
IO-SETS:
Simple and efficient approaches for

I/O bandwidth management

Francieli Boito, Guillaume Pallez, Luan Teylo, Nicolas Vidal

● Three papers and one research report:
○ The role of storage target allocation in BeeGFS (CLUSTER 2022)

■ https://gitlab.inria.fr/hpc_io/beegfs_evaluation
○ I/O performance of multiscale finite element simulations (Workshop in SBAC-PAD 2022)

■ https://gitlab.inria.fr/hpc_io/iofwd_perf_impact
○ IO-SETS (Submitted to TPDS)

■ https://gitlab.inria.fr/hpc_io/io-sets
○ Implementation of a Weighted Fair Queuing (research report)

■ https://github.com/francielizanon/agios

● Highlights:
○ We recommended a different configuration for the PFS in PlaFRIM (40% improvement in I/O

performance)
○ The tools that we started to develop in this ANR/region project were then propagated to the

ADMIRE H2020 European project

Data-Aware Scheduling at Higher Scale (DASH)

IO-SETS: Simple and efficient approaches
for I/O bandwidth management

Context
● The I/O infrastructure is shared by all jobs in a supercomputer

○ “Fair-share scheduling”: applications share the bandwidth

● Performance variability due to interference from other applications

● Longer execution time, waste of compute resources

Processing nodes Parallel File
System

Motivation
● I/O scheduling to mitigate interference

○ control all accesses to the parallel file system

○ decide what applications can do I/O and when

● Most related work: exclusive access to the I/O infrastructure

○ requires information about application: I/O phases, amount of data, etc

● Our goal: simple scheduling heuristic

○ low cost (in computation)

○ very little information about applications

Exclusive vs. Fairshare: an example
● Two concurrent periodic applications

○ “small” or “large” I/O phases

Exclusive vs. Fairshare: an example
● Two concurrent periodic applications

○ “small” or “large” I/O phases

Priority-based Bandwidth sharing
● Two concurrent periodic applications

○ “small” (J1) or “large” (J2) I/O phases

IO-Sets
● We propose IO-Sets, a set-based method

○ at the start of an I/O phase, the application is assigned to a set Si

○ each set Si is assigned a priority pi

○ only one application per set is allowed to do I/O

■ exclusive access within each set

■ sharing between sets

○ the available bandwidth is shared among sets according to their priorities

● We can propose heuristics in the IO-Sets method: answer two questions
○ How to assign applications to sets?

○ How to define the priority of each set?

Set-10 heuristic
● We define the witer metric for an application with n iterations

○ the average time between the beginning of two consecutive I/O phases

Set-10 heuristic
● Set-10 algorithm in the IO-Sets method:

○ An application is assigned to a set Si that corresponds to its witer magnitude order:

○ Priorities per set decrease exponentially. Set Si has priority pi:

● Applications with the smallest witer get the highest priority, i.e. most of the bandwidth
○ { (S1, 0.1), (S2, 0.01), (S3, 0.001).…}

Evaluation
● Max Stretch: how many times slower does the slowest application run

(compared to running by itself)

○ The lower the better

● Utilization: It is a system-wide metric that represents platform usage

○ The highest the better

● IO-slowdown: how close from the minimum the actual I/O time is

○ Equal 1 mean the I/O was the same as it would be in isolation

Evaluation: practical
● Practical experiments with IOR

● Simulated experiments with SimGrid

● 16 applications

○ nH high-frequency jobs with witer = 64

○ nL low-frequency jobs with witer = 640

Validation

80% of the experimental
results are within 3.5%
(resp. 1.5%) of the
simulated Utilization
(resp. Max Stretch).

Validation

Set-10 improved the
stretch by more than
27% over the system
current scheduler

Validation

Validation

Evaluation

● Simulated experiments with SimGrid

● >200 workloads, each of 60 applications

○ nH high-frequency jobs with witer ~ N(10,1)

○ nM medium-frequency jobs with witer ~ N(100,10)

○ nL low-frequency jobs with witer ~ N(1000, 100)

● For each application, we define a random release time

● For nH = {0,...,40}, nM=20 and nL = 40 - nH

Validation

many
low-frequency
(long phases)
applications

many
high-frequency
(short phases)
applications

I/O performance impact

I/O slowdown of Set-10 over
FairShare: improvement of up
to 25%

many
low-frequency
(long phases)
applications

many
high-frequency
(short phases)
applications

Where do results come from?
Compared to only having sets (“Set-Fairshare”) and priority-based bandwidth without sets

(“Sharing+Priority”)

If the sets are not well-defined

Is it the mapping strategy good in this case?

If the sets are not well-defined

● For various values of η we generate workloads with:
○ Twenty jobs with witer ~ N(10, η10)

○ Twenty jobs with witer ∼ N (100, η100)

○ Twenty jobs with witer ∼ N (1000, η1000)

If the sets are not well-defined

η

The variability is handled by moving
the applications into different sets
of similar orders of magnitude.

Conclusion

● Set-10 is always better than fairshare and exclusive

● I/O performance improved in up to 25%

● Omitted results, check our paper https://hal.inria.fr/hal-03648225/

○ Noise in the duration of I/O phases

○ Comparison to other mapping strategies

○ Set-10 is robust and performs better (or at least the same) than fairshare

● witer is a robust metric
○ easy to calculate, lightweight

○ we can adapt it to changes in the application

https://hal.inria.fr/hal-03648225/

Practical Applicability
● How to implement I/O sets?

● We believe it should be transparent to applications

○ Intercept all application requests

○ An application agent talks to a centralized scheduler

○ Alternative: we could implement it in the intermediate I/O nodes

● How to enforce priority-based bandwidth sharing? Two ideas:

○ Weighted Fair Queuing (WFQ) request scheduling

○ Adapting the number of processes used by the application

Future research directions

● how to detect start and end of I/O phases?

● the impact of phase detection on witer calculation

● how to deal with applications that do not use their share of the bandwidth (access

pattern)

● apply IO-Sets to other levels of the I/O stack

○ for example: control access to shared Burst Buffers

IO-SETS:
Simple and efficient approaches for

I/O bandwidth management

Thanks for your attention!

https://hal.inria.fr/hal-03648225/

https://hal.inria.fr/hal-03648225/

● Francieli Boito, Guillaume Pallez, Luan Teylo, Nicolas Vidal. IO-SETS: Simple and efficient
approaches for I/O bandwidth management. 2022. ⟨hal-03648225v2⟩ (under review in TPDS).

● Francieli Boito, Guillaume Pallez, Luan Teylo. The role of storage target allocation in
applications' I/O performance with BeeGFS. CLUSTER 2022 - IEEE International Conference on
Cluster Computing, Sep 2022, Heidelberg, Germany. ⟨hal-03753813⟩

● Francieli Boito, Antonio Tadeu A. Gomes, Louis Peyrondet, Luan Teylo. I/O performance of
multiscale finite element simulations on HPC environments. WAMCA 2022 - 13th Workshop on
Applications for Multi-Core Architectures, Nov 2022, Bordeaux, France. ⟨hal-03808833⟩

● Alessa Mayer, Luan Teylo, Francieli Boito. Implementation and Test of a Weighted Fair Queuing
(WFQ) I/O Request Scheduler. [Research Report] RR-9480, Inria. 2022, pp.12. ⟨hal-03758890v3⟩

References

