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Introduction

Several problems lead to find the minimum of a matrix functional:
shape classification (Duchi et al, 2008)

gene expression (Ma et al, 2013)

model selection (Chandrasekaran et al, 2012)

matrix completion (McRae and Davenport, 2019)

computer vision (Guo et al, 2011)

phase retrieval (Candes et al, 2015)

inverse covariance estimation (d’Aspremont et al, 2008)

graph estimation (Meinshausen et al, 2006),

brain network analysis (Yang et al, 2015)

Challenge: How to deal with versatile functionals, involving non necessarily
convex terms, acting both on the matrix entries and its eigenvalues ?

This talk:

X new optimization tools for dealing with minimization problems in a symmetric
matrix space;

X new proximal algorithm for minimizing convex penalized cost with regularization
split in two parts, one being a spectral function while the other is arbitrary;

X new minimization approach for non-convex problem arising in covariance matrix
estimation, combining majorization-minimization framework and
Douglas-Rachford proximal scheme.
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Important example: Graphical Lasso

˚ Aim: Inferring Gaussian graphical model parameters pµ,Σq from N i.i.d
realizations: xp1q, . . . ,xpNq of Npµ,Σq with µ P Rn and Σ P Rnˆn symmetric
definite positive.
‚ Sample mean and empirical covariance matrix:

pµ “
1

N

N
ÿ

i“1

xpiq, S “
1

N

N
ÿ

i“1

pxpiq ´ pµqpxpiq ´ pµqJ.

‚ Negative Gaussian log-likelihood:

´
1

N
`pΣ´1

|xp1q, . . . ,xpNqq “ ´ log det Σ´1
` tracepSΣ´1

q ` constant.

˚ GLASSO: Estimator of C “““ Σ´1 based on the use of `1 penalty
(Meinshausen and Buhlmann, 2006)

pC “ argminCą0 ´ log detC ` tracepSCq ` λ}C}1

with }C}1 “
ř

j,k |Cjk|, and λ ą 0 regularization parameter.

‚ Convex optimization problem in symmetric matrix space.
Several solvers available. (Banerjee et al, 2007)(Friedman et al, 2007)(Boyd et
al, 2011)(Duchi et al, 2008).

Challenges: Which optimization method for more sophisticated penalties ?
How to account for the noise possibly degrading the input data ?
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Example

Four different GLASSO solutions for the flow-cytometry data with n “ 11
proteins measured on N “ 7466 cells (Friedman et al, 2007).
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2) Douglas-Rachford algorithm for matrix optimization problems
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Definition: Spectral function

Let
f : Sn Ñs ´8,`8s, Sn “ tC P Rnˆn|CJ “ Cu.

f is a spectral function if, for every permutation matrix P P Rnˆn,

fpCq “ ϕpPdq,

with d P Rn a vector of eigenvalues of C, and ϕ : Rn Ñs ´8,`8s is proper,
lower semicontinuous (lsc).

fpCq ϕpPdq

Logdet function

#

´ log detpCq if C P S``
n

`8 else

#

´
řn
i“1 logpdiq if d Ps0,`8rn

`8 else

Froebenius norm 1
2 }C}

2
F

1

2

n
ÿ

i“1

d
2
i

Nuclear norm R1pCq
n
ÿ

i“1

|di|

Rank rankpCq Card ti P t1, . . . , nus.t. di ‰ 0u
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Minimization of spectral functions

Let us consider the following minimization problem:

minimize
CPSn

fpCq ´ tr pTCq ` g0pCq (1)

with

f a spectral function associated to ϕ, lsc function;

g0 a spectral function associated to ψ, lsc function;

T P Sn and tr p¨q the trace operator.

Theorem

Let t P Rn be a vector of eigenvalues of T and let UT P On be such that
T “ UTDiagptqUJ

T . Assume that domϕX domψ ‰ ∅ and that the function
d ÞÑ ϕpdq ´ dJt` ψpdq is coercive. Then a solution to Problem (1) exists,
and is given by

pC “ UTDiagppdqUJ
T

where pd is any solution to the following problem:

minimize
dPRn

ϕpdq ´ dJt` ψpdq.
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Proximity operator within Bregman metric

Let f convex, differentiable on intpdomfq ‰ H.
The f -Bregman divergence between C P Sn and Y P intpdomfq is

Df
pC,Yq “ fpCq ´ fpYq ´ trpTpC´Yqq with T “ ∇fpYq.

