
qr mumps: progress through the solhar

project

E. Agullo, A. Buttari, F. Flopez, A. Guermouche, A. Legrand, I. Masliah
and L. Stanisic

Plenary Solharis meeting, February 5, 2020, Bordeaux

Linear Systems and Direct Methods

Sparse linear systems

Many applications from physics, engineering, chemistry, geodesy, etc,
require the solution of a linear system like

Ax = b, with A, rectangular, sparse and potentially large

m ≥ n minx ‖Ax − b‖2 → QR = A, z = QTb, x = R−1z
m < n min‖x‖2, Ax = b → QR = AT , z = R−Tb, x = Qz

A sparse matrix is mostly filled with zeros:
• Reduce memory storage.

• Reduce computational costs.

• Generate parallelism.

1

the multifrontal (qr) factorization

The Multifrontal method in a nutshell

forall fronts f in topological order

! allocate and initialize front

call activate(f)

! front assembly

forall children c of f

call assemble(c, f)

! Deactivate child

call deactivate(c)

end do

! front factorization

call factorize(f)

end do

• The elimination tree is pre-computed based on the matrix structure
• Nodes are dense matrices called fronts which can be very small

(O(1)) or very large (O(105)), square or rectangular
• In the actual factorization the tree is traversed bottom up and

when a node is visited, the corresponding front is allocated,
assembled (using children) and factorized

3

The Multifrontal QR method

The original multifrontal method by Duff & Reid ’83 can be extended
to QR factorization of sparse matrices.
This method is guided by a graph called elimination tree:

• each node is associated with a
relatively small dense matrix called
frontal matrix (or front) containing k
pivots to be eliminated along with all
the other coefficients concerned by
their elimination.

4

The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the original
matrix associated with the pivots and
contribution blocks produced by the
treatment of the child nodes are
stacked to form the frontal matrix.

• factorization: the k pivots are
eliminated through a complete dense
QR factorization of the frontal matrix.
As a result we get:
◦ part of the global R and Q factors.
◦ a triangular contribution block that will

be assembled into the parent’s front.

4

The Multifrontal QR method

The tree is traversed in topological order (i.e., bottom-up) and, at
each node, two operations are performed:

• assembly: coefficients from the original
matrix associated with the pivots and
contribution blocks produced by the
treatment of the child nodes are
stacked to form the frontal matrix.

• factorization: the k pivots are
eliminated through a complete dense
QR factorization of the frontal matrix.
As a result we get:
◦ part of the global R and Q factors.
◦ a triangular contribution block that will

be assembled into the parent’s front.

4

The Multifrontal QR method

Typically two sources of parallelism are exploited in the multifrontal
method

• tree-level parallelism: frontal matrices
located in independent branches in the
tree can be processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

4

The Multifrontal QR method

Typically two sources of parallelism are exploited in the multifrontal
method

• tree-level parallelism: frontal matrices
located in independent branches in the
tree can be processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

4

The Multifrontal QR method

Typically two sources of parallelism are exploited in the multifrontal
method

• tree-level parallelism: frontal matrices
located in independent branches in the
tree can be processed in parallel.

• node-level parallelism: large frontal
matrices factorization may be
performed in parallel by multiple
threads.

4

Improved tree parallelism

1 2

3

Finer tracking of the dependencies between operations allows for
pipelining the processing of a node with that of its children. We refer
to this extra source of concurrency as Inter-Level Parallelism

Improved tree parallelism

1 2

3

1 2

3

Finer tracking of the dependencies between operations allows for
pipelining the processing of a node with that of its children. We refer
to this extra source of concurrency as Inter-Level Parallelism

