
Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Memory-Aware Scheduling of

Tasks Sharing Data
Applied to limited distributed memory (GPUs) and limited shared

memory (CPU)

Maxime GONTHIER

Supervised by Loris MARCHAL and Samuel THIBAULT
maxime.gonthier@ens-lyon.fr

LIP - ROMA - LaBRI - STORM - Inria

ENS de Lyon - Université de Bordeaux

March 31, 2023

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 1 / 22

mailto:maxime.gonthier@ens-lyon.fr

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Memory-Aware Scheduling of

Tasks Sharing Data
Applied to limited distributed memory (GPUs) and limited shared

memory (CPU)

Maxime GONTHIER

Supervised by Loris MARCHAL and Samuel THIBAULT
maxime.gonthier@ens-lyon.fr

LIP - ROMA - LaBRI - STORM - Inria

ENS de Lyon - Université de Bordeaux

March 31, 2023

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 1 / 22

mailto:maxime.gonthier@ens-lyon.fr
Loris Marchal

Loris Marchal

Loris Marchal
Yet another Cholesky talk !

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Why focus on memory-aware scheduling? Case 1:
limited distributed memory (GPUs)

GPU1 memory GPU2 memory GPU3 memory GPU4 memory

CPU memory of infinite size

PCI Express bus

Lo
ad

in
g

da
ta

E
vi

ct
in

g
da

ta

GPUs are fast but have a limited memory

They share the same PCI bus with limited bandwidth

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 2 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Why focus on memory-aware scheduling? Case 2:
limited shared memory (CPU)

Core1 Core2 Core3 Core4 Core5 CoreN

Disk

ChipsetMemoryLo
ad

in
g

da
ta

E
vi

ct
in

g
da

ta

Communicating with the disk is much slower than with a PCI
bus

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 3 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Problem modeling

Steps before processing each task on a PU
1 PUk wants to process task T
2 Some data are evicted from the memory of PUk

3 Data required by T that are not yet in memory are loaded in the
memory of PUk

4 Task T is processed on PUk

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 4 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Example with 2D grid dependencies

T1 T2 T3

T4 T5 T6

T7 T8 T9

D1 D2 D3

D4

D5

D6
T1 T2 T5 T4

D4 D5

D1 D2 D1
data in memory

tasks being processed

GPU1

D4 D5 D6

D3 D2 D1

T3 T6 T9 T8 T7

data in memory

tasks being processed

GPU2

time

GOALS:

Balancing tasks among GPUs! Reduce total execution time
Ordering tasks inside each GPU! Reduce data transfers
Having a generic scheduler! Efficient with any application or
memory limitation

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 5 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Dynamic scheduler of STARPU: DMDAS

Strategy
Schedule tasks so their completion time is minimal based on
computation + communication times and sorts tasks by priority order

+ Ready reordering heuristic on PUk

From the list L of tasks allocated on PUk , it will search the task T 2 L
requiring the fewest data transfers
input :List L of tasks allocated on PUk
while L 6= ; do

Search first T 2 L requiring the fewest data transfers
Wait for all data in D(T) to be in PUk memory
Start processing T

end

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 6 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Work stealing from STARPU: LWS

Strategy
One queue per worker
Schedules tasks on the worker which released it by default (to
re-use data)
Steals tasks from neighbor worker’s end of queue to load
balance while maintaining locality
Sort tasks by priority

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 7 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Data-Aware Reactive Task Scheduling: DARTS

If taskBuffer k is empty -> pop a task from plannedTasksk
If plannedTasksk is empty -> call DARTS to fill plannedTasksk

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 8 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1 D2 D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a task

PU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a task

PU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a task

PU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a task

PU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Strategy

Filling plannedTasksk

Everything is distributed. The scheduling is done by PUk when it
needs new tasks.

Find Dopt 2 dataNotInMemk such that the number of tasks
depending on Dopt and on other data already in memory is
maximum (if there is a tie: tiebreak with priority, transfer time and
most total unprocessed task)
plannedTasksk set of unprocessed tasks depending only on
Dopt and on other data already in memory
Remove Dopt from dataNotInMemk

If Dopt does not allow to process at least one "free" task -> Select
a random unprocessed task T

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 10 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Eviction and optimizations

Our eviction policy: LUF (Least Used in the Future)
1 If possile, try to evict data not useful for any task in taskBuffer k

and used by a minimal number of tasks in plannedTasksk

2 Else, apply Belady’s optimal rule on tasks already allocated
3 Then, update plannedTasksk

Improvements
Using the transfer time and task’s length to favor CUDA-CUDA
transfers

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 11 / 22

Loris Marchal

Loris Marchal
PlannedTasks

Loris Marchal
GPU

Loris Marchal
PlannedTasks

Loris Marchal

Loris Marchal

Loris Marchal

Loris Marchal

Loris Marchal
Task Buffer

Loris Marchal

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Experimental settings

B
fit

s
in

 m
em

or
y

A
an

d
B

fit
s

in
 m

em
or

y

GFlop/s max

0

5000

10000

0 500 1000 1500 2000 2500
Working set (MB)

G
Fl

op
/s

For limited distributed memory (GPUs)
Tesla V100 GPUs
PCI bandwidth of 12000 MB/s

For limited shared memory (CPU)
AMD EPYC 7642: 48 cores/CPU
Disk transfer bandwith: 300 MB/s

PU memory limited to 2 GB ! To
better distinguish performance on
small datasets

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 12 / 22

Loris Marchal

Loris Marchal

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Cholesky with 2 GPUs

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 15 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Cholesky with 2 GPUs

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 16 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Cholesky with 8 GPUs

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 17 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Cholesky with 8 GPUs and no memory limitation

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 18 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

LU with 4 GPUs

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 19 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

LU with 1 GPU and no memory limitation

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 20 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

LU with 48 CPU cores

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 21 / 22

Loris Marchal

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Conclusion
Limiting data movements is crucial
: New strategy: DARTS, focused on data movement

Tested on 2D matrix multiplication, Cholesky decomposition, LU,

GEMM and sparse matrix multiplication : DARTS can achieve

good performance when the memory is not constrained and

always get very good performance when it is a scarce resource.

Thanks to STARPU we observed that DARTS can perform using

GPUs and CPU.

Future works
Test DARTS with other out-of-core applications
Using one instance of DARTS per memory node
Improve computational complexity. It’s holding us back to get
good performances on application with a large number of ready
task
Manage multiple MPI nodes

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 22 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Joker slide

Source: Analysis of Dynamic Scheduling Strategies for Matrix Multiplication on Hetero-
geneous Platforms - Marchal - Beaumont

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 23 / 22

Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Sparse 2D matrix multiplication without memory
limitation (32GB by GPU) with 4 Tesla V100 GPUs

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ●

GFlop/s max

0

10000

20000

30000

40000

50000

0 5000 10000 15000 20000
Working set (MB)

G
Fl

op
/s

●●●●●● ●●●●●●

●●●●●●

●●●●●●

DARTS+LUF+OPTI hMETIS+R
DMDAR DARTS+LUF
hMETIS+R no part. time EAGER

No memory constraint
DARTS produces a processing order that best distributes

transfers over time

hMETIS suffers from an important partitioning cost
Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 24 / 22