Computing the Df -proximity operator of g0 with g0 proper, lsc, at
C P intpdomfq amounts to solve

minimize
CPSn

g0pCq `D
f
pC,Yq (2)

˚ For particular choices of f and T, Problem (2) is equivalent to Problem (1).

Corollary

Let f and g0 spectral functions associated, respectively, to ϕ P Γ0pRnq Legendre
function, and ψ P Γ0pRnq with intpdomϕq X intpdomψq ‰ ∅ and either ψ is bounded
from below or ϕ` ψ is supercoercive. Then, the solution to (2) exists, and is unique,
for every Y P Sn such that Y “ UYDiagpyqUJY with UY P On and y P intpdomϕq,
and it is expressed as

proxfg0 pYq “ UYDiagpproxϕψpyqqU
J
Y,

with proxϕψ : y ÞÑ argmin
xPRn

ψpxq ` ϕpxq ´ ϕpyq ´ x∇ϕpyq,x´ yy

X Extend (Bauschke and Combettes, 2017) to Bregman divergence setting.
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Proximity operator

Let us now consider the following minimization problem:

minimize
CPSn

fpCq ´ tr pTCq ` g0pCq `
1

2γ
}C´C}2F (3)

with γ ą 0, C P Sn, T P Sn and

f a spectral function associated to ϕ, lsc function;

g0 a spectral function associated to ψ, lsc function.

The (possibly empty) set of solutions is denoted Proxγpf´trpT ¨q`g0q

Proposition

Assume that domϕX domψ ‰ ∅. Let λ P Rn and U P On be such that
C` γT “ UDiagpλqUJ.

(i) If ψ is lower bounded by an affine function then Proxγpϕ`ψq pλq ‰ ∅ and, for

every pλ P Proxγpϕ`ψq pλq,

UDiagppλqUJ P Proxγpf´trpT ¨q`g0qpCq.

(ii) If ψ is convex, then

proxγpf´trpT ¨q`g0q
pCq “ UDiag

´

proxγpϕ`ψq pλq
¯

UJ.
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Examples

Frobenius norm:
fp¨q “ } ¨ }2F{2, spectral function associated with ϕ “ } ¨ }

2
{2.

Log-determinant:

p@C P Snq fpCq “

#

´ log detpCq if C P S``n

`8 otherwise.

Spectral function associated with

`

@λ “ pλiq1ďiďn P Rn
˘

ϕpλq “

$

’

&

’

%

´

n
ÿ

i“1

logpλiq if λ Ps0,`8rn

`8 otherwise.

Van Neumann entropy:

p@C P Snq fpCq “

#

tr pC logpCqq if C P S`n

`8 otherwise.

Spectral function associated with

`

@λ “ pλiq1ďiďn P Rn
˘

ϕpλq “

$

’

&

’

%

n
ÿ

i“1

λi logpλiq if λ P r0,`8rn

`8 otherwise.
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Examples: Frobenius norm

Proximity operators for different choices for g0 and f Frobenius norm

g0pCq, µ ą 0 proxγpϕ`ψqpλq

Nuclear norm
´

soft µγ
γ`1

´

λi
γ`1

¯¯

1ďiďnµR1pCq

Squared Frobenius norm λ

1` γ p1` 2µqµ}C}2F

Schatten p–penalty
`

signpλiqdi
˘

1ďiďn
µRpppCq, p ě 1 with p@i P t1, . . . , nuq di ě 0

and µγpdp´1
i ` pγ ` 1qdi “ λi

Inverse Schatten p–penalty
`

di
˘

1ďiďn
µRpppC

´1q, p ą 0 with p@i P t1, . . . , nuq di ą 0

and pγ ` 1qdp`2
i ´ λid

p`1
i “ µγp

Bounds on eigenvalues pminpmaxpλi{pγ ` 1q, αq, βqq1ďiďn
ιEpCq rα, βs Ă r0,`8s

Rank
ˆ

hard
b

2µγ
1`γ

ˆ

λi

1` γ

˙˙

1ďiďn
µ rankpCq

Cauchy P
 

psignpλiqdiq1ďiďn | p@i P t1, . . . , nuq di ě 0 and
µ log detpC2 ` εIq, ε ą 0 pγ ` 1qd3i ´ |λi|d