Improved parallelism

Matrices from the Suite Sparse Matrix Collection

Mat. name m n nz op. count

12 hirlam 1385K 452K 2713K 1384G

13 flower 8 4 55K 125K 375K 2851G

14 Rucci1 1977K 109K 7791K 5671G

15 ch8-8-b3 117K 18K 470K 10709G

16 GL7d24 21K 105K 593K 16467G

17 neos2 132K 134K 685K 20170G

18 spal 004 10K 321K 46168K 30335G

19 n4c6-b6 104K 51K 728K 62245G

20 sls 1748K 62K 6804K 65607G

21 TF18 95K 123K 1597K 194472G

22 lp nug30 95K 123K 1597K 221644G

23 mk13-b5 135K 270K 810K 259751G

6

Improved parallelism

concurrency =
sequential time

Critical Path

0

50

100

150

200

250

300

350

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Max degree of concurrency 1D and 2D

1D nopipe
1D pipe

2D nopipe
2D pipe

7

task parallelism and runtime systems

Runtime systems

Application

Architecture

xPU0 xM0 yPU0 yM0xPU1 xM1

• The classical approach is based on
a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ requires a big programming effort.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a DAG
(Directed Acyclic Graph) of tasks.

9

Runtime systems

Application

Runtime

Architecture

xPU0 xM0

Scheduling engine

Mem.
manager

xPU
driver

yPU
driver

A B
C

CB B

A

yPU0 yM0xPU1 xM1

Ax Ay

Bx Cx
• The classical approach is based on

a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ requires a big programming effort.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a DAG
(Directed Acyclic Graph) of tasks.

9

Runtime systems

Application

Runtime

Architecture

xPU0 xM0

Scheduling engine

Mem.
manager

xPU
driver

yPU
driver

A B
C

CB B

A

yPU0 yM0xPU1 xM1

Ax Ay

Bx Cx
• The classical approach is based on

a mixture of technologies (e.g.,
MPI+OpenMP+CUDA) which.
◦ requires a big programming effort.
◦ is difficult to maintain and update.
◦ is prone to (performance)

portability issues.

• runtimes provide an abstraction
layer that hides the architecture
details.

• the workload is expressed as a DAG
(Directed Acyclic Graph) of tasks.

9

Task parallelism

Workload is expressed as a Directed Acyclic Graph of tasks

• Inherently expresses concurrency and data flow

• Asynchronous execution

• Allows for dynamic scheduling policies

10

Sequential Task Flow runtimes

The Sequential Task Flow is a portable programming model where
tasks are submitted sequentially and their execution is delegated to a
runtime

for (i = 1; i < N; i++) {

x[i] = f(x[i]);

y[i] = g(x[i], y[i-1]);

}

11

Sequential Task Flow runtimes

The Sequential Task Flow is a portable programming model where
tasks are submitted sequentially and their execution is delegated to a
runtime

for (i = 1; i < N; i++) {

submit(f, x[i]:RW);

submit(g, y[i]:R, x[i]:R, y[i-1]:R)

;

}

f g

f g

f g

i-1

i

i+1

Dependencies are automatically computed through data analysis

We have chosen StarPU because of its numerous features
• data management/transfer
• plug&play scheduling policies
• support for accelerators
• support for distributed memory
• ...

11

stf multifrontal qr

The task-based multifrontal QR factorization

do f=1, nfronts ! in postorder

! compute front structure

call activate(f)

! allocate and initialize front

call init(f)

do c=1, f%nc ! for all the children of f

do j=1,c%n

! assemble column j of c into f

call assemble(c(j), f)

end do

! Deactivate child

call deactivate(c)

end do

do p=1, f%n

! panel reduction of column p

call _geqrt(f(p))

do u=p+1, f%n

! update of column u with panel p

call _gemqrt(f(p), f(u))

end do

end do

end do

Sequential multifrontal QR code with 1D block partitioning

13

The task-based multifrontal QR factorization

do f=1, nfronts ! in postorder

! compute structure and register handles

call activate(f)

! allocate and initialize front

call submit(init , f:RW)

do c=1, f%nc ! for all the children of f

do j=1,c%n

! assemble column j of c into f

call submit(assemble , c(j):R, f:RW)

end do

! Deactivate child

call submit(deactivate , c:RW)

end do

do p=1, f%n

! panel reduction of column p

call submit(_geqrt , f(p):RW)

do u=p+1, f%n

! update of column u with panel p

call submit(_gemqrt , f(p):R, f(u):RW)

end do

end do

end do

! wait for the tasks to be executed

call wait_tasks_completion ()

