Data Distribution Schemes for Dense Factorization on Any Number of Nodes

Olivier Beaumont
Jean-Alexandre Collin Lionel Eyraud-Dubois Mathieu VÉrité

LaBRI, Inria Center of the University of Bordeaux
LaBRI
université ${ }^{88}$ BORDEAUX

Noutivenlle-
Aquitaine

Scalable HPC Ecosystem \& Solharis meeting March 31st 2023

Table of Contents

(1) Introduction
(2) Non-symmetric Case
(3) Symmetric Case

- Symmetric Block Cyclic (SBC) Distribution
- Greedy ColRow \& Matching (GCR\&M)

4 Conclusion and Perspectives

Table of Contents

(1) Introduction

(2) Non-symmetric Case
(3) Symmetric Case

- Symmetric Block Cyclic (SBC) Distribution
- Greedy ColRow \& Matching (GCR\&M)
(4) Conclusion and Perspectives

Part of Mathieu Vérité's PhD work

Context of the PhD

■ Funded by Région Aquitaine - HPC Scalable Ecosystem project

- Data allocation for distributed linear algebra - followup from Solhar ANR project

List of publications

O. Beaumont, L. Eyraud-Dubois, and M. Verite. 2D Static Resource Allocation for Compressed Linear Algebra and Communication Constraints. In IEEE HIPC 2020, (virtual), India, Dec. 2020.O. Beaumont, L. Eyraud-Dubois, J. Langou, and M. Vérité. I/O-optimal algorithms for symmetric linear algebra kernels. In ACM SPAA 2022, Philadephia, USA, 2022.(3) O. Beaumont, P. Duchon, L. Eyraud-Dubois, J. Langou, and M. Vérité. Symmetric Block-Cyclic Distribution: Fewer Communications Leads to Faster Dense Cholesky Factorization. In SC 2022, Dallas, Texas, USA, Nov. 2022.
Best paper candidate (Algorithms track)
(4) O. Beaumont, J.-A. Collin, L. Eyraud-Dubois, and M. Vérité. Data Distribution Schemes for Dense Linear Algebra Factorizations on Any Number of Nodes. In IEEE IPDPS 2023, St. Petersburg, Florida, USA, May 2023.

Mathieu is now a postdoc with Laura Grigori, in Inria Paris and Sorbonne University.

Introduction

Context

■ Use cases: Dense LU / Cholesky factorization

- distributed execution using P identical nodes

Communications in distributed settings

- they are a bottleneck for the execution \Rightarrow reducing them improves performance
- Approach: design data distributions that reduce the overall volume of communication
- standard solution (ScaLAPACK): 2D Block-Cyclic - best when P is square

■ for symmetric input: Symmetric Block Cyclic (SBC) - valid for limited values of P

In this talk

- Design distributions for any number of nodes

Table of Contents

(2) Non-symmetric Case
(3) Symmetric Case

- Symmetric Block Cyclic (SBC) Distribution
- Greedy ColRow \& Matching (GCR\&M)

4 Conclusion and Perspectives

Communication Scheme in Distributed LU factorization

Communication Scheme in Distributed LU factorization

Communication Scheme in Distributed LU factorization

Communication Scheme in Distributed LU factorization

\section*{A

- Dominant part of the communication: TRSM output \rightarrow GEMM input.

With the 2D Block Cyclic Pattern

$$
p=2 \begin{array}{ll|l|l|}
\begin{array}{|l|l|l|l}
& 2 & 3 & 4 \\
\hline & 6 & 7 & 8 \\
\longleftrightarrow & \\
q=4
\end{array} \\
\hline
\end{array}
$$

■ Each tile of the lower triangular is sent $q-1$ times

- Each tile of the upper triangular is sent $p-1$ times
- Total communication cost: $Q=\frac{M(M+1)}{2}(p+q-2)$
- Best when $p \simeq q \simeq \sqrt{P}$

What if $P=23 ?$
 (LU nopiv with Chameleon+StarPU)

Common answer: just use fewer nodes to get a nice 2DBC distribution Experiments on bora nodes of Plafrim: 36-core Intel Xeon Skylake Gold 6240 @ 2.6 GHz

What if $P=23 ?$

Can we try to arrange the nodes in a square?

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23		

What if $P=23 ?$

Can we try to arrange the nodes in a square?

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	4	5

What if $P=23 ?$

[IPDPS'23]
Can we try to arrange the nodes in a square?

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23		

What if $P=23 ?$

[IPDPS'23]
Can we try to arrange the nodes in a square?

