# Data Localisation for Distributed Applications <br> Compressed Cholesky Case Study 

Olivier Beaumont<br>Lionel Eyraud-Dubois Mathieu Vérité<br>INRIA Bordeaux - HiePACS Team

Solharis Project Kickoff Meeting
February 5th, 2020
(1) Problem
(2) Resolution Methods
(3) Evaluation

4 Perspectives

## 1. Problem

## 1.1 - Data Localisation

Distributed application: static data allocation to computation nodes

## Objectives

- completion time
- result reliability
- execution replicability


## Issues

- load balancing
- communication management


## Strategies

- optimise static allocation
- on the run re-allocation

Case study: Cholesky decomposition

## 1.2 - Problem Description

Formal problem:

- $\mathcal{P}$ : set of $P$ computation resources / processes
- tasks dependencies: application DAG
- for each task: known constant proportionality input "size" $\leftrightarrow$ task execution time


## Objective

 minimise makespanMethodology

- solve approximate problem: load balancing
- evaluate makespan in execution


## 1.3 - Cholesky Decomposition

- Physical problems modeling: $\mathbf{A} * x=\mathbf{b}$ $\mathrm{A} \in \mathbb{R}^{n \times n}$ typically symetric positive definite
- Steps for resolution: $\mathbf{A}=\mathbf{L} * \mathbf{L}^{t} \rightarrow \mathbf{L} * y=\mathbf{B} \rightarrow \mathbf{L}^{t} * x=y$


## Right-looking algorithm: <br> $\mathcal{O}\left(N^{3}\right)$ complexity

$\triangleright$ Input : A
$\triangleright$ Initialisation : $\mathbf{L}=\mathbf{A}_{\text {tri.inf }}$
$\triangleright$ For $k=1 \rightarrow N: \operatorname{POTRF}(k)$
$\triangleright$ For $i=k+1 \rightarrow N: \operatorname{TRSM}(i, k)$
$\triangleright$ For $j=k+1 \rightarrow N: \operatorname{SYRK}(j, k)$

$\triangleright$ For $i=j+1 \rightarrow N$

$$
\operatorname{GEMM}(i, j, k)
$$

$\triangleright$ Output: L

## 1.3 - Cholesky Decomposition

- Physical problems modeling: $\mathbf{A} * x=\mathbf{b}$
$\mathrm{A} \in \mathbb{R}^{n \times n}$ typically symetric positive definite
- Steps for resolution: $\mathbf{A}=\mathbf{L} * \mathbf{L}^{t} \rightarrow \mathbf{L} * y=\mathbf{B} \rightarrow \mathbf{L}^{t} * x=y$


## Right-looking algorithm: <br> $\mathcal{O}\left(N^{3}\right)$ complexity

$\triangleright$ Input : A
$\triangleright$ Initialisation : $\mathbf{L}=\mathbf{A}_{\text {tri.inf }}$
$\triangleright$ For $k=1 \rightarrow N: \operatorname{POTRF}(k)$
$\triangleright$ For $i=k+1 \rightarrow N: \operatorname{TRSM}(i, k)$
$\triangleright$ For $j=k+1 \rightarrow N: \operatorname{SYRK}(j, k)$
$\triangleright$ For $i=j+1 \rightarrow N$ $\operatorname{GEMM}(i, j, k)$
$\triangleright$ Output: L


Column broadcast

$$
(k=1)
$$



## 1.3 - Cholesky Decomposition

- Physical problems modeling: $\mathbf{A} * x=\mathbf{b}$ $\mathrm{A} \in \mathbb{R}^{n \times n}$ typically symetric positive definite
- Steps for resolution: $\mathbf{A}=\mathbf{L} * \mathbf{L}^{t} \rightarrow \mathbf{L} * y=\mathbf{B} \rightarrow \mathbf{L}^{t} * x=y$