• STF multifrontal QR code with 1D block partitioning
• Elimination tree is transformed into a DAG 14

The task-based multifrontal QR factorization

1 2

a

p1 u2 u3

p2 u3

p3

s2 s3

a

p1 u2 u3

u3

u4

u4

u4

s2 s3 s4

p2

p3

cc

3

a

p1 u2 u3

u3

u4

u4

u4

p4

s3 s4

p2

p3

c

d1
d2

d4

d5

d6d7

a

u

s

c

activate

p geqrt

gemqrt

assemble

deactivate

d3

do f=1, nfronts ! in postorder

! compute structure and register handles

call activate(f)

! allocate and initialize front

call submit(init , f:RW)

do c=1, f%nc ! for all the children of f

do j=1,c%n

! assemble column j of c into f

call submit(assemble , c(j):R, f:RW)

end do

! Deactivate child

call submit(deactivate , c:RW)

end do

do p=1, f%n

! panel reduction of column p

call submit(_geqrt , f(p):RW)

do u=p+1, f%n

! update of column u with panel p

call submit(_gemqrt , f(p):R, f(u):RW)

end do

end do

end do

! wait for the tasks to be executed

call wait_tasks_completion ()

• Seamless exploitation of tree and node parallelism.
• Inter-level concurrency (parent-child pipelining). 14

Experimental results: speedups

0

5

10

15

20

25

30

12 13 14 15 16 17 18 19 20 21 22 23

Matrix #

Speedup 2D -- 32 cores

1D

2D

• Improved node and tree parallelism bring great benefit to small size
and strongly overdetermined problems

• Speedups are uniform for all tested matrices.
• Performance ranges from 321 to 462 Gflop/s (46% to 66% of the

peak)

15

More experimental results

1

4

8

12

16

20

1 4 8 12 16 20

407 Gflop/s

308 Gflop/s

Matrix #

Power8 -- Speedup 1-20 cores

Rucci1

ch8-8-b3

GL7d24

n4c6-b6

TF18

Credits: IBM, GENCI, IDRIS

On a 2 x Power8 machine 88% of parallel efficiency on 20 cores

16

Intel Knights Landing

600

700

800

900

1000

54 56 58 60 62 64

0.88: spal_004

0.93: TF17

0.93: lp_nug30
0.96: n4c6-b6

0.93: TF18

G
f
l
o
p
/
s

of cores

Scaling -- 54 to 64 cores

Credits: PlaFRIM

• Cores in quadrant mode

• MCDRAM in cache mode

• 8000 pages of 2MB and THP on

• Scalable allocator from TBB is used 17

Intel Knights Landing

600

700

800

900

1000

54 56 58 60 62 64

0.88: spal_004

0.93: TF17

0.93: lp_nug30
0.96: n4c6-b6

0.93: TF18

G
f
l
o
p
/
s

of cores

Scaling -- 54 to 64 cores

Credits: PlaFRIM

Efficiency is computed as

e =
t54

t64
/

64

54

17

stf-based parallel multifrontal qr method

for heterogeneous architectures

GPU-based systems

• Very high computing power (O(1) Tflop/s)

• Very high memory bandwidth (O(100) GB/s)

• Very convenient Gflops/s/Watt ratio (O(10))

Objective

Exploit heterogeneity (i.e. take advantage of the diversity of
resources) to accelerate the multifrontal QR factorization.

Issues:

• Granularity: GPUs require coarser grained tasks to achieve full
speed;

• Scheduling: account for different computing capabilities and
different tasks characteristics while maximizing concurrency;

• Communications: minimize the cost of host-to-device data
transfers.

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

Frontal matrices partitioning strategies

Reduce

Update

• Fine grain partitioning provides high concurrency but low tasks
efficiency on GPU

• Coarse grain partitioning achieves optimum granularity for GPU
but limited concurrency

• Hierarchical, dynamic partitioning
N granularity and concurrency trade-off.
N heterogeneity to be exploited.

