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1) Introduction



Introduction

Several problems lead to find the minimum of a matrix functional:

shape classification (Duchi et al, 2008)

gene expression (Ma et al, 2013)

model selection (Chandrasekaran et al, 2012)

matrix completion (McRae and Davenport, 2019)
computer vision (Guo et al, 2011)

phase retrieval (Candes et al, 2015)

inverse covariance estimation (d’Aspremont et al, 2008)
graph estimation (Meinshausen et al, 2006),

brain network analysis (Yang et al, 2015)

Challenge: How to deal with versatile functionals, involving non necessarily
convex terms, acting both on the matrix entries and its eigenvalues ?
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Challenge: How to deal with versatile functionals, involving non necessarily
convex terms, acting both on the matrix entries and its eigenvalues ?

This talk:

v

v

v

new optimization tools for dealing with minimization problems in a symmetric
matrix space;

new proximal algorithm for minimizing convex penalized cost with regularization
split in two parts, one being a spectral function while the other is arbitrary;

new minimization approach for non-convex problem arising in covariance matrix
estimation, combining majorization-minimization framework and
Douglas-Rachford proximal scheme.




Important example: Graphical Lasso

« Aim: Inferring Gaussian graphical model parameters (p, X) from N i.i.d
realizations: x), ... x™) of N(u, X) with € R™ and X € R"*" symmetric
definite positive.

e Sample mean and empirical covariance matrix:

1o < _ T
H=NZ:1X s NZ —n) .

e Negative Gaussian log-likelihood:

1
—NZ(ZT1 IxM, . x™N)) = —logdet &' + trace(SZ ') + constant.
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Important example: Graphical Lasso

« Aim: Inferring Gaussian graphical model parameters (p, X) from N i.i.d
realizations: x), ... x™) of N(u, X) with € R™ and X € R"*" symmetric
definite positive.

e Sample mean and empirical covariance matrix:

S_ 1 o _ LS00 g T
H—N;X ; S—N;(x - -t

e Negative Gaussian log-likelihood:

—%Z(Zfl\xm7 o xMY = —logdet =7 + trace(SE ) + constant.

% GLASSO: Estimator of C = X! based on the use of ¢; penalty
(Meinshausen and Buhlmann, 2006)

C = argming, , — logdet C + trace(SC) + | C|:
with |C|1 = X, |Cjk|, and A > 0 regularization parameter.

e Convex optimization problem in symmetric matrix space.
Several solvers available. (Banerjee et al, 2007)(Friedman et al, 2007)(Boyd et
al, 2011)(Duchi et al, 2008).

Challenges: Which optimization method for more sophisticated penalties ?

How to account for the noise possibly degrading the input data ?
10 /36



Four different GLASSO solutions for the flow-cytometry data with n = 11
proteins measured on N = 7466 cells (Friedman et al, 2007).



2) Douglas-Rachford algorithm for matrix optimization problems



Definition: Spectral function

Let
f:8, »] -, 4], 8,={CeR™"C'" =C]}.

f is a spectral function if, for every permutation matrix P € R™*",
f(C) = p(Pd),

with d € R™ a vector of eigenvalues of C, and ¢ : R" —] — 00, +0] is proper,
lower semicontinuous (lsc).

\ f(©) \ o(Pd)
_ q Sials _\yn X 5 n
Logdet function logdet(C) if Ce S8 4 log(d;) ifd €]0, +oo[
+00 else +o0 else
1 n ~
Froebenius norm Lic|z =) d;
w Hici 5 2 &
n
Nuclear norm R1(C) |di|
i=1
Rank rank(C) Card{i € {1,...,n}s.t. d; # 0}




Minimization of spectral functions

Let us consider the following minimization problem:

miélérsrilize f(C) — tr (TC) + go(C) (1)

with
o f a spectral function associated to ¢, Isc function;
@ go a spectral function associated to ¢, Isc function;

e T €8, and tr(-) the trace operator.

Theorem

Let t € R™ be a vector of eigenvalues of T and let Ut € O,, be such that
T = UrDiag(t)U7.. Assume that domyp N dome # @ and that the function
d — ¢(d) —d"t + ¥(d) is coercive. Then a solution to Problem (1) exists,
and is given by ~ ~

C = UrDiag(d)Urp

where d is any solution to the following problem:

minimize p(d) —d 't + ¢(d).
deR™




Proximity operator within Bregman metric

Let f convex, differentiable on int(domf) # .
The f-Bregman divergence between C € 8,, and Y € int(domf) is

D (C,Y) = f(C) — f(Y) —tr(T(C —Y)) with T =Vf(Y).