2
i `

`

2γµ` εpγ ` 1q
˘

di “ |λi|ε
(

E denotes the set of matrices in Sn with eigenvalues between α and β.
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Examples: Log-determinant

Proximity operators for different choices for g0 and f log determinant

g0pCq, µ ą 0 proxγpϕ`ψqpλq

Nuclear norm 1
2

´

λi ´ γµ`
a

pλi ´ γµq2 ` 4γ
¯

1ďiďnµR1pCq

Squared Frobenius norm 1

2p2γµ` 1q

´

λi `
b

λ2i ` 4γp2γµ` 1q
¯

1ďiďnµ}C}2F

Schatten p–penalty
`

di
˘

1ďiďn
µRpppCq, p ě 1 µγpdpi ` d

2
i ´ λidi “ γ

Inverse Schatten p–penalty
`

di
˘

1ďiďn

µRpppC
´1q, p ą 0 dp`2

i ´ λid
p`1
i ´ γdpi “ µγp

Bounds on eigenvalues
´

min
´

max
´

1
2

`

λi `
b

λ2i ` 4γ
˘

, α
¯

, β
¯¯

1ďiďn
ιEpCq rα, βs Ă r0,`8s

Cauchy P
 

pdiq1ďiďn | p@i P t1, . . . , nuq di ą 0 and
µ log detpC2 ` εIq, ε ą 0 d4i ´ λd

3
i `

`

ε` γp2µ´ 1q
˘

d2i ´ ελidi “ γε
(
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Examples: Von Neumann entropy

Proximity operators for different choices for g0 and f VN entropy

g0pCq, µ ą 0 proxγpϕ`ψqpλq

Nuclear norm
γ
´

W
´

1
γ

exp
´

λi
γ
´ µ´ 1

¯¯¯

1ďiďnµR1pCq

Squared Frobenius norm γ
2µγ`1

´

W
´

2µγ`1
γ

exp
´

λi
γ
´ 1

¯¯¯

1ďiďnµ}C}2F

Schatten p–penalty
`

di
˘

1ďiďn

µRpppCq, p ě 1 di ą 0 s.t. pµγdp´1
i ` di ` γ log di ` γ “ λi

Bounds on eigenvalues
´

min
´

max
´

γW
´

1
γ

exp
´

λi
γ
´ 1

¯¯

, α
¯

, β
¯¯

1ďiďnιEpCq with rα, βs Ă r0,`8s

Rank pdiq1ďiďn with

µ rankpCq di “

$

’

&

’

%

ρi if ρi ą χ

0 or ρi if ρi “ χ

0 otherwise

and

#

χ “
a

γpγ ` 2µq ´ γ,

ρi “ γW
´

1
γ

exp
´

λi
γ
´ 1

¯¯

Wp¨q denotes the W-Lambert function.
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Minimization of convex matrix optimization problem

Minimization problem

Now, let us consider:

minimize
CPSn

fpCq ´ tr pTCq ` gpCq (4)

with
gpCq “ µ0g0pCq ` µ1g1pCq, µ0, µ1 ą 0

and

f a spectral function associated to ϕ P Γ0pRnq;
g0 a spectral function associated to ψ P Γ0pRnq;
g1 P Γ0pRnˆnq acting on the whole matrix C (e.g., the `1 norm)

; The ”spectral terms” of the functional can be gathered together:

argmin
CPSn

fpCq ´ tr pTCq ` µ0g0pCq
looooooooooooooooomooooooooooooooooon

h0pCq

`µ1g1pCq
looomooon

h1C

ñ Douglas-Rachford algorithm (Combettes and Pesquet, 2007).
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Douglas-Rachford Algorithm

Douglas-Rachford Algorithm

Let T be a given matrix in Sn, set γ ą 0 and Cp0q P Sn.
For k “ 0, 1, . . .