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23		

Can we try to arrange the nodes in a square?

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23		

G-2DBC: a 20×23 pattern Each node appears 20 times. 5 nodes in each row, 4 or 5 in each column.

What if $P=23 ?$
 (LU nopiv with Chameleon+StarPU)

With G-2DBC, one can use all nodes with good efficiency

Table of Contents

(3) Symmetric Case

- Symmetric Block Cyclic (SBC) Distribution
- Greedy ColRow \& Matching (GCR\&M)
(4) Conclusion and Perspectives

Communication Scheme in Distributed Cholesky

■ Dominant part of the communication: TRSM output \rightarrow GEMM input.

- Symmetry of $\mathbf{A} \Rightarrow$ as many transfers as different nodes in the union of a row and column.
M
- The union of row and column of same index: ColRow.
- Criterion for communication reduction: number of different nodes in ColRow: for $i \in\{1, \ldots, M\}$, it is denoted z_{i}.

Communication Scheme in Distributed Cholesky

- Dominant part of the communication: TRSM output \rightarrow GEMM input.
- Symmetry of $\mathbf{A} \Rightarrow$ as many transfers as different nodes in the union of a row and column.
- The union of row and column of same index: ColRow.
- Criterion for communication reduction: number of different nodes in ColRow: for $i \in\{1, \ldots, M\}$, it is denoted z_{i}.

Communication Scheme in Distributed Cholesky

■ Dominant part of the communication: TRSM output \rightarrow GEMM input.

- Symmetry of $\mathbf{A} \Rightarrow$ as many transfers as different nodes in the union of a row and column.
- The union of row and column of same index: ColRow.
- Criterion for communication reduction: number of different nodes in CoIRow: for $i \in\{1, \ldots, M\}$, it is denoted z_{i}.

Communication Cost of Pattern-based Distributions

A

ColRow 5

Figure: 2D BC distribution using $P=9$ nodes.

Square pattern \Rightarrow matching ColRow in

 the matrix and the pattern.At iteration k :

- pattern replicated vertically $\frac{M-k}{r}$ times
- each node in column k broadcasts to all other nodes in its ColRow
$\Rightarrow \# \mathrm{comm}=(M-k)\left(\frac{1}{r} \sum_{i=1}^{r} z_{i}-1\right)$

Total volume of communication:
$Q=\underbrace{\frac{M(M+1)}{2}}_{\text {size of } \mathbf{A}}(\underbrace{\frac{1}{r} \sum_{i=1}^{r} z_{i}}_{\text {pattern comm cost: } \bar{z}} \quad-1)$

Communication Cost of Pattern-based Distributions

A

Pattern:

Square pattern \Rightarrow matching ColRow in the matrix and the pattern.

At iteration k :

- pattern replicated vertically $\frac{M-k}{r}$ times
- each node in column k broadcasts to all other nodes in its ColRow
$\Rightarrow \# \mathrm{comm}=(M-k)\left(\frac{1}{r} \sum_{i=1}^{r} z_{i}-1\right)$

Total volume of communication:
$Q=\underbrace{\frac{M(M+1)}{2}}_{\text {size of } \mathbf{A}}(\underbrace{\frac{1}{r} \sum_{i=1}^{r} z_{i}}_{\text {pattern comm cost: } \bar{z}} \quad-1)$

Communication Cost of Pattern-based Distributions

Figure: 2D BC distribution using $P=9$ nodes.
Q only depends on the pattern communication cost (i.e. "average number of different nodes per ColRow ")

$$
\bar{z}=\frac{1}{r} \sum_{i=1}^{r} z_{i}
$$

Objective: minimize it.

Symmetric patterns are good candidates: same nodes on rows and columns.

Constraint: pattern must be balanced (each node appears the same number of times)

Communication Cost: BC, SBC and TBC

2D BC pattern $(P=9)$:

0	1	2
3	4	5
6	7	8
	8	$r=3(=\sqrt{P})$ \#nodes in CoIRow 2: $5(=2 \sqrt{P}-1)$

2D Block Cyclic (BC)

- balanced: each node appears once
- size $r=\sqrt{P}$ (smallest possible with P)
- communication cost: $\bar{z}=2 r-1=2 \sqrt{P}-1$

SBC basic pattern $(P=8)$:

Symmetric Block Cyclic (SBC)

6	0	1	3
0	7	2	4
1	2	6	5
3	4	5	7

$r=4(=\sqrt{2} \sqrt{P})$
\#nodes in ColRow 2:

$$
4(=\sqrt{2} \sqrt{P})
$$

Communication Cost: $\mathrm{BC}, \mathrm{SBC}$ and TBC

2D BC pattern $(P=9)$:

0	1	2			
3	4	5			
6	7	8	$	$	$r=3(=\sqrt{P})$
:---:					
\#nodes in ColRow 2:					
$5(=2 \sqrt{P}-1)$					

SBC basic pattern $(P=8)$:

6	0	1	3
0	7	2	4
1	2	6	5
3	4	5	7

2D Block Cyclic (BC)

$$
\bar{z}=2 \sqrt{P}-1
$$

Symmetric Block Cyclic (SBC)

- $\frac{r(r-1)}{2}$ nodes below diagonal
- $\frac{r}{2}$ nodes on the diagonal $\Rightarrow P=\frac{r^{2}}{2}$
- balanced: each node appears 2 times
- smallest symmetric version (larger than BC)
- communication cost: $\bar{z}=r=\sqrt{2} \sqrt{P}$

Triangular Block Cyclic (TBC)

Communication Cost: BC, SBC and TBC

TBC pattern $(P=12)$

	1	1	4	5	6		5	6
1		1	7	8	9	9	7	8
1	1		10	11	12	11	112	10
	7	10		2	2	4	7	10
5	8	11	2		2	11	115	8
6	9	12	2	2		9	12	6
	9	11		11	9		3	3
5	7	12	7	5	12	3		3
6	8	10	10	8	6	3	3	

2D Block Cyclic (BC)

$$
\bar{z}=2 \sqrt{P}-1
$$

Symmetric Block Cyclic (SBC)

$$
\bar{z}=\sqrt{2} \sqrt{P}
$$

Triangular Block Cyclic (TBC)

- larger and more complex pattern
- $r=c^{2}$ for any prime number c
- $P=c(c+1)$
- $\bar{z}=c+1=\frac{1}{2}+\sqrt{P+\frac{1}{4}}$

Communication Cost: BC, SBC and TBC

TBC pattern $(P=12)$

	1	1	4	5	6		5	6
1		1	7	8	9	9	7	8
1	1		10	11	12	11	112	10
	7	10		2	2	4	7	10
5	8	11	2		2	11	115	8
6	9	12	2	2		9	12	6
	9	11		11	9		3	3
5	7	12	7	5	12	3		3
6	8	10	10	8	6	3	3	

\#nodes in ColRow 2:
$4(\simeq \sqrt{P}+0.5)$

2D Block Cyclic (BC)

$$
\bar{z}=2 \sqrt{P}-1
$$

Symmetric Block Cyclic (SBC)

$$
\bar{z}=\sqrt{2} \sqrt{P}
$$

Triangular Block Cyclic (TBC)

$$
\bar{z}=\frac{1}{2}+\sqrt{P+\frac{1}{4}}
$$

Asymptotically, SBC reduces comms by a factor of $\sqrt{2}$. TBC reduces by another $\sqrt{2}$ factor.

SBC and TBC Limitations

Not available for any P

r / c	SBC		TBC
	basic	extended	
3	-	3	12
4	8	6	-
5	-	10	30
6	18	15	-
7	-	21	56
8	32	28	-
9	-	36	-
10	50	45	-

Pattern - 2DBC $\triangle \mathrm{SBC}$ • TBC
\Rightarrow What to do with $P=35$?

Greedy ColRow \& Matching (GCR\&M)

GCR\&M algorithm

General ideas

■ look for larger symmetric pattern

- minimize \bar{z} under constraint of almost perfect balancing (excluding diagonal)
- diagonal positions unallocated \rightarrow used to compensate imbalance

Input: pattern size r, number of nodes P Output: symmetric square pattern Two steps:
(1) associate each position \leftrightarrow subset of possible nodes (greedy procedure)
(2) allocate each pattern position to a node (matching)

Greedy ColRow \& Matching (GCR\&M)

\square : covered position

GCR\&M algorithm - step 1

Throughout the execution, maintain:

- set of uncovered pattern positions: \mathcal{U} (init. all positions, $\mathcal{U}=\{1, \ldots, r\}^{2}$)
- for each node p, the set of ColRow in which p can appear: $\mathcal{A}[p]$
While $\mathcal{U} \neq \emptyset$:
(a) select the least loaded node p
(b) assign to p the ColRow which maximize newly covered positions
(c) update \mathcal{U}
"Reverse" \mathcal{A} : each position \leftrightarrow subset of nodes