Computing the DY -proximity operator of go with go proper, Isc, at
C € int(domf) amounts to solve

minimize go(C) + D’ (C,Y) 2

Ces,,

« For particular choices of f and T, Problem (2) is equivalent to Problem (1).

.
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The f-Bregman divergence between C € 8,, and Y € int(domf) is

D (C,Y) = f(C) — f(Y) —tr(T(C —Y)) with T =Vf(Y).

Computing the DY -proximity operator of go with go proper, Isc, at
C € int(domf) amounts to solve

minimize go(C) + D’ (C,Y) 2

Ces,,

« For particular choices of f and T, Problem (2) is equivalent to Problem (1).

Corollary

Let f and go spectral functions associated, respectively, to ¢ € I'o(R™) Legendre
function, and ¢ € I'o(R™) with int(dome) N int(domt) # @ and either 1 is bounded
from below or ¢ + 1) is supercoercive. Then, the solution to (2) exists, and is unique,
for every Y € Sy such that Y = Uy Diag(y)UJ, with Uy € O, and y € int(domep),
and it is expressed as

prox), (Y) = Uy Diag(prox?,(y)) U,

with proxi: y — argmin ¥ (x) + p(x) — p(y) — (Ve(y),x —y)

xeR"™

v Extend (Bauschke and Combettes, 2017) to Bregman divergence setting. 16/36



Proximity operator

Let us now consider the following minimization problem:

minimize f(C) — tr (TC) + ¢go(C) + %”C - 6“% (3)

Cesp,

with v > 0, CeS8,, TeS, and
o f a spectral function associated to ¢, Isc function;

@ go a spectral function associated to 1), Isc function.

The (possibly empty) set of solutions is denoted Prox.(s—tr(T -)+40)
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| A

Proposition

Assume that domy N domvy # @. Let A € R” and U € O, be such that
C + T = UDiag(A\)U.

(i) If e isAlower bounded by an affine function then Prox, . y) (A) # @ and, for
every A € Prox, (44 (A),

UDiag(sx)UT € ProX, (£ —tr(T )490) (C).

(ii) If 2y is convex, then

ProX. (f_tr(T »)+gu)(6) = UDiag(prox,y((er@.) (A))UTA




Frobenius norm:
F() =1 - |%/2, spectral function associated with o = || - |?/2.

Log-determinant:

(¥CeS$,) f(C)= {—logdet(C) if CeStt

4w otherwise.

Spectral function associated with

=1 2 log(\;) if A €]0, +oo["

400 otherwise.

(V)\ = (Ni)1<i<n € Rn) ®

Van Neumann entropy:

tr (Clog(C)) if Ce 8}
400 otherwise.

(VCesn) f(C) = {
Spectral function associated with

o(A) = Z Ailog(Xi) if A€ [0, +oo["

400 otherwise.

(VA = (Ai)léién € Rn)



Examples: Frobenius norm

Proximity operators for different choices for go and f Frobenius norm

go(C), p>0 ‘ ProX. (ot ) (A)
Nuclear norm PYe
pR1(C) (SOft% (’H'l))léién
Squared Frobenius norm A
1| ClE T+~ (1+2u)
Schatten p—penalty (sign(/\i)di)1<i<n
uRP(C), p=1 with (Vie {1,...,n}) d; =0
and pypd? ™t + (v + 1)d; = A
Inverse Schatten p—penalty (di)1<i<n
pRE(C7Y), p>0 with (Vi€ {1,...,n}) d; >0
p+2 p+1
and (y+ 1)d}™" — Ndl ™ = pyp
Bounds on eigenvalues (min(max(X;/(y + 1), @), 8))1<i<n
LE(C) [a1 ﬂ] < [0) +OO]
Rank 2y Ai
prank(C) (hard ERAVE: Y/ /1<isn
Cauchy € {(sign(X\s)di)1<i<n | (Vi€ {1,...,n}) d; > 0 and
plogdet(C? +¢el), e >0 (v + 1)d3 — |Xi|d2 + 2y + e(v + 1))ds = |Aile}

E denotes the set of matrices in §,, with eigenvalues between « and S.



