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Linear Systems and Direct Methods

Sparse linear systems

Many applications from physics, engineering, chemistry, geodesy, etc,
require the solution of a linear system like

Ax = b, with A, rectangular, sparse and potentially large

m ≥ n minx ‖Ax − b‖2 → QR = A, z = QTb, x = R−1z
m < n min‖x‖2, Ax = b → QR = AT , z = R−Tb, x = Qz

A sparse matrix is mostly filled with zeros:
• Reduce memory storage.

• Reduce computational costs.

• Generate parallelism.
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the multifrontal (qr) factorization



The Multifrontal method in a nutshell

forall fronts f in topological order

! allocate and initialize front

call activate(f)

! front assembly

forall children c of f

call assemble(c, f)

! Deactivate child

call deactivate(c)

end do

! front factorization

call factorize(f)

end do

• The elimination tree is pre-computed based on the matrix structure
• Nodes are dense matrices called fronts which can be very small

(O(1)) or very large (O(105)), square or rectangular
• In the actual factorization the tree is traversed bottom up and

when a node is visited, the corresponding front is allocated,
assembled (using children) and factorized
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The Multifrontal QR method

The original multifrontal method by Duff & Reid ’83 can be extended
to QR factorization of sparse matrices.
This method is guided by a graph called elimination tree:

• each node is associated with a
relatively small dense matrix called
frontal matrix (or front) containing k
pivots to be eliminated along with all
the other coefficients concerned by
their elimination.
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The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the original
matrix associated with the pivots and
contribution blocks produced by the
treatment of the child nodes are
stacked to form the frontal matrix.

• factorization: the k pivots are
eliminated through a complete dense
QR factorization of the frontal matrix.
As a result we get:
◦ part of the global R and Q factors.
◦ a triangular contribution block that will

be assembled into the parent’s front.
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The Multifrontal QR method

Typically two sources of parallelism are exploited in the multifrontal
method

• tree-level parallelism: frontal matrices
located in independent branches in the
tree can be processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.
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Improved tree parallelism

1 2

3

Finer tracking of the dependencies between operations allows for
pipelining the processing of a node with that of its children. We refer
to this extra source of concurrency as Inter-Level Parallelism
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Improved parallelism

Matrices from the Suite Sparse Matrix Collection

# Mat. name m n nz op. count

12 hirlam 1385K 452K 2713K 1384G

13 flower 8 4 55K 125K 375K 2851G

14 Rucci1 1977K 109K 7791K 5671G

15 ch8-8-b3 117K 18K 470K 10709G

16 GL7d24 21K 105K 593K 16467G

17 neos2 132K 134K 685K 20170G

18 spal 004 10K 321K 46168K 30335G

19 n4c6-b6 104K 51K 728K 62245G

20 sls 1748K 62K 6804K 65607G

21 TF18 95K 123K 1597K 194472G

22 lp nug30 95K 123K 1597K 221644G

23 mk13-b5 135K 270K 810K 259751G
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Improved parallelism

concurrency =
sequential time

Critical Path
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task parallelism and runtime systems



Runtime systems

Application

Architecture

xPU0 xM0 yPU0 yM0xPU1 xM1

• The classical approach is based on
a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ requires a big programming effort.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a DAG
(Directed Acyclic Graph) of tasks.
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Task parallelism

Workload is expressed as a Directed Acyclic Graph of tasks

• Inherently expresses concurrency and data flow

• Asynchronous execution

• Allows for dynamic scheduling policies
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Sequential Task Flow runtimes

The Sequential Task Flow is a portable programming model where
tasks are submitted sequentially and their execution is delegated to a
runtime

for (i = 1; i < N; i++) {

x[i] = f(x[i]);

y[i] = g(x[i], y[i-1]);

}

11



Sequential Task Flow runtimes

The Sequential Task Flow is a portable programming model where
tasks are submitted sequentially and their execution is delegated to a
runtime

for (i = 1; i < N; i++) {

submit(f, x[i]:RW);

submit(g, y[i]:R, x[i]:R, y[i-1]:R)

;

}

f g

f g

f g

i-1

i

i+1

Dependencies are automatically computed through data analysis

We have chosen StarPU because of its numerous features
• data management/transfer
• plug&play scheduling policies
• support for accelerators
• support for distributed memory
• ...
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stf multifrontal qr



The task-based multifrontal QR factorization

do f=1, nfronts ! in postorder

! compute front structure

call activate(f)

