truth and predicted source locations at 0dB noise level
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Exploiting bandwidth in active sensing

Recall the linear array setup:

In general, for a target profile        at a constant range, our 

linear array observes (a warped) version of the Fourier 

transform of        over the range

Sinusoid at frequency Sinusoid at frequency 



If we discretize         we can write our observations as

where the columns of        are uniformly spaced complex 

exponentials over the range 

What happens if we repeat this for many different 

frequencies?

A linear model



Does bandwidth buy us anything?

If                                  , we seemingly do not gain any new 

information beyond what is contained in

Effectively,                           for all 

But what if we subsample?

One can show that      can be highly dimensionality-reducing 

without compromising our ability to estimate 



• 40x40 sensor array, sensors placed 3.75cm apart

• Traditional imaging using excitation wavelength of 7.5cm 

would require ~1100 beams

• By exploiting bandwidth (lower frequencies) we can 

dramatically reduce the number of “beams”

Simulated results

1100 beams 80 “generic” beams



Summary

• The Slepian basis is a natural choice in many applications

– any time you are working with finite windows of samples of 

bandlimited/narrowband/multiband functions

• We now have fast (approximate) algorithms for working 

with the Slepian basis, with complexity that scales 

comparably to the FFT

• Can play an important role in large-scale problems, 

especially in the context of compressive acquisition 
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