The dynamic (un)partitioning of frontal matrices is achieved through
dedicated tasks → StarPU handles the consistency among partitions.

20

HeteroPrio scheduling policy

...

Low acceleration

High acceleration

C
P

U

G
P

U

...

...

CPU1

CPUn

GPU1

GPUn

• Ready tasks are sorted in different queues/buckets depending on
the acceleration factor (ratio between GPU and CPU performance)

• Buckets are traversed in different order by CPUs and GPUs when
looking for a ready task

• Upon selection, a ready task is moved to the corresponding Worker
Queue and its data prefetched

21

Experimental results

500

1000

1500

2000

2500

3000

3500

4000

lp_nug30 n4c6-b6 mk13-b5 TF18

Power8 + P100 -- Gflop/s

Pwr8 (20c) + 1xP100

Pwr8 (20c) + 2xP100

Thanks to IDRIS, PlaFRIM, CALMIP and GENCI for providing access
to the resources

22

Improved scheduler (work in progress)

...

Low acceleration

High acceleration

C
P

U

G
P

U

...

...

CPU1.1

CPU1.n

GPU1.1

GPU1.n

...

Low acceleration

High acceleration

C
P

U

G
P

U

...

...

CPU1.1

CPU1.n

GPU1.1

GPU1.n

work stealing

Family 1

Family 2

500

1000

1500

2000

2500

3000

3500

4000

HSW (24c) + 1xP100 HSW (24c) + 2xP100

TF18 : HSW + P100 -- Gflop/s

Old scheduler

New scheduler

• Resource are grouped into families to improve data locality
• Work-stealing may happen between families
• A single worker queue feeds all the GPU streams
• Tasks are assigned to families at submission time according to a

mapping 23

Improved scheduler (work in progress)

...

Low acceleration

High acceleration

C
P

U

G
P

U

...

...

CPU1.1

CPU1.n

GPU1.1

GPU1.n

...

Low acceleration

High acceleration

C
P

U

G
P

U

...

...

CPU1.1

CPU1.n

GPU1.1

GPU1.n

work stealing

Family 1

Family 2

500

1000

1500

2000

2500

3000

3500

4000

HSW (24c) + 1xP100 HSW (24c) + 2xP100

TF18 : HSW + P100 -- Gflop/s

Old scheduler

New scheduler

• Resource are grouped into families to improve data locality
• Work-stealing may happen between families
• A single worker queue feeds all the GPU streams
• Tasks are assigned to families at submission time according to a

mapping 23

simulation of qr mumps on top of

starpu-simgrid: 1d code

Simulating sparse solvers

Porting qr mumps on top of SimGrid1

• Changing main for the subroutine

• Changing compilation process

• Careful kernel modeling as matrix dimension keeps changing

• Dense kernels during a single experiment are always executed with
the same block/tile size ; duration very stable

• Sparse kernels depend on their input parameters ; more variability
• Cannot model sparse kernels with simple mean values

Native, Do_subtree

0

2

4

6

0 50 100

N
um

be
r o

f O
cc

ur
an

ce
s

Native, Activate

0

5

10

15

20

0 250 500 750

Native, Panel

0

50

100

150

200

0 25 50 75 100

Native, Update

0

2000

4000

0 20 40 60

Native, Assemble

0

50

100

150

200

250

0 10 20 30

Native, Deactivate

0

10

20

0 25 50 75

Kernel
Do_subtree
Activate
Panel
Update
Assemble
Deactivate

1s.a.b.g.ea:15.

