Ρ	roblem	
0	00000	

Resolution Methods

Evaluation 00000 Perspectives

Data Localisation for Distributed Applications Compressed Cholesky Case Study

Olivier Beaumont Lionel Eyraud-Dubois Mathieu Vérité

INRIA Bordeaux - HiePACS Team

Solharis Project Kickoff Meeting February 5th, 2020

Problem	Resolution Methods	Evaluation	Perspectives
000000	000000000	00000	000

Problem	Resolution Methods	Evaluation	Perspectives
000000	000000000	00000	000

1. Problem

Problem	Resolution Methods	Evaluation	Perspectives
●○○○○○		00000	000
1.1 - Data Lo	calisation		

Distributed application: static data allocation to computation nodes

lssues

- load balancing
- communication management

Strategies

- optimise static allocation
- on the run re-allocation

Case study: Cholesky decomposition

Íngia

00000	(0000000000	00000	000
00000	C	000000000	00000	000
Problem	F	Resolution Methods	Evaluation	Perspectives

1.2 - Problem Description

Formal problem:

- \mathcal{P} : set of P computation resources / processes
- tasks dependencies: application DAG
- for each task: known constant proportionality input "size" ↔ task execution time

Objective

minimise makespan

Methodology

- solve approximate problem: load balancing
- evaluate makespan in execution

Problem	Resolution Methods	Evaluation	Perspectives
00000		00000	000
1.3 - Cholesky	Decomposition		

- Physical problems modeling: A * x = b
 - $\mathbf{A} \in \mathbb{R}^{n \times n}$ typically symetric positive definite
 - Steps for resolution: $\mathbf{A} = \mathbf{L} * \mathbf{L}^t \rightarrow \mathbf{L} * y = \mathbf{B} \rightarrow \mathbf{L}^t * x = y$

- ▶ Input A
- $\triangleright~$ Initialisation : $L=A_{\rm tri.inf.}$
- ▷ For $k = 1 \rightarrow N$: POTRF(k)

$$\triangleright$$
 For $i = k + 1 \rightarrow N$ TRSM (i, k)

▷ For
$$j = k + 1 \rightarrow N$$
 : SYRK (j, k)

$$\triangleright \quad \mathbf{For} \quad i = j + 1 \rightarrow N$$

GEMM (i, j, k)

Problem	Resolution Methods	Evaluation	Perspectives
00000	00000000000	00000	
1.3 - Cholesky	Decomposition		

- Physical problems modeling: A * x = b
 A ∈ ℝ^{n×n} typically symetric positive definite
- Steps for resolution: $\mathbf{A} = \mathbf{L} * \mathbf{L}^t \rightarrow \mathbf{L} * y = \mathbf{B} \rightarrow \mathbf{L}^t * x = y$

- ▶ Input A
- $\triangleright~$ Initialisation : $L=A_{\rm tri.inf.}$
- ▷ For $k = 1 \rightarrow N$: POTRF(k)

$$\triangleright \quad \text{For } i = k + 1 \rightarrow N : \text{TRSM}(i, k)$$

▷ For
$$j = k + 1 \rightarrow N$$
 : SYRK (j, k)

$$\triangleright \quad \text{For } i = j + 1 \rightarrow N$$

GEMM (i, j, k)

⊳ Output : L

Column broadcast

(k=1) (nría

Problem	Resolution Methods	Evaluation	Perspectives
00000		00000	000
1.3 - Cholesky	Decomposition		

- Physical problems modeling: $\mathbf{A} * x = \mathbf{b}$ $\mathbf{A} \in \mathbb{R}^{n \times n}$ typically symetric positive definite
 - Steps for resolution: $\mathbf{A} = \mathbf{L} * \mathbf{L}^t \rightarrow \mathbf{L} * y = \mathbf{B} \rightarrow \mathbf{L}^t * x = y$

- ▶ Input A
- $\triangleright~$ Initialisation : $L=A_{\rm tri.inf.}$
- $\triangleright \quad \text{For } k = 1 \rightarrow N : \text{ POTRF}(k)$

▷ For
$$i = k + 1 \rightarrow N$$
 : TRSM (i, k)

▶ For $j = k + 1 \rightarrow N$: SYRK(j, k)

$$\triangleright \quad \mathbf{For} \quad i = j + 1 \rightarrow N$$

GEMM (i, j, k)

⊳ Output : L

Row broadcast

$$(k=1)$$
 (nría

Problem	Resolution Methods	Evaluation	Perspectives
00000	00000000000	00000	
1.3 - Cholesky	Decomposition		