## Right-looking algorithm: <br> $\mathcal{O}\left(N^{3}\right)$ complexity

$\triangleright$ Input : A
$\triangleright$ Initialisation: $\mathbf{L}=\mathbf{A}_{\text {tri.inf }}$
$\triangleright$ For $k=1 \rightarrow N: \operatorname{POTRF}(k)$
$\triangleright$ For $i=k+1 \rightarrow N: \operatorname{TRSM}(i, k)$
$\triangleright$ For $j=k+1 \rightarrow N: \operatorname{SYRK}(j, k)$
$\triangleright$ For $i=j+1 \rightarrow N$

$$
\operatorname{GEMM}(i, j, k)
$$

$\triangleright$ Output: L


Row broadcast

$$
(k=1)
$$



## 1.3 - Cholesky Decomposition

- Physical problems modeling: $\mathbf{A} * x=\mathbf{b}$ $\mathrm{A} \in \mathbb{R}^{n \times n}$ typically symetric positive definite
- Steps for resolution: $\mathbf{A}=\mathbf{L} * \mathbf{L}^{t} \rightarrow \mathbf{L} * y=\mathbf{B} \rightarrow \mathbf{L}^{t} * x=y$


## Right-looking algorithm: <br> $\mathcal{O}\left(N^{3}\right)$ complexity

$\triangleright$ Input : A
$\triangleright$ Initialisation: $\mathbf{L}=\mathbf{A}_{\text {tri.inf }}$
$\triangleright$ For $k=1 \rightarrow N: \operatorname{POTRF}(k)$
$\triangleright$ For $i=k+1 \rightarrow N: \operatorname{TRSM}(i, k)$
$\triangleright$ For $j=k+1 \rightarrow N: \operatorname{SYRK}(j, k)$
$\triangleright$ For $i=j+1 \rightarrow N$

$$
\operatorname{GEMM}(i, j, k)
$$

$\triangleright$ Output: L


Next iteration

$$
(k=2)
$$

## 1.4 - Working Assumptions

## Communications scheme:

- data transfer on same position
- broadcast on same row / column


## Specific solutions

- unmodified association: tile $\leftrightarrow$ proc.
- max. number of different proc.
on each row/column: $m^{\text {row }}, m^{\text {col }}$


## Assumption

- limited communication $\Rightarrow$ simultaneous with calculation


## 1.5 - Input Data Handling (1/2): Compression



Tiled matrix

Block Low Rank compression


## 1.5 - Input Data Handling (2/2): Modification

Allocation: tile $\leftrightarrow$ proc.


$k=3$

## 1.5 - Input Data Handling (2/2): Modification

Allocation: tile $\leftrightarrow$ proc.

$$
\text { Position }(i, j)
$$

Weighted sum over all iterations

$$
\begin{aligned}
& \overline{\mathbf{A}}_{i, j}=d\left(A_{i, j}\right) \times \sum_{k=1}^{j} \operatorname{task}[i, j, k] \\
& \Rightarrow \text { aggregated matrix } \overline{\mathbf{A}}
\end{aligned}
$$

## 2. <br> Resolution Methods

## 2.1 - Problem Simplification

## Assumptions

## set of independent tasks

## Objective

$$
\begin{gathered}
\min \{\text { makespan }\} \Leftrightarrow \min \left\{\max _{p \in \mathcal{P}}\left\{\text { load }_{p}\right\}\right\} \\
\rightarrow \text { load balancing problem }
\end{gathered}
$$

## 2.2 - Block Cyclic Method

Repeated block

proc. 1 proc. 4
$\square$
proc. 2 proc. 5
proc. 3
proc. 6
Matrix $\overline{\mathbf{A}}$

$\square$
$\square$

## 2.2 - Block Cyclic Method

Repeated block


$$
\left\{\begin{array}{ll}
\triangleright & r \times c=P \\
\triangleright & r \neq c
\end{array} \downarrow\right.
$$