25

Example for modeling kernels: Panel

• Theoretical Panel complexity:

TPanel = a + 2b(NB2 ×MB)− 2c(NB3 × BK) +
4d

3
NB3

• We can do a linear regression based on ad hoc calibration

Panel Duration

Constant −2.49× 101 (−2.83× 101, −2.14× 101) ∗∗∗

NB2 ×MB 5.49× 10−7 (5.46× 10−7, 5.51× 10−7) ∗∗∗

NB3 × BK −5.52× 10−7 (−5.57× 10−7, −5.48× 10−7) ∗∗∗

NB3 1.50× 10−5 (1.30× 10−5, 1.70× 10−5) ∗∗∗

Observations 493

R2 0.999

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0126

Comparing kernel duration distributions

Do subtree activate Panel Update Assemble

1. #Flops #Zeros NB NB #Coeff

2. #Nodes #Assemble MB MB /

3. / / BK BK /

R2 0.99 0.99 0.99 0.99 0.86

Native, Do_subtree

SimGrid, Do_subtree

0

3

6

9

0

3

6

9

0 50 100

N
um

be
r

of
 O

cc
ur

an
ce

s

Native, Activate

SimGrid, Activate

0

5

10

15

20

0

5

10

15

20

0 250 500 750

Native, Panel

SimGrid, Panel

0

100

200

0

100

200

0 25 50 75

Native, Update

SimGrid, Update

0

2000

4000

6000

0

2000

4000

6000

0 20 40 60

Native, Assemble

SimGrid, Assemble

0

100

200

300

0

100

200

300

0 10 20 30

Native, Deactivate

SimGrid, Deactivate

0

10

20

30

0

10

20

30

0 25 50 75

Kernel

Do_subtree

Activate

Panel

Update

Assemble

Deactivate

27

Overview of simulation accuracy

0

10

20

30

40

50

0

200

400

tp
−6

ka
rte

d
Et

er
ni

ty
II_

E
de

gm
e

hi
rla

m
e1

8
TF

16

R
uc

ci
1 sl
s

TF
17

M
ak

es
pa

n
[s

]

Type

Native

SimGrid

Fourmi machine with 8 cores

0

10

20

30

40

0

100

200

300

400

500

tp
−6

ka
rte

d
Et

er
ni

ty
II_

E
de

gm
e

hi
rla

m
e1

8
TF

16

R
uc

ci
1 sl
s

TF
17

M
ak

es
pa

n
[s

]

Type

Native

SimGrid

Riri machine with 10 cores

• Most of the time, simulation is
slightly optimistic

• With bigger and architecturally
more complex machines, error
increases

0

5

10

15

20

0

50

100

150

200

tp
−6

ka
rte

d
Et

er
ni

ty
II_

E
de

gm
e

hi
rla

m
e1

8
TF

16

R
uc

ci
1 sl
s

TF
17

M
ak

es
pa

n
[s

]

Type

Native

SimGrid

Riri machine with 40 cores

28

Studying memory consumption

• Minimizing memory footprint is often critical
• Remember scheduling is dynamic so consecutive Native

experiments have different output

Experiment number 1

Experiment number 2

Experiment number 3

Experiment number 4

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0 10,000 20,000 30,000 40,000
Time [ms]

A
llo

ca
te

d
M

em
or

y
[G

iB
]

29

Studying memory consumption

• Minimizing memory footprint is often critical
• Remember scheduling is dynamic so consecutive Native

experiments have different output

Native 1

Native 2

SimGrid

Native 3

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

0 10,000 20,000 30,000 40,000
Time [ms]

A
llo

ca
te

d
M

em
or

y
[G

iB
]

29

Extrapolating to larger machines

• Predicting performance in idealized context
• Studying the parallelization limits of the problem

Extrapolation

0

30

60

90

4 10 20 40 100 400
Number of Threads

D
ur

at
io

n
[s

]

Type

Native

SimGrid

Measured Time

Overall Makespan

Idle Time per Thread

Extrapolation

0

30

60

90

4 10 20 40 100 400
Number of Threads

D
ur

at
io

n
[s

]

Type

Native

SimGrid

Measured Time

Overall Makespan

Idle Time per Thread

30

simulation: 2d fully-featured code (work in

progress)

2D fully-featured code

• Increase concurrency through 2D (“tile”) algorithms
• Exploit sparsity of the staircase structure within fronts