Diagonalize Cpkq ` γT, i.e. find Upkq P On and λpkq P Rn such that

Cpkq ` γT “ UpkqDiagpλpkqqpUpkqqJ

dpk`
1
2
q
P Proxγpϕ`ψq

`

λpkq
˘

Cpk`
1
2
q
“ UpkqDiagpdpk`

1
2
q
qpUpkqqJ

Choose αpkq P r0, 2s

Cpk`1q P Cpkq ` αpkq
´

Proxγg1 p2C
pk` 1

2
q
´Cpkqq ´Cpk`

1
2
q
¯

.

Theorem

Let f and g0 be spectral functions associated to ϕ P Γ0pRnq and ψ P Γ0pRnq.
Let g1 P Γ0pSnq be such that f ´ tr pT¨q ` g0 ` g1 is coercive. Assume that
the intersection of the relative interiors of the domains of f ` g0 and g1 is non
empty. Let pαpkqqkě0 be a sequence in r0, 2s such that
ř`8

k“0 α
pkq
p2´ αpkqq “ `8. Then, the sequences pCpk`

1
2
q
qkě0 and

`

proxγg1p2Cpk`
1
2
q
´Cpkqq

˘

kě0
generated by the DR Algorithm converge to a

solution to Problem (4).

24 / 36



Douglas-Rachford Algorithm

Douglas-Rachford Algorithm

Let T be a given matrix in Sn, set γ ą 0 and Cp0q P Sn.
For k “ 0, 1, . . .

Diagonalize Cpkq ` γT, i.e. find Upkq P On and λpkq P Rn such that

Cpkq ` γT “ UpkqDiagpλpkqqpUpkqqJ

dpk`
1
2
q
P Proxγpϕ`ψq

`

λpkq
˘

Cpk`
1
2
q
“ UpkqDiagpdpk`

1
2
q
qpUpkqqJ

Choose αpkq P r0, 2s

Cpk`1q P Cpkq ` αpkq
´

Proxγg1 p2C
pk` 1

2
q
´Cpkqq ´Cpk`

1
2
q
¯

.

Theorem

Let f and g0 be spectral functions associated to ϕ P Γ0pRnq and ψ P Γ0pRnq.
Let g1 P Γ0pSnq be such that f ´ tr pT¨q ` g0 ` g1 is coercive. Assume that
the intersection of the relative interiors of the domains of f ` g0 and g1 is non
empty. Let pαpkqqkě0 be a sequence in r0, 2s such that
ř`8

k“0 α
pkq
p2´ αpkqq “ `8. Then, the sequences pCpk`

1
2
q
qkě0 and

`

proxγg1p2Cpk`
1
2
q
´Cpkqq

˘

kě0
generated by the DR Algorithm converge to a

solution to Problem (4).

25 / 36



3) Majorization-Minimization algorithm for robust graphical lasso
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Graphical lasso with noisy data

Let us consider the following signal model (Sun et al, 2017):

p@i P t1, . . . , Nuq xpiq “ Aspiq ` epiq

where

A P Rnˆm with m ď n

spiq „ N p0,Eq, spiq P Rm

epiq „ N
`

0, σ2Id
˘

, epiq P Rn

spiq and epiq are iid

Such observation model is encountered
in several practical applications, e.g. in
the context of “Relevant Vector
Machine” (Tipping et al, 2001), (Wipf
et al, 2004)

Covariance matrix of observed signal:

Σ “ AJEA` σ2Id

“ Y ` σ2Id

Goal: Penalized maximum likelihood approach for finding an estimate C of
Y´1, given the knowledge of σ2 and the empirical covariance matrix

S “
1

N

N
ÿ

i“1

xpiqpxpiqqJ

Prior: Sparsity and low-rank structure of C.
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Proposed formulation

Minimization problem

minimize
CPS``

n

pFpCq “ f pCq ` TS pCq ` g0pCq ` g1pCqq (5)

where

p@C P Snq fpCq “

#

log det
`

C´1
` σ2Id

˘

if C P S`n

`8 otherwise,

p@C P Snq TSpCq “

#

tr
´

`

Id ` σ
2C

˘´1
CS

¯

if C P S`n

`8 otherwise,

g0 P Γ0pSnq is a spectral function associated with ψ P Γ0pRnq, and
g1 P Γ0pSnq.