Examples: Log-determinant

Proximity operators for different choices for go and f log determinant

go(C), p>0 | ProX. (ot ) (N)
Nuclear norm 1(y. — 5
R (C) 3 ()\1 Yo+ A/ (i =) + 47)1@@
Squared Frobenius norm 1 2
—— (i + A/ A+ 4y(2 +1
HICI? sy Ve )
Schatten p—penalty (di)1gign
uRH(C), p > 1 pypd? +d? — Nid; =
Inverse Schatten p—penalty (di>1<z‘<n
pRE(C™1), p >0 Al — \dP T — yd? = pyp
i i 1y, 2
Bounds on eigenvalues (mm(max (2 (A +4/22 + 4y), a)’ﬂ»lgisn
LE(C) [a718] < [07 +OO]
Cauchy € {(di)1<i<n | (Vie {1,...,n}) d; > 0 and
plogdet(C? +€I), e >0 d} — Ad? + (e + (2 — 1))d? — eXid; = e}

21/36



Examples: Von Neumann entropy

Proximity operators for different choices for go and f VN entropy

go(C), p >0 | ProX. (ot ) (A)
Nuclear norm 1 i
uR1(C) v <W (”/ oxp ( i 1))>1gi<n
Squared Frobenius norm v 2uy+1 PV
MHCH% 2py+1 <W< v P ( v 1)) 1<i<n
Schatten p—penalty (d )1<Z<n
uRP(C), p=1 d; > 0s.t. puydd™ 1+d +ylogd; +v =X\
Bounds on eigenvalues i
& (C) with [a, 8] < [0, +00] (mm (ma" (VW( exp ( 1)) ) ’5))1@-@
Rank (di)léién with
pi if pi > x _
X =7 +2u) -
prank(C) d; =< 0orp; if p=x and { i
;= 1 A
0 otherwise =W < P ( ))

W (-) denotes the W-Lambert function.



Minimization of convex matrix optimization problem

Minimization problem

Now, let us consider:

minilénize f(C) —tr (TC) + g(C) (4
eSn
with
9(C) = p10go(C) + p191(C),  po, 1 >0
and

@ f a spectral function associated to ¢ € I'o(R");

@ go a spectral function associated to ¢ € T'o(R"™);

o g1 € ['o(R™ ™) acting on the whole matrix C (e.g., the #1 norm)

~» The "spectral terms” of the functional can be gathered together:

argmin f(C) — tr (TC) + 10go(C) + 11191 (C)
Cesp —

ho(C) hyC

= Douglas-Rachford algorithm (Combettes and Pesquet, 2007).

23/36



Douglas-Rachford Algorithm
Douglas-Rachford Algorithm

Let T be a given matrix in Sy, set v > 0 and cOesg,.
For k =0,1,...
Diagonalize C(®) + 4T, i.e. find U®) € 9,, and A(*) € R™ such that

C® 4 AT = UK Diag(AR)(U*)T

1
d*32) e Prox, (1) (A®)
Cc*k+2) — UM Diag(d*+2))(Uk))T
Choose a(*) € [0, 2]
CH+D) e C® + al® ((Proxyg, (200+3) — cW) — c++D)).

24 /36



Douglas-Rachford Algorithm
Douglas-Rachford Algorithm

Let T be a given matrix in Sy, set v > 0 and cOesg,.
For k =0,1,...
Diagonalize C*) 4 4T, i.e. find U®) € 9,, and A(%) € R™ such that

C®) + 4T = UF Diag(AF)) (Ut T

1
d**2) e Prox, (1) (A®)
Cch+3) = UK Diag(dk+2)) (k)T
Choose a(*) € [0, 2]
Cl+1D) e CF) 4 o(F) (Prox.yg1 (2CU€+%) = O = C(]H'%)).

Theorem

Let f and go be spectral functions associated to ¢ € I'o(R™) and 3 € I'o(R™).
Let g1 € T'0(8x») be such that f — tr (T-) + go + g1 is coercive. Assume that
the intersection of the relative interiors of the domains of f + go and g; is non
empty. Let (a'®)),=0 be a sequence in [0,2] such that

> a®(2 — a®) = 400, Then, the sequences (C('”%))k;o and

(prox.,, (QC(’”%) = C(k)))k20 generated by the DR Algorithm converge to a
solution to Problem (4).

| A
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3) Majorization-Minimization algorithm for robust graphical lasso
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Graphical lasso with noisy data

Let us consider the following signal model (Sun et al, 2017):
(Vie{l,...,N}) x =As® 4e
where

nxm - . .
e AeR with m <n Such observation model is encountered

o s ~ N(0,E), s e R™ in several practical applications, e.g. in
0 e ~N (0’ O'ZId), RO the context of “Relevant Vector

@) @) X Machine” (Tipping et al, 2001), (Wipf
o s'” and e'” are iid et al, 2004)

Covariance matrix of observed signal:
S =ATEA + 0’14
=Y +c’l4

Goal: Penalized maximum likelihood approach for finding an estimate C of
Y !, given the knowledge of o2 and the empirical covariance matrix

L
_ (4) ((NT
S = N izglx (x*)

Prior: Sparsity and low-rank structure of C.
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Proposed formulation

Minimization problem

minimize (F(C) = f (C) + Ts (C) + go(C) + ¢1(C)) (5)

Cest+t

where

_1 2 . +
e (VCeS,) f(C) = {l(’gdet (C'+0%la) ifCeS8)

+00 otherwise,

tr((Ia + 02C) ' CS) ifCest
o (VCeS,) Ts(C) = 1((la+o%C) " C8) ifCe

+00 otherwise,

@ go € I'o(8x) is a spectral function associated with ¢ € I'o(R"™), and
g1 € Fo(sn)

~ f 4+ go + g1 is a convex function on §,,.