• Focus on the update (tpmqrt) kernel

 Step 1 Step 2

R

V

Full DAG

TPMQRT

TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT GEQRT

gemqrtgemqrt

TPQRT

TPMQRT TPMQRTTPQRT

TPQRT

TPMQRTTPMQRTTPQRT

TPMQRTTPMQRT

GEQRT

gemqrtTPQRT

TPMQRTTPMQRT

TPQRT

TPMQRTTPQRT

TPMQRTTPQRT

TPMQRT

GEQRT

TPQRT

TPQRT

GEQRT

gemqrtgemqrt gemqrt gemqrtgemqrt TPQRT

TPMQRTTPQRTTPMQRT TPMQRT TPMQRTTPMQRTTPQRT

TPMQRT GEQRTTPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

GEQRT

gemqrt gemqrtgemqrt

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

TPQRT

TPMQRT TPMQRTTPMQRTTPQRT TPQRT

 S1

 S1

 S2

 S2

mb

nb

geqrt

gemqrt

tpqrt

tpmqrt

How to handle the staircase structure?

• S1={10,10,10,10,10,12,12,12,12,12,12,12}
• stair = 10 ∗ 5 + 12 ∗ 7 = 134

32

2D fully-featured code

• Increase concurrency through 2D (“tile”) algorithms
• Exploit sparsity of the staircase structure within fronts
• Focus on the update (tpmqrt) kernel

 Step 1 Step 2

R

V

Full DAG

TPMQRT

TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT GEQRT

gemqrtgemqrt

TPQRT

TPMQRT TPMQRTTPQRT

TPQRT

TPMQRTTPMQRTTPQRT

TPMQRTTPMQRT

GEQRT

gemqrtTPQRT

TPMQRTTPMQRT

TPQRT

TPMQRTTPQRT

TPMQRTTPQRT

TPMQRT

GEQRT

TPQRT

TPQRT

GEQRT

gemqrtgemqrt gemqrt gemqrtgemqrt TPQRT

TPMQRTTPQRTTPMQRT TPMQRT TPMQRTTPMQRTTPQRT

TPMQRT GEQRTTPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

GEQRT

gemqrt gemqrtgemqrt

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

TPQRT

TPMQRT TPMQRTTPMQRTTPQRT TPQRT

 S1

 S1

 S2

 S2

mb

nb

geqrt

gemqrt

tpqrt

tpmqrt

How to handle the staircase structure?

• S1={10,10,10,10,10,12,12,12,12,12,12,12}
• stair = 10 ∗ 5 + 12 ∗ 7 = 134

32

2D fully-featured code

• Increase concurrency through 2D (“tile”) algorithms
• Exploit sparsity of the staircase structure within fronts

• Focus on the update (tpmqrt) kernel

 Step 1 Step 2

R

V

Full DAG

TPMQRT

TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT GEQRT

gemqrtgemqrt

TPQRT

TPMQRT TPMQRTTPQRT

TPQRT

TPMQRTTPMQRTTPQRT

TPMQRTTPMQRT

GEQRT

gemqrtTPQRT

TPMQRTTPMQRT

TPQRT

TPMQRTTPQRT

TPMQRTTPQRT

TPMQRT

GEQRT

TPQRT

TPQRT

GEQRT

gemqrtgemqrt gemqrt gemqrtgemqrt TPQRT

TPMQRTTPQRTTPMQRT TPMQRT TPMQRTTPMQRTTPQRT

TPMQRT GEQRTTPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

GEQRT

gemqrt gemqrtgemqrt

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

TPQRT

TPMQRT TPMQRTTPMQRTTPQRT TPQRT

 S1

 S1

 S2

 S2

mb

nb

geqrt

gemqrt

tpqrt

tpmqrt

How to handle the staircase structure?

