

Spécialisation d'un logiciel de gestion de métadonnées sémantiques pour la description des jeux de données

Présenté par :

Louis Mendy

Tutrice universitaire:

Farah Benamara

Supervisé par :

Nathalie Aussenac-Gilles Amina Annane Cassia Trojahn

Utilisation d'ontologies pour la recherche de jeux de données météorologiques

Présenté par: Alexandre Champagne

Spécialité: M2 Données et Connaissances

Durée du stage: 29 Mars 2021 au 1er Septembre 2021

Supervisé par: Nathalie Aussenac-Gilles, Cassia Trojahn, Amina Annane

Laboratoire: MELODI - IRIT

Tutrice universitaire: Lynda Tamine

INTRODUCTION

- Plus d'un million de jeux de données disponibles sur le web
 - Jeux de données inexploitables ⇒ Absence de métadonnées
- Proposition : les principes FAIR

- Nos stages s'inscrivent dans le cadre du projet Semantics4FAIR qui a pour but de faciliter la recherche et l'accès aux données scientifiques en adhérant aux principes FAIR
 - Application aux jeux de données météorologiques de Météo France

Exemple de Jeux de données et Métadonnées - SYNOP

Α	В	С
numer_sta	date	pmer
7005	2,021E+13	102230
7015	2,021E+13	102230
7020	2,021E+13	102250
7027	2,021E+13	102320
7037	2,021E+13	102250
7072	2,021E+13	102330
7110	2,021E+13	102320
7117	2,021E+13	102270
7130	2,021E+13	102420
7149	2,021E+13	102320

```
:station_dataset a dcat:Dataset;
    geodcatap:custodian :MeteoFrance;
    dct:conformsTo < http://www.opengis.net/def/crs/EPSG/0/4326>;
    dct:created "2020-02-29"^^xsd:date;
    dct:description " la liste des stations météo-France pour les données synop... "@fr;
    dct:identifier < https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=90&id_rubrique=32>;
    dct:language < http://publications.europa.eu/resource/authority/language/ENG>;
    dct:provenance :synop_provenance;
    dct:spatial < http://publications.europa.eu/resource/authority/country/FRA>,
        :spatial_coverage;
    dct:subject < http://inspire.ec.europa.eu/metadata-codelist/TopicCategory/climatologyMeteorologyAtmosphere>,
        < http://inspire.ec.europa.eu/metadata-codelist/TopicCategory/environment>,
        < http://inspire.ec.europa.eu/metadata-codelist/TopicCategory/geoscientificInformation>;
    dct:title "LA liste des stations météorologiques pour les DONNÉES SYNOP ESSENTIELLES OMM"@fr;
```

Jeu de données Liste des stations SYNOP

Métadonnées pour décrire les stations SYNOP

Introduction Principes FAIR

Les principes FAIR ont été proposés pour répondre de façon globale à la problématique de partage des données en vue de leur réutilisation [1]

Findable (re-trouvable)

- F1. Les (méta)données sont associées à un identifiant unique et pérenne.
- F2. Les (méta)données sont décrites avec des métadonnées riches.
- F3.Les métadonnées incluent clairement et explicitement l'identifiant des données qu'elles décrivent
- F4. Les (meta)données sont enregistrées ou indexées dans un dispositif permettant de les rechercher.

Interoperable (Interopérable)

- I1. Les (méta)données utilisent un langage formel, accessible, partagé et largement applicable pour la représentation des connaissances.
- 12. Les (méta)données utilisent des vocabulaires qui adhèrent aux principes FAIR.
- 13. Les (méta)données ont des liens documentés vers d'autres (méta)données.

Accessible (Accessible)

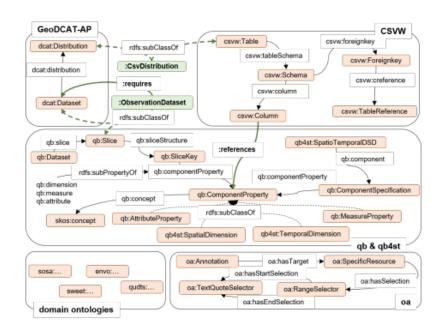
- A1. Les (méta)données sont accessibles par leur identifiant, via un protocole standardisé.
 - A1.1 Le protocole utilisé est ouvert, libre et peut être implémenté de manière universelle.
 - A1.2 Le protocole utilisé permet l'accès par autorisation et authentification si besoin.
 - A2. Les métadonnées restent accessibles même si les données ne le sont pas ou plus.