~» The trace term Js is concave on 87

The whole functional F is nonconvex. J




Majorization—Minimization Approach

Definition

Let C’' € 8. §(-|C') is a tangent majorant function for F at C' if, for every
C e 8y,
F(C) < §(C|C") and F(C')=g(C'|C)

Majorization—Minimization algorithm:

(vteN) C“*Y = argmin §(C|C)
CeSp,

~» Ensures monotone decrease of (?(C(E))) .
LeN

Proposed strategy:
@ J reads as the sum of convex and concave terms
@ Majoration of the concave term Tgs by a linear function

o Convex majorant function minimized by our Douglas-Rachford scheme.
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Majorization—Minimization Approach

e Construction of a majorizing approximation of Jg at C’ € 8;:
(VCesy) Ts(C)<Ts(C) +tr(VIs(C)(C-C)).
As f is finite only on 8,7, a tangent majorant of the cost function J at C’
reads:
(vCesy) §(C|C)=
f(C)+Ts (C') +tr (VIs(C) (C—C')) + go(C) + g1(C).

~ F(C) < §(C | C’) for all Ce 8§ and G(C' | C') = F(C') at C' € §;}.
This leads to the general MM scheme:

(veeN) C“*Y e Argminges f(C)+tr(VTs(CY)C) +go(C) +¢1(C)

with C© e 8.

At each iteration of the MM algorithm: Convex optimization problem of
the form (4) = Douglas—Rachford approach.

Convergence guarantee to a critical point of &.



4) Numerical experiments
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Numerical Experiments

The dataset is generated by a slight modification of Boyd's code’:
@ a sparse precision matrix Cy of dimension n x n is generated (n=100)

@ its inverse g is employed to generate N = 10000 realizations of a
Gaussian mvrv N (0, Xo)

@ Gaussian noise of variance o“ is added to the realizations, in order to
satisfy x(V) = As® + e® (A = I4) and hence the true covariance matrix
is

2

=30+ 01

@ the empirical covariance matrix S is obtained by
1 X
— (1) ( (INT
S = N i_glx (x*)

Three type of error measurements:

False Positive Rate True Positive Rate Relative Mean
on Precision Matrix on Precision Matrix Square Error on &
(fpr) (tpr) (RMSE)

1http ://stanford.edu/~boyd/papers/admm/covsel/covsel_example.html
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Numerical Experiments: Quality of Reconstruction

Yo

Settings:

90(C) = poR1(C™1) (Schatten 1-norm, nuclear norm)
g1(C) = 1| Cll1 (component—wise ¢1 norm)

fo = 0.0716, y11 = 0.0278, a = 1.5

Noise level: o = 0.5

RMSE: 0.1180

FPR (on precision matrix): 0.0257

TPR (on precision matrix): 100%
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Numerical Experiments: Stability Under Increasing Noise

0.45 -
MM
DR
04l GLASSO
0.35 -
03+
0.25 |-
a
02+
)
015 e PO
& ®
0.1+
Py — o
— .
I I I |
0.5 0.6 0.7 0.8

Noise level o

Comparisons:

@ GLASSO: 0 =0,90 =0
@ DR: o =0




Numerical Experiments: Stability Under Increasing Noise

0.9 -

0.8 -

rmse
o
o

T

0.2

I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Noise level o

Comparisons:

@ GLASSO: 0 =0,90 =0
e DR: o0 =0
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Conclusions

Three main contributions:

v proximity operators for different coupling of spectral fidelity and
regularization functions

v/ a nonconvex formulation of matrix estimation problem arising in the
context of noisy Graphical LASSO

v/ a Majorization—Minimization approach proposed to solve the nonconvex
model.

The comparison with state—of—the—art algorithms has shown that the proposed
model is stable w.r.t. increasing noise perturbing the data.

Future work:
o Extension to complex Hermitian matrices.
@ Extension to non—squared matrices via SVD.

All the presented results are collected in:

A.Benfenati, E. Chouzenoux, J.—C. Pesquet, A Proximal Approach for a Class
of Matrix Optimization Problems, submitted. [hal-01673027] J
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