; f ` g0 ` g1 is a convex function on Sn.

; The trace term TS is concave on S`n

The whole functional F is nonconvex.
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Majorization–Minimization Approach

Definition

Let C1 P Sn. Gp¨|C1q is a tangent majorant function for F at C1 if, for every
C P Sn,

FpCq ď GpC|C1q and FpC1q “ GpC1|C1q

Majorization–Minimization algorithm:

p@` P Nq Cp``1q
“ argmin

CPSn

GpC|Cp`qq

; Ensures monotone decrease of
´

FpCp`qq
¯

`PN
.

Proposed strategy:

F reads as the sum of convex and concave terms

Majoration of the concave term TS by a linear function

Convex majorant function minimized by our Douglas-Rachford scheme.
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Majorization–Minimization Approach

Construction of a majorizing approximation of TS at C1 P S`n :

p@C P S
`
n q TS pCq ď TS

`

C1
˘

` tr
`

∇TSpC
1
q
`

C´C1
˘˘

.

As f is finite only on S`n , a tangent majorant of the cost function F at C1

reads:

p@C P S
`
n q GpC | C1q “

f pCq ` TS

`

C1
˘

` tr
`

∇TSpC
1
q
`

C´C1
˘˘

` g0pCq ` g1pCq.

; FpCq ď GpC | C1q for all C P S`n and GpC1 | C1q “ FpC1q at C1 P S`n .

This leads to the general MM scheme:

p@` P Nq Cp``1q
P ArgminCPSn

fpCq`trp∇TSpC
p`q
qCq`g0pCq`g1pCq

with Cp0q P S`n .

X At each iteration of the MM algorithm: Convex optimization problem of
the form (4) ñ Douglas–Rachford approach.

X Convergence guarantee to a critical point of F.
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4) Numerical experiments
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Numerical Experiments

The dataset is generated by a slight modification of Boyd’s code1:

a sparse precision matrix C0 of dimension nˆ n is generated (n=100)

its inverse Σ0 is employed to generate N “ 10000 realizations of a
Gaussian mvrv N p0,Σ0q

Gaussian noise of variance σ2 is added to the realizations, in order to
satisfy xpiq “ Aspiq ` epiq pA “ Idq and hence the true covariance matrix
is

Σ “ Σ0 ` σ
2Id

the empirical covariance matrix S is obtained by

S “
1

N

N
ÿ

i“1

xpiqpxpiqqJ

Three type of error measurements:
False Positive Rate
on Precision Matrix

(fpr)

True Positive Rate
on Precision Matrix

(tpr)

Relative Mean
Square Error on Σ

(RMSE)

1http://stanford.edu/~boyd/papers/admm/covsel/covsel_example.html
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Numerical Experiments: Quality of Reconstruction

Σ0 S Σrec

Settings:

g0pCq “ µ0R1pC
´1
q (Schatten 1–norm, nuclear norm)

g1pCq “ µ1}C}1 (component–wise `1 norm)

µ0 “ 0.0716, µ1 “ 0.0278, α “ 1.5

Noise level: σ “ 0.5

RMSE: 0.1180

FPR (on precision matrix): 0.0257

TPR (on precision matrix): 100%
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Numerical Experiments: Stability Under Increasing Noise

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Noise level σ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

fp
r

MM
DR
GLASSO

Comparisons:

GLASSO: σ “ 0, g0 “ 0

DR: σ “ 0
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Numerical Experiments: Stability Under Increasing Noise
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Conclusions

Three main contributions:

3 proximity operators for different coupling of spectral fidelity and
regularization functions

3 a nonconvex formulation of matrix estimation problem arising in the
context of noisy Graphical LASSO

3 a Majorization–Minimization approach proposed to solve the nonconvex
model.

The comparison with state–of–the–art algorithms has shown that the proposed
model is stable w.r.t. increasing noise perturbing the data.

Future work:

Extension to complex Hermitian matrices.

Extension to non–squared matrices via SVD.

All the presented results are collected in:

A.Benfenati, E. Chouzenoux, J.–C. Pesquet, A Proximal Approach for a Class
of Matrix Optimization Problems, submitted. [hal-01673027]
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