Reusable (Réutilisable)

- R1. Les (méta)données ont des attributs multiples et pertinents.
 - R1.1. Les (méta)données sont mises à disposition selon une licence explicite et accessible.
 - R1.2. Les (méta)données sont associées à leur provenance.
 - R1.3 Les (méta)données sont conformes aux standards des communautés indiquées.

Contexte Semantics4FAIR

Domaines de recherche:


- Ingénierie des connaissances
- Ontologies
- Web Sémantique
- Traitement Automatique du Langage Naturel

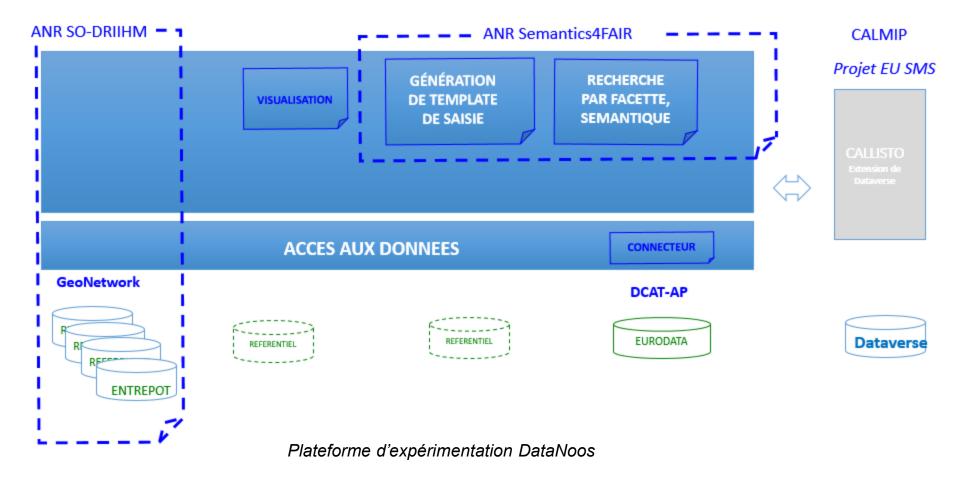
Approches de recherche :

- Etude théorique des fondements linguistiques de la sémantique et de sa représentation formelle
- Etude théorique des structures d'interaction et de discours
- Travaux expérimentaux basés sur des développements logiciels
- Construction de ressources et des expériences basées sur des corpus

Contexte Semantics4FAIR

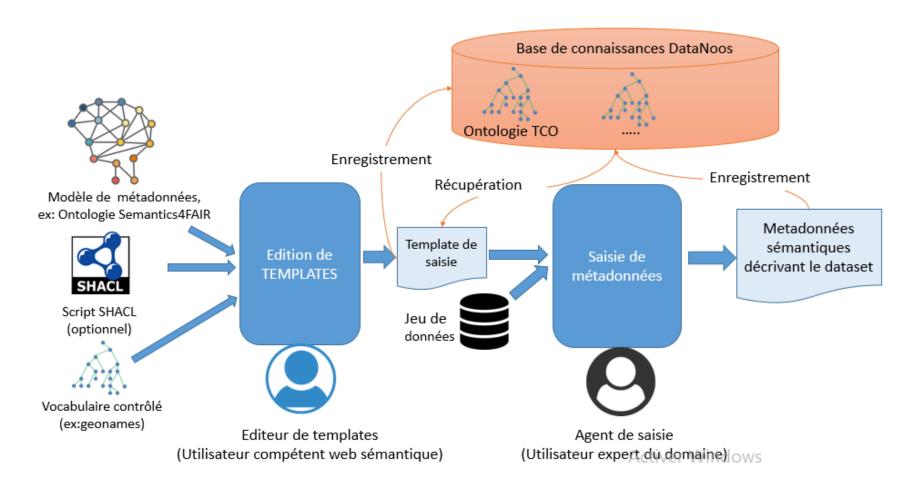
- Faciliter la tâche de recherche et d'accès aux données scientifiques résultant à la fois de la recherche et de la production par une communauté scientifique donnée
- Soutenir le développement de nouveaux usages par d'autres communautés

Contexte Semantics4FAIR



 Une alliance académique regroupant chercheur.e.s, enseignant.e.sc hercheur.e.s, ingénieur.e.s, postdoctorant.e.s, étudiant.e.s en Doctorat/Master/Licence autour du partage de ressources numériques et des pratiques de la connaissance

- Contribue à définir les conditions nécessaires pour que des jeux de données soient véritablement conformes aux principes FAIR, y compris pour des personnes d'autres disciplines que celle des données.
 - ⇒ Plateforme DataNoos