! allocate and initialize front

call init(f)

do c=1, f%nc ! for all the children of f

do j=1,c%n

! assemble column j of c into f

call assemble(c(j), f)

end do

! Deactivate child

call deactivate(c)

end do

do p=1, f%n

! panel reduction of column p

call _geqrt(f(p))

do u=p+1, f%n

! update of column u with panel p

call _gemqrt(f(p), f(u))

end do

end do

end do

Sequential multifrontal QR code with 1D block partitioning
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The task-based multifrontal QR factorization

do f=1, nfronts ! in postorder

! compute structure and register handles

call activate(f)

! allocate and initialize front

call submit(init , f:RW)

do c=1, f%nc ! for all the children of f

do j=1,c%n

! assemble column j of c into f

call submit(assemble , c(j):R, f:RW)

end do

! Deactivate child

call submit(deactivate , c:RW)

end do

do p=1, f%n

! panel reduction of column p

call submit(_geqrt , f(p):RW)

do u=p+1, f%n

! update of column u with panel p

call submit(_gemqrt , f(p):R, f(u):RW)

end do

end do

end do

! wait for the tasks to be executed

call wait_tasks_completion ()

• STF multifrontal QR code with 1D block partitioning
• Elimination tree is transformed into a DAG 14



The task-based multifrontal QR factorization
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do f=1, nfronts ! in postorder

! compute structure and register handles

call activate(f)

! allocate and initialize front

call submit(init , f:RW)

do c=1, f%nc ! for all the children of f

do j=1,c%n

! assemble column j of c into f

call submit(assemble , c(j):R, f:RW)

end do

! Deactivate child

call submit(deactivate , c:RW)

end do

do p=1, f%n

! panel reduction of column p

call submit(_geqrt , f(p):RW)

do u=p+1, f%n

! update of column u with panel p

call submit(_gemqrt , f(p):R, f(u):RW)

end do

end do

end do

! wait for the tasks to be executed

call wait_tasks_completion ()

• Seamless exploitation of tree and node parallelism.
• Inter-level concurrency (parent-child pipelining). 14



Experimental results: speedups
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• Improved node and tree parallelism bring great benefit to small size
and strongly overdetermined problems

• Speedups are uniform for all tested matrices.
• Performance ranges from 321 to 462 Gflop/s (46% to 66% of the

peak)
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More experimental results
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On a 2 x Power8 machine 88% of parallel efficiency on 20 cores
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Intel Knights Landing
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• Cores in quadrant mode

• MCDRAM in cache mode

• 8000 pages of 2MB and THP on

• Scalable allocator from TBB is used 17
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stf-based parallel multifrontal qr method

for heterogeneous architectures



GPU-based systems

• Very high computing power (O(1) Tflop/s)

• Very high memory bandwidth (O(100) GB/s)

• Very convenient Gflops/s/Watt ratio (O(10))

Objective

Exploit heterogeneity (i.e. take advantage of the diversity of
resources) to accelerate the multifrontal QR factorization.

Issues:

• Granularity: GPUs require coarser grained tasks to achieve full
speed;

• Scheduling: account for different computing capabilities and
different tasks characteristics while maximizing concurrency;

• Communications: minimize the cost of host-to-device data
transfers.



Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20
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HeteroPrio scheduling policy

...

Low acceleration

High acceleration
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CPU1

CPUn

GPU1

GPUn

• Ready tasks are sorted in different queues/buckets depending on
the acceleration factor (ratio between GPU and CPU performance)

• Buckets are traversed in different order by CPUs and GPUs when
looking for a ready task

• Upon selection, a ready task is moved to the corresponding Worker
Queue and its data prefetched
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Experimental results
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Improved scheduler (work in progress)
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simulation of qr mumps on top of

starpu-simgrid: 1d code



Simulating sparse solvers

Porting qr mumps on top of SimGrid1

• Changing main for the subroutine

• Changing compilation process

• Careful kernel modeling as matrix dimension keeps changing

• Dense kernels during a single experiment are always executed with
the same block/tile size ; duration very stable

• Sparse kernels depend on their input parameters ; more variability
• Cannot model sparse kernels with simple mean values
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Example for modeling kernels: Panel

• Theoretical Panel complexity:

TPanel = a + 2b(NB2 ×MB)− 2c(NB3 × BK ) +
4d

3
NB3

• We can do a linear regression based on ad hoc calibration

Panel Duration

Constant −2.49× 101 (−2.83× 101, −2.14× 101) ∗∗∗

NB2 ×MB 5.49× 10−7 (5.46× 10−7, 5.51× 10−7) ∗∗∗

NB3 × BK −5.52× 10−7 (−5.57× 10−7, −5.48× 10−7) ∗∗∗

NB3 1.50× 10−5 (1.30× 10−5, 1.70× 10−5) ∗∗∗

Observations 493

R2 0.999

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0126



Comparing kernel duration distributions

Do subtree activate Panel Update Assemble

1. #Flops #Zeros NB NB #Coeff

2. #Nodes #Assemble MB MB /

3. / / BK BK /

R2 0.99 0.99 0.99 0.99 0.86
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Overview of simulation accuracy
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• Most of the time, simulation is
slightly optimistic

• With bigger and architecturally
more complex machines, error
increases
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Studying memory consumption

• Minimizing memory footprint is often critical
• Remember scheduling is dynamic so consecutive Native

experiments have different output
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Extrapolating to larger machines

• Predicting performance in idealized context
• Studying the parallelization limits of the problem

Extrapolation
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simulation: 2d fully-featured code (work in

progress)



2D fully-featured code

• Increase concurrency through 2D (“tile”) algorithms
• Exploit sparsity of the staircase structure within fronts

• Focus on the update (tpmqrt) kernel
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2D fully-featured code

• Increase concurrency through 2D (“tile”) algorithms
• Exploit sparsity of the staircase structure within fronts
• Focus on the update (tpmqrt) kernel
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Model m1: lm(Duration ∼ stair + mb + nb + k)

Adjusted R2: 0.26 33



Model m2: lm(Duration ∼ flop+stair+mb+nb+mb : nb)

Adjusted R2: 0.997 34



Models for tpmqrt kernel ordered wrt AIC
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simulation: gpu-based systems (in progress)



Model m2: lm(Duration ∼ flop+stair+mb+nb+mb : nb)

Adjusted R2: 0.92 37



Models for tpmqrt kernel on GPU K40 ordered wrt AIC
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Overall simulation of an 24 cores + 1 GPU
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Experimental results
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Thanks to IDRIS, PlaFRIM, CALMIP and GENCI for providing access
to the resources
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Other features

Memory awareness

The memory footprint of the multifrontal method increases when
executed in parallel. We have developed a deadlock free memory
capping technique that allows for achieving the parallel factorization
within a prescribed memory envelope

Performance analysis

Because StarPU has full control of the workload, it can produce
accurate performance measures. Based on these we have developed a
method for detailed performance analysis
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Matrices from the Suite Sparse Matrix Collection

# Mat. name m n nz op. count

12 hirlam 1385K 452K 2713K 1384G

13 flower 8 4 55K 125K 375K 2851G

14 Rucci1 1977K 109K 7791K 5671G

15 ch8-8-b3 117K 18K 470K 10709G

16 GL7d24 21K 105K 593K 16467G

17 neos2 132K 134K 685K 20170G

18 spal 004 10K 321K 46168K 30335G

19 n4c6-b6 104K 51K 728K 62245G

20 sls 1748K 62K 6804K 65607G

21 TF18 95K 123K 1597K 194472G

22 lp nug30 95K 123K 1597K 221644G

23 mk13-b5 135K 270K 810K 259751G
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Memory footprint in the multifrontal method
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• In sequential: the memory consumption varies greatly because
fronts are allocated and deallocated dynamically. The maximum
memory is referred to as the sequential peak Ms .

• In parallel: the peak memory consumption Mp can be much higher
because of tree parallelism.
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Memory footprint in the multifrontal method
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• In sequential: the memory consumption varies greatly because
fronts are allocated and deallocated dynamically. The maximum
memory is referred to as the sequential peak Ms .

• In parallel: the peak memory consumption Mp can be much higher
because of tree parallelism.

46



Task scheduling under memory constraint

Memory-aware parallel execution

Objective: achieve efficient parallel execution within a prescribed
memory consumption Mp ≤ αMs , α ≥ 1. Method: suspend tasks
submission when no more memory is available and resume it when
enough memory has been freed by previously submitted tasks.

Memory deadlock prevention by
ensuring fronts are allocated in the
same order as in sequential:
straightforward to achieved thanks
to the Sequential Task Flow
model. a b c

d

e

(1,4)

(8,1)

(3,0)

(2,1) (1,4)

See also related work by Agullo et al., Marchal et al. and Amestoy et
al. on memory-aware scheduling and memory deadlock prevention.
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Task scheduling under memory constraint
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• Tighter memory bound → less concurrency → slower execution.

• In practice the execution time is increased only for very small
matrices or very narrow/unbalanced elimination trees.
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