- Physical problems modeling: A * x = b
 A ∈ ℝ^{n×n} typically symetric positive definite
- Steps for resolution: $\mathbf{A} = \mathbf{L} * \mathbf{L}^t \rightarrow \mathbf{L} * y = \mathbf{B} \rightarrow \mathbf{L}^t * x = y$

- ▶ Input A
- $\triangleright~$ Initialisation : $L=A_{\rm tri.inf.}$
- ▷ For $k = 1 \rightarrow N$: POTRF(k)

$$\triangleright \quad \text{For } i = k + 1 \rightarrow N \quad \text{TRSM}(i, k)$$

▷ For $j = k + 1 \rightarrow N$: SYRK(j, k)

$$\triangleright \quad \mathbf{For} \quad i = j + 1 \rightarrow N$$
$$\operatorname{GEMM}(i, j, k)$$

⊳ Output L

Next iteration

$$(k=2)$$

Problem	Resolution Methods	Evaluation	Perspectives
000000	000000000	00000	000

1.4 - Working Assumptions

Communications scheme:

- data transfer on same position
- broadcast on same row / column

Specific solutions

- \bullet unmodified association: tile \leftrightarrow proc.
- max. number of different proc.
 on each row/column: m^{row}, m^{col}

Assumption

• limited communication \Rightarrow simultaneous with calculation

Block Low Rank compression

Resolution Methods

Evaluation 00000 Perspectives

1.5 - Input Data Handling (2/2): Modification

Allocation: tile \leftrightarrow proc.

Resolution Methods

Evaluation 00000 Perspectives

1.5 - Input Data Handling (2/2): Modification

Allocation: tile \leftrightarrow proc.

Position (i, j)

Weighted sum over all iterations

$$ar{\mathbf{A}}_{i,j} = d(A_{i,j}) imes \sum_{k=1}^{j} ext{task}[i,j,k]$$

 \Rightarrow aggregated matrix $ar{\mathbf{A}}$

Problem	Resolution Methods	Evaluation	Perspectives
000000	000000000	00000	000

2. Resolution Methods

\mathbf{O} 1	Duchlana Cin	an lifi an tin n		
000000	•00	0000000	00000	000
Problem	Res	olution Methods	Evaluation	Perspectives

2.1 - Problem Simplification

Assumptions

set of independent tasks

Objective

$\min\{makespan\} \Leftrightarrow \min\{\max_{p \in \mathcal{P}} \{load_p\}\}$

 \rightarrow *load balancing* problem

 Problem
 Resolution Methods
 Evaluation

 000000
 000000000
 00000

2.2 - Block Cyclic Method

Repeated block

Perspectives

Problem	Resolution Methods	Evaluation	Perspectives
000000	○●○○○○○○○○	00000	000
22	Black Cyclic Mathad		

Matrix Ā

2.2 - Block Cyclic Method

Repeated block

Resolution Methods

Evaluation 00000 Perspectives

2.2 - Block Cyclic Method

Repeated block

Resolution Methods

Evaluation 00000 Perspectives

2.3 - Extended Block Cyclic (1/3)

Resolution Methods

Evaluation 00000 Perspectives

2.3 - Extended Block Cyclic (2/3)

W:

18^{th}	5^{th}	12^{th}	4^{th}	20^{th}	11^{th}
17^{th}	24^{th}	22 nd	19^{th}	$1^{\rm st}$	7^{th}
10^{th}	6^{th}	23 rd	15^{th}	2^{nd}	$16^{\rm th}$
9^{th}	3^{rd}	8^{th}	13^{th}	21^{st}	$14^{\rm th}$

$$W_{i,j} = \sum_{\substack{u=m^{col} \times i \in \llbracket 1; N \rrbracket \\ v=m^{row} \times j \in \llbracket 1; N \rrbracket}} \bar{A}_{u,v}$$

Resolution Methods

Evaluation 00000 Perspectives

2.3 - Extended Block Cyclic (2/3)

W:

18^{th}	5^{th}	12^{th}	4^{th}	20^{th}	11^{th}	
17^{th}	24^{th}	22 nd	19^{th}	1^{st}	7^{th}	
10^{th}	6^{th}	23 rd	15^{th}	2 nd	$16^{\rm th}$	
9 th	3 rd	8 th	13^{th}	$21^{\rm st}$	14^{th}	.

$$W_{i,j} = \sum_{\substack{u = m^{col} \times i \in \llbracket 1; N \rrbracket \\ v = m^{row} \times j \in \llbracket 1; N \rrbracket}} \bar{A}_{u,v}$$

m^{col}

Greedy procedure

 alloc. least loaded

Resolution Methods

Evaluation 00000 Perspectives

2.3 - Extended Block Cyclic (2/3)