Greedy ColRow \& Matching (GCR\&M)

CR $\{1,3,4,6,9\}$ cover 4 new positions

GCR\&M algorithm - step 1

Throughout the execution, maintain:

- set of uncovered pattern positions: \mathcal{U} (init. all positions, $\mathcal{U}=\{1, \ldots, r\}^{2}$)
- for each node p, the set of ColRow in which p can appear: $\mathcal{A}[p]$
While $\mathcal{U} \neq \emptyset$:
(a) select the least loaded node p
(b) assign to p the ColRow which maximize newly covered positions
(c) update \mathcal{U}
"Reverse" \mathcal{A} : each position \leftrightarrow subset of nodes

Greedy ColRow \& Matching (GCR\&M)

CR $\{2,7\}$ cover 6 new positions

GCR\&M algorithm - step 1

Throughout the execution, maintain:

- set of uncovered pattern positions: \mathcal{U} (init. all positions, $\mathcal{U}=\{1, \ldots, r\}^{2}$)
- for each node p, the set of ColRow in which p can appear: $\mathcal{A}[p]$
While $\mathcal{U} \neq \emptyset$:
(a) select the least loaded node p
(b) assign to p the ColRow which maximize newly covered positions
(c) update \mathcal{U}
"Reverse" \mathcal{A} : each position \leftrightarrow subset of nodes

Greedy ColRow \& Matching (GCR\&M)

GCR\&M algorithm - step 2

Association position \leftrightarrow possible nodes:
bipartite graph

- Build an allocation by finding a maximum cardinality matching in two successive versions of the graph:
(a) using $k=\left\lfloor\frac{r(r-1)}{P}\right\rfloor$ replications of each node \rightarrow ensure balancing
(b) using 1 replication for each node
- Remaining unallocated positions \rightarrow assign to the least loaded possible node

Greedy ColRow \& Matching (GCR\&M)

GCR\&M algorithm - step 2

Association position \leftrightarrow possible nodes:

bipartite graph

- Build an allocation by finding a maximum cardinality matching in two successive versions of the graph:
(a) using $k=\left\lfloor\frac{r(r-1)}{P}\right\rfloor$ replications of each node \rightarrow ensure balancing (b) using 1 replication for each node
- Remaining unallocated positions \rightarrow assign to the least loaded possible node

Experimental results $(P=35) \quad$ (Cholesky with Chameleon+StarPU)

SBC (basic)	$P=32$	$r=8$	$\bar{z}=8$
GCR\&M	$P=35$	$r=15$	$\bar{z}=7.4$
TBC	$P=30$	$r=25$	$\bar{z}=6$

Table of Contents

(1) Introduction

(2) Non-symmetric Case
(3) Symmetric Case

- Symmetric Block Cyclic (SBC) Distribution
- Greedy ColRow \& Matching (GCR\&M)

4 Conclusion and Perspectives

Conclusion and Perspectives

Achievements

- Generic G-2DBC pattern
- GCR\&M easy and fast
- can provide patterns for any P "offline"
- matches or improves over 2DBC/SBC in most cases
- efficient use of any number of resources

Conclusion and Perspectives

Where does $\sqrt{\frac{3}{2}} \sqrt{P}$ comes from?

In such a configuration: \#positions $=6 P \Rightarrow r \approx \sqrt{6 P}$
thus: $\bar{z}=\frac{r}{2} \approx \sqrt{\frac{3}{2}} \sqrt{P}$

Conclusion and Perspectives

GCR\&M solution for $P=35$:

1	31		191	6	19		311	16				16
231		2	48		217	8	24	47	10	31		432
33	2		141		812			810		12		314
019	4	14			119	34	4		34			14
	8	1	21		120	8			25			
156	32	18	212		28		518	6		26		32
	17			28		7	20					
33	8	33	348		57							-
2711	124	18	92			29						229
6	17	10	92	56	617	23	3 9			23		O 7
11	10	10	342		622			125				3
31		12	41		612				26			3/4
			0		828							

$$
\begin{aligned}
& r=15 \approx \sqrt{6 P}(\approx 14.491) \\
& \text { and } \bar{z}=7.4 \approx \frac{r}{2}(=7.5)
\end{aligned}
$$

Conclusion and Perspectives

Difficulties

- GCR\&M algorithm is complicated

■ better theoretical foundation: how to choose \mathbf{r}

- study the effect of local imbalance

Future work

■ provide a "database" of communication-efficient patterns for any P

- connect the underlying combinatorial problem with existing references

Thank you for your attention

Questions?