Matrix $\overline{\mathbf{A}}$

$$
\triangleright \quad \min (|r-c|)
$$



## 2.2 - Block Cyclic Method

Repeated block


Matrix $\overline{\mathbf{A}}$


## 2.3 - Extended Block Cyclic (1/3)



## 2.3 - Extended Block Cyclic (2/3)

## $W$ :



## 2.3 - Extended Block Cyclic (2/3)

## $W$ :



Greedy procedure

- tiles: 】 load
- alloc. least loaded

$$
W_{i, j}=\sum_{\substack{u=m^{c o l} \times i \in \llbracket 1 ; N \rrbracket \\ v=m^{\text {rov }} \times j \in \llbracket 1 ; N \rrbracket}} \bar{A}_{u, v}
$$

## 2.3 - Extended Block Cyclic (2/3)

## $W$ :



Greedy procedure

- tiles: 】 load
- alloc. least loaded

$$
W_{i, j}=\sum_{\substack{u=m^{c o l} \times i \in \llbracket 1 ; N \rrbracket \\ v=m^{\text {rov }} \times j \in \llbracket 1 ; N \rrbracket}} \bar{A}_{u, v}
$$

## 2.3 - Extended Block Cyclic (2/3)

## $W$ :

$$
W_{i, j}=\sum_{\substack{u=m^{c o l} \times i \in \llbracket 1 ; N \rrbracket \\ v=m^{r o w} \times j \in \llbracket 1 ; N \rrbracket}} \bar{A}_{u, v}
$$

Greedy procedure - tiles: 】 load

- alloc. least loaded


## 2.3 - Extended Block Cyclic (3/3)



## 2.3 - Extended Block Cyclic (3/3)

## Integer linear program:

$$
\min \{\mathbf{w}\}
$$

$\begin{cases}(1) & \forall p \in \llbracket 1 ; P \rrbracket \\ (2) & \forall(i, j) \in \llbracket 1 ; m^{c o l} \rrbracket \times \llbracket 1 ; m^{\text {row }} \rrbracket\end{cases}$

$$
\sum_{\substack{i \in \llbracket 1 ; \boldsymbol{m}^{\text {col }} \rrbracket \\ \boldsymbol{j} \in \mathbb{1 1} ; \boldsymbol{m}^{\text {row }} \rrbracket}} \mathbf{x}_{i, j}^{(p)} \times W_{i, j} \leqslant \mathbf{w} \quad \text { max. time }
$$

$$
\sum_{p \in \llbracket 1 ; P \rrbracket} \mathbf{x}_{i, j}^{(p)}=1 \quad \text { allocation }
$$

## 2.4 - Random Subsets Methods (1/3)

Idea: randomly generate subsets of proc. for rows $\left(R_{1}, \ldots, R_{Q}\right) /$ columns ( $C_{1}, \ldots, C_{Q}$ )

- limited number of proc.: $m^{\text {row }} ; m^{\text {col }}$
- each $\left(R_{i}, C_{j}\right)$ pair compatible : $\operatorname{Card}\left(I_{i, j}=R_{i} \bigcap C_{j}\right) \geqslant K$


## Advantages

- independent of $N$
- managing sampling difficulty: $Q, K$
- degree of freedom for tile allocation:
Card(I)


Column subsets

## 2.4 - Random Subsets Methods (2/3): Two Steps



Step 1

- rows / columns:
$\searrow$ sum load


## 2.4 - Random Subsets Methods (2/3): Two Steps



Step 1

- rows / columns:
$\searrow$ sum load
- alloc. least
loaded subset


## 2.4 - Random Subsets Methods (2/3): Two Steps



Step 1

- rows / columns:
$\searrow$ sum load
- alloc. least
loaded subset
Step 2
- tiles: 】 load


## 2.4 - Random Subsets Methods (2/3): Two Steps



Step 1

- rows / columns: $\searrow$ sum load
- alloc. least loaded subset

Step 2

- tiles: 】 load
- alloc no choice positions


## 2.4 - Random Subsets Methods (2/3): Two Steps



Step 1

- rows / columns:
$\searrow$ sum load
- alloc. least
loaded subset
Step 2
- tiles: 】 load
- alloc no choice positions
- available proc.:
$I_{i, j}=R_{i} \bigcap C_{j}$


## 2.4 - Random Subsets Methods (2/3): Two Steps



Step 1

- rows / columns: $\searrow$ sum load
- alloc. least loaded subset

Step 2

- tiles: 】 load
- alloc no choice positions
- available proc.:
$I_{i, j}=R_{i} \bigcap C_{j}$
- alloc. least loaded proc.