W:

18^{th}	5^{th}	12^{th}	4^{th}	20^{th}	11^{th}	
17^{th}	24^{th}	22 nd	19^{th}	1^{st}	7^{th}	col
10^{th}	6^{th}	23 rd	15^{th}	2 nd	$16^{\rm th}$	meer
9 th	3 rd	8 th	13^{th}	21^{st}	14^{th}	

$$W_{i,j} = \sum_{\substack{u = m^{col} \times i \in \llbracket 1; N \rrbracket \\ v = m^{row} \times j \in \llbracket 1; N \rrbracket}} \bar{A}_{u,v}$$

Greedy procedure

 alloc. least loaded

Resolution Methods

Evaluation 00000 Perspectives

2.3 - Extended Block Cyclic (2/3)

W:

18^{th}	5^{th}	12^{th}	4^{th}	20^{th}	11^{th}	Î Î _
17^{th}	24^{th}	22 nd	19^{th}	$1^{\rm st}$	7^{th}	
10^{th}	6^{th}	23 rd	15^{th}	2 nd	16^{th}	
9 th	3 rd	8 th	13^{th}	$21^{\rm st}$	14^{th}	↓↓

 alloc. least loaded

$$W_{i,j} = \sum_{\substack{u = m^{col} \times i \in \llbracket 1; N \rrbracket \\ v = m^{row} \times j \in \llbracket 1; N \rrbracket}} \bar{A}_{u,v}$$

m^{row}

Resolution Methods

Evaluation 00000 Perspectives

2.3 - Extended Block Cyclic (3/3)

W:

Decision variables

$$\begin{aligned} \mathbf{x}_{i,j}^{(p)} &= \begin{cases} 1 & \text{if proc. } p \text{ on } (i,j) \\ 0 & \text{otherwise} \end{cases} \\ \mathbf{w} &= \max_{\text{among all processes}} \end{cases} \end{aligned}$$

Resolution Methods

Evaluation 00000 Perspectives

2.3 - Extended Block Cyclic (3/3)

Integer linear program:

 $\begin{cases} (1) \quad \forall p \in [\![1; P]\!] & \sum_{\substack{i \in [\![1; m^{col}]\!]\\j \in [\![1; m^{row}]\!]}} \mathbf{x}_{i,j}^{(p)} \times W_{i,j} \leqslant \mathbf{w} \quad \text{max. time} \\ \end{cases} \\ (2) \quad \forall (i,j) \in [\![1; m^{col}]\!] \times [\![1; m^{row}]\!] \quad \sum_{p \in [\![1; P]\!]} \mathbf{x}_{i,j}^{(p)} = 1 \quad \text{allocation} \end{cases}$

Resolution Methods

Evaluation 00000 Perspectives

2.4 - Random Subsets Methods (1/3)

Idea: randomly generate subsets of proc. for rows $(R_1,...,R_Q)$ / columns $(\mathcal{C}_1,...,\mathcal{C}_Q)$

- limited number of proc.: m^{row}; m^{col}
- each (R_i, C_j) pair compatible : $Card(I_{i,j} = R_i \bigcap C_j) \ge K$

Advantages

- independent of N
- managing sampling difficulty: *Q*, *K*
- degree of freedom for tile allocation: Card(1)

Problem Resolution Methods Evaluation Perspectives

2.4 - Random Subsets Methods (2/3): Two Steps

Step 1

rows / columns:
 ∖ sum load

Problem Resolution Methods Evaluation Occord Occord

Resolution Methods

Evaluation 00000 Perspectives

Ínría_

Problem F

Resolution Methods

Evaluation 00000 Perspectives

Resolution Methods

Evaluation 00000 Perspectives

Resolution Methods

Evaluation 00000 Perspectives

Resolution Methods

Evaluation 00000 Perspectives

Problem 000000	Resolution Methods ○○○○○○○●○○		Evaluation 00000	Perspectives

2.4 - Random Subsets Methods (3/3): Direct

34 th							
31 th	29 th						
26 th	25 th	24 th					
27 th	22 th	17 th	19 th				
33 th	21 th	15 th	8 th	16 th			
32 th	23 th	14 th	10 th	5 th	12 th		
35 th	28 th	18 th	11 th	4 th	2 nd	9 th	
36 th	30 th	20 th	13 th	6 th	3rd	1 st	7 th

~

Ínría

Problem Resolution Methods Evaluation October OCODE Devaluation Decode OCODE OCODE