• S1={10,10,10,10,10,12,12,12,12,12,12,12}
• stair = 10 ∗ 5 + 12 ∗ 7 = 134

32

2D fully-featured code

• Increase concurrency through 2D (“tile”) algorithms
• Exploit sparsity of the staircase structure within fronts

• Focus on the update (tpmqrt) kernel

 Step 1 Step 2

R

V

Full DAG

TPMQRT

TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT GEQRT

gemqrtgemqrt

TPQRT

TPMQRT TPMQRTTPQRT

TPQRT

TPMQRTTPMQRTTPQRT

TPMQRTTPMQRT

GEQRT

gemqrtTPQRT

TPMQRTTPMQRT

TPQRT

TPMQRTTPQRT

TPMQRTTPQRT

TPMQRT

GEQRT

TPQRT

TPQRT

GEQRT

gemqrtgemqrt gemqrt gemqrtgemqrt TPQRT

TPMQRTTPQRTTPMQRT TPMQRT TPMQRTTPMQRTTPQRT

TPMQRT GEQRTTPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

GEQRT

gemqrt gemqrtgemqrt

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

TPQRT

TPMQRT TPMQRTTPMQRTTPQRT TPQRT

 S1

 S1

 S2

 S2

mb

nb

geqrt

gemqrt

tpqrt

tpmqrt

How to handle the staircase structure?

• S1={10,10,10,10,10,12,12,12,12,12,12,12}

• stair = 10 ∗ 5 + 12 ∗ 7 = 134

32

2D fully-featured code

• Increase concurrency through 2D (“tile”) algorithms
• Exploit sparsity of the staircase structure within fronts

• Focus on the update (tpmqrt) kernel

 Step 1 Step 2

R

V

Full DAG

TPMQRT

TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT TPMQRT

TPMQRT TPQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPMQRT

TPQRT GEQRT

gemqrtgemqrt

TPQRT

TPMQRT TPMQRTTPQRT

TPQRT

TPMQRTTPMQRTTPQRT

TPMQRTTPMQRT

GEQRT

gemqrtTPQRT

TPMQRTTPMQRT

TPQRT

TPMQRTTPQRT

TPMQRTTPQRT

TPMQRT

GEQRT

TPQRT

TPQRT

GEQRT

gemqrtgemqrt gemqrt gemqrtgemqrt TPQRT

TPMQRTTPQRTTPMQRT TPMQRT TPMQRTTPMQRTTPQRT

TPMQRT GEQRTTPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPMQRT

gemqrt

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPMQRTTPMQRT TPMQRT TPMQRTTPMQRT TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRTTPMQRT

TPQRT

TPQRT

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

GEQRT

gemqrt gemqrtgemqrt

TPMQRT TPMQRT TPMQRTTPMQRTTPMQRT TPMQRT TPMQRT

TPQRT

TPMQRT TPMQRTTPMQRTTPQRT TPQRT

 S1

 S1

 S2

 S2

mb

nb

geqrt

gemqrt

tpqrt

tpmqrt

How to handle the staircase structure?

• S1={10,10,10,10,10,12,12,12,12,12,12,12}
• stair = 10 ∗ 5 + 12 ∗ 7 = 134

32

Model m1: lm(Duration ∼ stair + mb + nb + k)

Adjusted R2: 0.26 33

Model m2: lm(Duration ∼ flop+stair+mb+nb+mb : nb)

Adjusted R2: 0.997 34

Models for tpmqrt kernel ordered wrt AIC

35

simulation: gpu-based systems (in progress)

Model m2: lm(Duration ∼ flop+stair+mb+nb+mb : nb)

Adjusted R2: 0.92 37

Models for tpmqrt kernel on GPU K40 ordered wrt AIC

38

Overall simulation of an 24 cores + 1 GPU

	200

	400

	600

	800

	1000

	1200

spal_004 TF17 n4c6-b6 TF18

G
f
l
o
p
/
s

Matrix

Run

Simulation

39

concluding remarks

Experimental results

400
800
1200
1600
2000
2400
2800
3200
3600
4000
4400

CPU only

TF18 -- Gflop/s

ARM TX2 (56c)

Pwr8 (20c)

SB (32x)

HSW (24c)

BDW (36c)

KNL (64c)

KNL (68c)

HSW (24c) + 1xK40

HSW (24c) + 2xK40

HSW (24c) + 3xK40

HSW (24c) + 4xK40

Pwr8 (20c) + 1xP100

Pwr8 (20c) + 2xP100

Pwr8 (20c) + 3xP100

Pwr8 (20c) + 4xP100

SKL (36c) + 1xV100

Thanks to IDRIS, PlaFRIM, CALMIP and GENCI for providing access
to the resources

41

References I

42

? Thanks!
Questions?