Problématique

- Semantics4FAIR : FAIRisation de données == Ajout de métadonnées au jeux de données
 - → Instancier un modèle ontologique
- Experts métier n'ayant pas de connaissance en web sémantique ⇒ Problème d'instanciation du modèle ontologique
- Solution : Développer une application avec des interfaces ergonomiques appelés templates pour faciliter la génération de métadonnées à base de modèle ontologique
- Modèle pas unique ⇒ outil de génération semi-automatique de templates à base de modèle ontologique (module DN-Template)

PLAN

- → Architecture globale du module DN-Template
- → Etude de l'existant
- → Documentation de la plateforme DataNooS
- → Développement du module DN-Template
- → Conclusion
- → Perspectives

Etude de l'existant

- Les principes FAIR
- Vocabulaires pour représentées les métadonnées dans Semantics4FAIR : DCAT, DCAT-AP, OWL, RDF DATA CUBE...
- Etude du modèle de représentation des métadonnées dans Semantics4FAIR
- Shacl Shapes Constraint (SHACL)

Shapes Constraint Language (SHACL)

 SHACL est un langage et une recommandation du W3C, qui permet la représentation des contraintes et la validation des données saisies par rapport à ces contraintes.

 Utiliser pour extraire les propriétés associées aux concepts à décrire dans le template de saisie pour définir automatiquement des contraintes sur les champs de saisie

sh:Shape

Architecture générale de SHACL

sh:targetClass : rdfs:Class

sh:targetNode : any IRI or literal

sh:targetObjectsOf : rdf:Property

sh:targetSubjectsOf: rdf:Property

sh:deactivated : xsd:boolean

sh:message: xsd:string or rdf:langString

sh:severity : sh:Severity

sh:NodeShape

Constraint parameters, for example:

sh:closed : xsd:boolean

sh:or : rdf:List sh:not : sh:Shape

sh:property: sh:PropertyShape

sh:PropertyShape

Constraint parameters, for example:

sh:minCount, sh:maxCount : xsd:integer

sh:class or sh:datatype : rdfs:Resource

sh:node: sh:NodeShape

sh:name: xsd:string or rdf:langString

sh:description : xsd:string or rdf:langString

sh:defaultValue : any

sh:group : sh:PropertyGroup

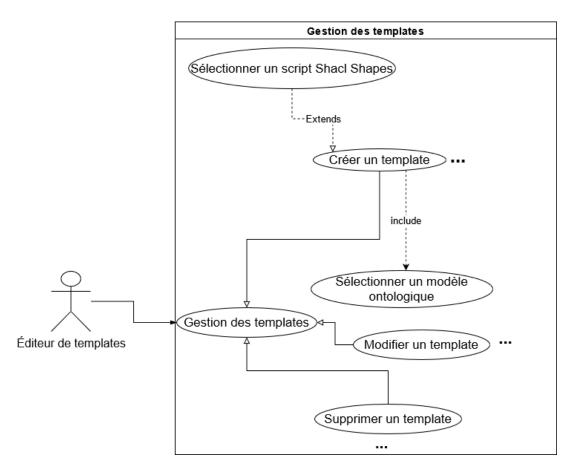
sh:path:rdfs:Resource

```
:Dataset Shape
   a sh:NodeShape ;
   sh:name "Dataset"@en ;
   sh:property [
       sh:minCount 1;
       sh:nodeKind sh:Literal ;
       sh:path dct:description ;
       sh:severity sh:Violation
   1, [
       sh:minCount 1;
       sh:nodeKind sh:Literal :
       sh:path dct:title;
       sh:severity sh:Violation
       sh:nodeKind sh:Literal ;
       sh:path dct:identifier;
       sh:severity sh:Violation
   1. [
       sh:class vcard:Kind ;
       sh:path dcat:contactPoint :
       sh:severity sh:Violation
```

Extrait d'un script shacl définissant les contraintes de la classe dcat:Dataset

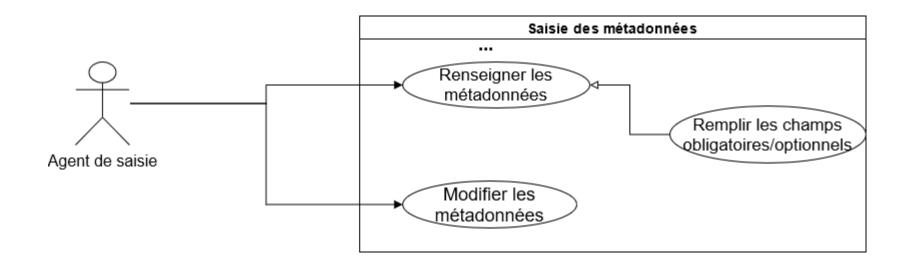
Documentation de la plateforme DataNooS

- Etude fonctionnelle
 - Diagramme de cas d'utilisation
 - Diagramme de séquence
- Etude technique
 - Etude du code existant pour identifier les différentes fonctions intervenant lors de l'exécution des use case