2.4 - Random Subsets Methods (3/3): Direct

Resolution Methods

Evaluation 00000 Perspectives

2.4 - Random Subsets Methods (3/3): Direct

Resolution Methods

Evaluation 00000 Perspectives

2.5 - By-Column Greedy Algorithm

Column allocation using integer linear program:

Figure: Maximum load VS input matrix size ($\alpha = 2$; N = 20 to 40; $\frac{N^2}{P} \approx$ cste)

Figure: Maximum load VS input matrix size ($\alpha = 2$; N = 60 to 80; $\frac{N^2}{P} \approx$ cste)

Resolution Methods

Evaluation

Perspectives

3. Evaluation

000000		0000000000	•0000	000
21	Circulated	Evenuetien		

3.1 - Simulated Execution

Assumption

taking into account tasks dependencies

Simulate execution: task based scheduler

- DAG + tile allocation
- prioritised queues of ready tasks
- execution at proc. scale \Rightarrow preemption allowed
- no communication

Problem	Resolution Methods	Evaluation	Perspectives
000000		00000	000
3.2 - Makespa	n: Some Results		

Figure: Makespan VS input matrix size ($\alpha = 2$; N = 20 to 40; $\frac{N^2}{P} \approx$ cste)

Figure: Makespan VS input matrix size ($\alpha = 2$; N = 60 to 80; $\frac{N^2}{P} \approx$ cste)

Resolution Methods

Evaluation ○○●○○ Perspectives

3.3 - Random Subsets: Improved Version (1/2)

- start from end
- unlimited number of proc.
- As Last As Possible
- \Rightarrow time threshold: first use of unavailable proc.

 Problem
 Resolution Methods
 Evaluation
 Perspectives

 000000
 00000
 00000
 00000

 2
 2
 Description
 Cube setter

3.3 - Random Subsets: Improved Version (2/2)

Tasks before / after threshold \rightarrow tiles splitting + reordering

34 th							
31 th	29 th						
26 ^{t h}	25 th	24 th					
27 ^{t h}	22 th	17 th	19 th				
33 th	21 th	15 th	8 th	16 th			
32 th	23 th	14 th	10 th	5 th	12 ^{t h}		
35 th	28 th	18 th	11 th	4 th	2 nd	9 th	
36 th	30 th	20 th	13 th	6 th	3rd	1 st	7 ^{t h}

Ínría

Problem Resolution Methods Evaluation Perspectives

3.3 - Random Subsets: Improved Version (2/2)

Tasks before / after threshold \rightarrow tiles splitting + reordering

34 th							
31 th	29 th						
26 th	25 th	24 th					
27 th	22 th	17 th	19 th				
33 th	21 th	15 th	10 th	16 th			
32 ^{t h}	23 th	14 th	11 th	8 th	6 th		
35 th	28 th	18 th	12 th	7 th	2 nd	5 th	
36 th	30 th	20 th	13 th	9 th	3rd	1 st	4 th

splitting + reordering

Ínnía -

Problem	Resolution Methods	Evaluation	Perspectives
000000		○○○○●	000
3.4 - Addition	al Results		

Figure: Makespan VS input matrix size ($\alpha = 2$; N = 20 to 40; $\frac{N^2}{P} \approx$ cste)

Problem	Resolution Methods	Evaluation	Perspectives
000000		00000	000
3.4 - Additiona	l Results		

Figure: Makespan VS input matrix size ($\alpha = 2$; N = 60 to 80; $\frac{N^2}{P} \approx$ cste)

Problem	Resolution Methods	Evaluation	Perspectives
00000	000000000	00000	•00

4. Perspectives

Problem	Resolution Methods	Evaluation	Perspectives
000000	000000000	00000	000

So far

- efficient methods for load balancing
- many options for strategies

Problem	Resolution Methods	Evaluation	Perspectives
000000	000000000	00000	000

So far

- efficient methods for load balancing
- many options for strategies

Future work

- secure results: larger scale, parameters sets, real data
- improve strategies
- explore new ones: hybrid, relaxed constraints
- dig in scheduling aspect
- other applications / use cases

Problem	Resolution Methods	Evaluation	Perspectives
000000	000000000	00000	000

So far

- efficient methods for load balancing
- many options for strategies

Future work

- secure results: larger scale, parameters sets, real data
- improve strategies
- explore new ones: hybrid, relaxed constraints
- dig in scheduling aspect
- other applications / use cases

Tools improvement

evaluation: introduce communications

Problem	Resolution Methods	Evaluation	Perspectives
00000	000000000	00000	000

Thank you