Other features

Memory awareness

The memory footprint of the multifrontal method increases when
executed in parallel. We have developed a deadlock free memory
capping technique that allows for achieving the parallel factorization
within a prescribed memory envelope

Performance analysis

Because StarPU has full control of the workload, it can produce
accurate performance measures. Based on these we have developed a
method for detailed performance analysis

44

Matrices from the Suite Sparse Matrix Collection

Mat. name m n nz op. count

12 hirlam 1385K 452K 2713K 1384G

13 flower 8 4 55K 125K 375K 2851G

14 Rucci1 1977K 109K 7791K 5671G

15 ch8-8-b3 117K 18K 470K 10709G

16 GL7d24 21K 105K 593K 16467G

17 neos2 132K 134K 685K 20170G

18 spal 004 10K 321K 46168K 30335G

19 n4c6-b6 104K 51K 728K 62245G

20 sls 1748K 62K 6804K 65607G

21 TF18 95K 123K 1597K 194472G

22 lp nug30 95K 123K 1597K 221644G

23 mk13-b5 135K 270K 810K 259751G

45

Memory footprint in the multifrontal method

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250

M
e
m
o
r
y

(
M
B
)

Time (sec.)

Sequential

Memory consumption profile

• In sequential: the memory consumption varies greatly because
fronts are allocated and deallocated dynamically. The maximum
memory is referred to as the sequential peak Ms .

• In parallel: the peak memory consumption Mp can be much higher
because of tree parallelism.

46

Memory footprint in the multifrontal method

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250

M
e
m
o
r
y

(
M
B
)

Time (sec.)

Memory consumption profile

Sequential
6 threads, no constraint

• In sequential: the memory consumption varies greatly because
fronts are allocated and deallocated dynamically. The maximum
memory is referred to as the sequential peak Ms .

• In parallel: the peak memory consumption Mp can be much higher
because of tree parallelism.

46

Task scheduling under memory constraint

Memory-aware parallel execution

Objective: achieve efficient parallel execution within a prescribed
memory consumption Mp ≤ αMs , α ≥ 1. Method: suspend tasks
submission when no more memory is available and resume it when
enough memory has been freed by previously submitted tasks.

Memory deadlock prevention by
ensuring fronts are allocated in the
same order as in sequential:
straightforward to achieved thanks
to the Sequential Task Flow
model. a b c

d

e

(1,4)

(8,1)

(3,0)

(2,1) (1,4)

See also related work by Agullo et al., Marchal et al. and Amestoy et
al. on memory-aware scheduling and memory deadlock prevention.

47

Task scheduling under memory constraint

500

1000

1500

2000

2500

3000

3500

4000

50 100 150 200 250

M
e
m
o
r
y

(
M
B
)

Time (sec.)

Sequential
6 threads, no constraint
6 threads, Sequential*2.0

• Tighter memory bound → less concurrency → slower execution.

• In practice the execution time is increased only for very small
matrices or very narrow/unbalanced elimination trees.

48

	The Multifrontal (QR) factorization
	Task Parallelism and Runtime systems
	STF Multifrontal QR
	STF-based parallel multifrontal QR method for heterogeneous architectures
	Simulation of qr_mumps on top of StarPU-SimGrid: 1D code
	Simulation: 2D fully-featured code (work in progress)
	Simulation: GPU-based systems (in progress) [width=0.3]tesla.png
	Concluding remarks
	Appendix