## 2.4 - Random Subsets Methods (2/3): Two Steps

Step 1

- rows / columns:
$\searrow$ sum load
- alloc. least loaded subset

Step 2

- tiles: 】 load
- alloc no choice positions
- available proc.:
$I_{i, j}=R_{i} \bigcap C_{j}$
- alloc. least loaded proc.


## 2.4 - Random Subsets Methods (3/3): Direct

| $34^{\text {th }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $31^{\text {th }}$ | $29^{\text {th }}$ |  |  |  |  |  |  |
| $26^{\text {th }}$ | $25^{\text {th }}$ | $24^{\text {th }}$ |  |  |  |  |  |
| $27^{\text {th }}$ | $22^{\text {th }}$ | $17^{\text {th }}$ | $19^{\text {th }}$ |  |  |  |  |
| $33^{\text {th }}$ | $21^{\text {th }}$ | $15^{\text {th }}$ | $8^{\text {th }}$ | $16^{\text {th }}$ |  |  |  |
| $32^{\text {th }}$ | $23^{\text {th }}$ | $14^{\text {th }}$ | $10^{t h}$ | $5^{\text {th }}$ | $12^{\text {th }}$ |  |  |
| $35^{\text {th }}$ | $28^{\text {th }}$ | $18^{\text {th }}$ | $11^{\text {th }}$ | $4^{\text {th }}$ | $2^{\text {nd }}$ | $9^{\text {th }}$ |  |
| $36^{\text {th }}$ | $30^{\text {th }}$ | $20^{\text {th }}$ | $13^{\text {th }}$ | $6^{\text {th }}$ | $3^{\text {rd }}$ | $1^{\text {st }}$ | $7^{\text {th }}$ |

Steps

- tiles: $\searrow$ load


## 2.4 - Random Subsets Methods (3/3): Direct



Steps

- tiles: 】 load
- available proc.
- alloc. least loaded
$\Rightarrow$ subsets
$\Rightarrow$ no choice


## 2.5 - By-Column Greedy Algorithm

Column allocation using integer linear program:


Allocate positions of the current column

## 2.6 - Load Balancing: Some Results



Figure: Maximum load VS input matrix size

$$
\left(\alpha=2 ; N=20 \text { to } 40 ; \frac{N^{2}}{P} \approx \text { cste }\right)
$$

## 2.6 - Load Balancing: Some Results



Figure: Maximum load VS input matrix size

$$
\left(\alpha=2 ; N=60 \text { to } 80 ; \frac{N^{2}}{P} \approx \text { cste }\right)
$$

## 3. Evaluation

## 3.1 - Simulated Execution

## Assumption

taking into account tasks dependencies
Simulate execution: task based scheduler

- DAG + tile allocation
- prioritised queues of ready tasks
- execution at proc. scale $\Rightarrow$ preemption allowed
- no communication


## 3.2 - Makespan: Some Results



Figure: Makespan VS input matrix size

$$
\left(\alpha=2 ; N=20 \text { to } 40 ; \frac{N^{2}}{P} \approx \text { cste }\right)
$$

## 3.2 - Makespan: Some Results



Figure: Makespan VS input matrix size

$$
\left(\alpha=2 ; N=60 \text { to } 80 ; \frac{N^{2}}{P} \approx \text { cste }\right)
$$

## 3.3 - Random Subsets: Improved Version (1/2)



- start from end
- unlimited number of proc.
- As Last As Possible
$\Rightarrow$ time threshold: first use of unavailable proc.


