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Why focus on memory-aware scheduling? Case 1:
limited distributed memory (GPUs)

GPU1 memory GPU2 memory GPU3 memory GPU4 memory

CPU memory of infinite size
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GPUs are fast but have a limited memory

They share the same PCI bus with limited bandwidth
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Why focus on memory-aware scheduling? Case 2:
limited shared memory (CPU)
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Communicating with the disk is much slower than with a PCI
bus
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Problem modeling

Steps before processing each task on a PU
1 PUk wants to process task T
2 Some data are evicted from the memory of PUk

3 Data required by T that are not yet in memory are loaded in the
memory of PUk

4 Task T is processed on PUk
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Example with 2D grid dependencies
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GOALS:

Balancing tasks among GPUs! Reduce total execution time
Ordering tasks inside each GPU! Reduce data transfers
Having a generic scheduler! Efficient with any application or
memory limitation
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Dynamic scheduler of STARPU: DMDAS

Strategy
Schedule tasks so their completion time is minimal based on
computation + communication times and sorts tasks by priority order

+ Ready reordering heuristic on PUk

From the list L of tasks allocated on PUk , it will search the task T 2 L
requiring the fewest data transfers
input :List L of tasks allocated on PUk
while L 6= ; do

Search first T 2 L requiring the fewest data transfers
Wait for all data in D(T ) to be in PUk memory
Start processing T

end

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 6 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Work stealing from STARPU: LWS

Strategy
One queue per worker
Schedules tasks on the worker which released it by default (to
re-use data)
Steals tasks from neighbor worker’s end of queue to load
balance while maintaining locality
Sort tasks by priority
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Data-Aware Reactive Task Scheduling: DARTS

If taskBuffer k is empty -> pop a task from plannedTasksk
If plannedTasksk is empty -> call DARTS to fill plannedTasksk
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Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1 D2 D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a taskPU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a task

PU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a task

PU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a task

PU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Intuition

Consider data movement before task allocation

Perform as many tasks as possible with the data at hand

PU asking for a task

PU asking for a task

D1

D2

D3 D4

D5

D6

D7

D8

1

D2

D5

2D7

1

D1

D6

2D8

3

D4

4

3

D3

4

Maxime GONTHIER Memory-Aware Scheduling March 31, 2023 9 / 22



Introduction Formalization of the problem Experimental Evaluation Conclusion and Future Work

Strategy

Filling plannedTasksk

Everything is distributed. The scheduling is done by PUk when it
needs new tasks.

Find Dopt 2 dataNotInMemk such that the number of tasks
depending on Dopt and on other data already in memory is
maximum (if there is a tie: tiebreak with priority, transfer time and
most total unprocessed task)
plannedTasksk  set of unprocessed tasks depending only on
Dopt and on other data already in memory
Remove Dopt from dataNotInMemk

If Dopt does not allow to process at least one "free" task -> Select
a random unprocessed task T
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Eviction and optimizations

Our eviction policy: LUF (Least Used in the Future)
1 If possile, try to evict data not useful for any task in taskBuffer k

and used by a minimal number of tasks in plannedTasksk

2 Else, apply Belady’s optimal rule on tasks already allocated
3 Then, update plannedTasksk

Improvements
Using the transfer time and task’s length to favor CUDA-CUDA
transfers
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Experimental settings
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For limited distributed memory (GPUs)
Tesla V100 GPUs
PCI bandwidth of 12000 MB/s

For limited shared memory (CPU)
AMD EPYC 7642: 48 cores/CPU
Disk transfer bandwith: 300 MB/s

PU memory limited to 2 GB ! To
better distinguish performance on
small datasets
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Cholesky with 2 GPUs
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Cholesky with 2 GPUs
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Cholesky with 8 GPUs
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Cholesky with 8 GPUs and no memory limitation
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LU with 4 GPUs
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LU with 1 GPU and no memory limitation
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LU with 48 CPU cores
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Conclusion
Limiting data movements is crucial
: New strategy: DARTS, focused on data movement

Tested on 2D matrix multiplication, Cholesky decomposition, LU,

GEMM and sparse matrix multiplication : DARTS can achieve

good performance when the memory is not constrained and

always get very good performance when it is a scarce resource.

Thanks to STARPU we observed that DARTS can perform using

GPUs and CPU.

Future works
Test DARTS with other out-of-core applications
Using one instance of DARTS per memory node
Improve computational complexity. It’s holding us back to get
good performances on application with a large number of ready
task
Manage multiple MPI nodes
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Joker slide

Source: Analysis of Dynamic Scheduling Strategies for Matrix Multiplication on Hetero-
geneous Platforms - Marchal - Beaumont
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Sparse 2D matrix multiplication without memory
limitation (32GB by GPU) with 4 Tesla V100 GPUs
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DARTS+LUF+OPTI hMETIS+R
DMDAR DARTS+LUF
hMETIS+R no part. time EAGER

No memory constraint
DARTS produces a processing order that best distributes

transfers over time

hMETIS suffers from an important partitioning cost
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