Ínía

## 3.3 - Random Subsets: Improved Version (2/2)

Tasks before / after threshold $\rightarrow$ tiles splitting + reordering


| $34^{\text {th }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $31^{\text {th }}$ | $29^{\text {th }}$ |  |  |  |  |  |  |
| $26^{t h}$ | $25^{\text {th }}$ | $24^{\text {th }}$ |  |  |  |  |  |
| $27^{\text {th }}$ | $22^{\text {th }}$ | $17^{\text {th }}$ | $19^{\text {th }}$ |  |  |  |  |
| $33^{\text {th }}$ | $21^{\text {th }}$ | $15^{\text {th }}$ | $8^{\text {th }}$ | $16^{\text {th }}$ |  |  |  |
| $32^{\text {th }}$ | $23^{\text {th }}$ | $14^{\text {th }}$ | $10^{\text {th }}$ | $5^{\text {th }}$ | $12^{\text {th }}$ |  |  |
| $35^{\text {th }}$ | $28^{\text {th }}$ | $18^{\text {th }}$ | $11^{\text {th }}$ | $4^{\text {th }}$ | $2^{\text {nd }}$ | $9^{\text {th }}$ |  |
| $36^{t h}$ | $30^{\text {th }}$ | $20^{\text {th }}$ | $13^{\text {th }}$ | $6^{\text {th }}$ | $3^{\text {rd }}$ | $1^{\text {st }}$ | $7^{\text {th }}$ |

## 3.3 - Random Subsets: Improved Version (2/2)

Tasks before / after threshold $\rightarrow$ tiles splitting + reordering


| $34^{\text {th }}$ |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $31^{\text {th }}$ | $29^{\text {th }}$ |  |  |  |  |  |  |
| $26^{t h}$ | $25^{\text {th }}$ | $24^{\text {th }}$ |  |  |  |  |  |
| $27^{t h}$ | $22^{t h}$ | $7^{\text {th }}$ | $19^{\text {th }}$ |  |  |  |  |
| $33^{\text {th }}$ | $21^{\text {th }}$ | $15^{\text {th }} 1$ | $10^{\text {th }}$ | $16^{\text {th }}$ |  |  |  |
| $32^{\text {th }}$ | $23^{\text {th }}$ | $14^{\text {th }} 1$ | $11^{\text {th }}$ | $8^{\text {th }}$ | $6^{\text {th }}$ |  |  |
| $35^{\text {th }}$ | $28^{\text {th }}$ | $18^{\text {th }} 1$ | $12^{\text {th }}$ | $7^{\text {th }}$ | $2^{\text {nd }}$ | $5^{\text {th }}$ |  |
| $36^{\text {th }}$ | $30^{\text {th }}$ | $20^{\text {th }}$ | $13^{\text {th }}$ | $9^{\text {th }}$ | $3^{\text {rd }}$ | $1^{\text {st }}$ | $4^{\text {th }}$ |

splitting + reordering

## 3.4 - Additional Results



Figure: Makespan VS input matrix size

$$
\left(\alpha=2 ; N=20 \text { to } 40 ; \frac{N^{2}}{P} \approx \text { cste }\right)
$$

## 3.4 - Additional Results



Figure: Makespan VS input matrix size

$$
\left(\alpha=2 ; N=60 \text { to } 80 ; \frac{N^{2}}{P} \approx \text { cste }\right)
$$

## 4. Perspectives

## So far

- efficient methods for load balancing
- many options for strategies


## So far

- efficient methods for load balancing
- many options for strategies

Future work

- secure results: larger scale, parameters sets, real data
- improve strategies
- explore new ones: hybrid, relaxed constraints
- dig in scheduling aspect
- other applications / use cases


## So far

- efficient methods for load balancing
- many options for strategies

Future work

- secure results: larger scale, parameters sets, real data
- improve strategies
- explore new ones: hybrid, relaxed constraints
- dig in scheduling aspect
- other applications / use cases


## Tools improvement

- evaluation: introduce communications


## Thank you