Développement du module DN-Template

Module DN-Template

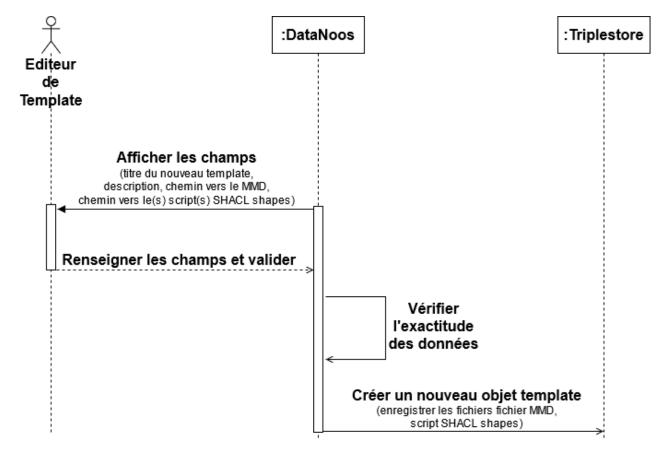
Objectifs:


- Génération semi-automatique de template de saisie à base d'ontologie de représentation des métadonnées
- Saisie des métadonnées en utilisant les templates générés

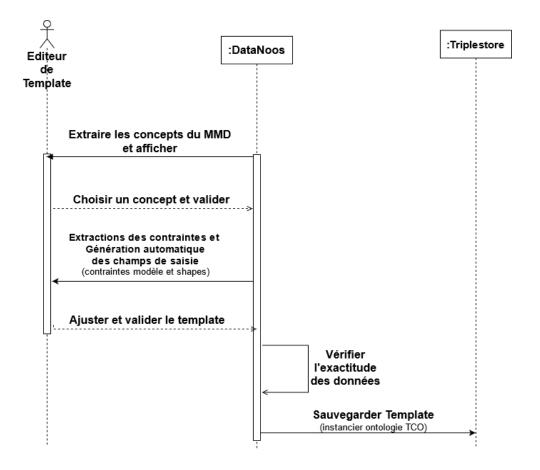
Identification des acteurs et des cas d'utilisation du module DN-Template

Extrait du diagramme de cas d'utilisation pour la génération semi-automatique de template de saisie

Identification des acteurs et des cas d'utilisation du module DN-Template

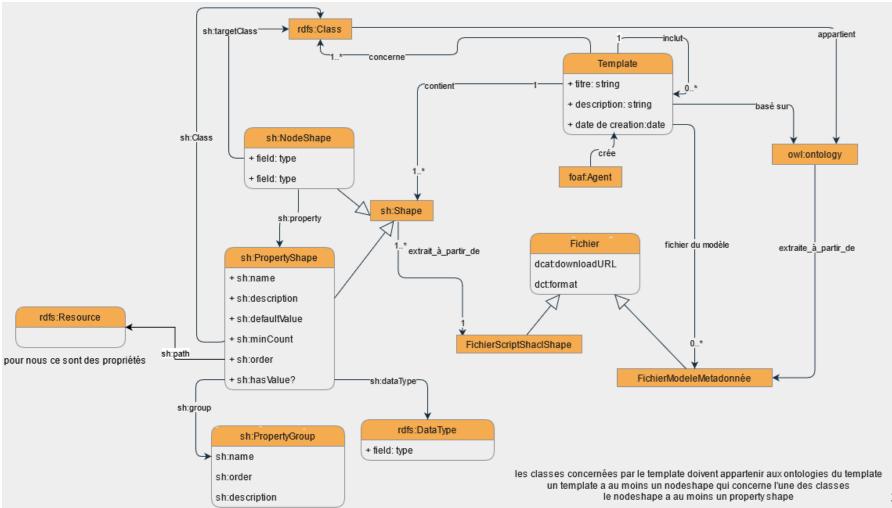

Extrait du diagramme de cas d'utilisation pour la saisie des métadonnées

Spécifications du module DN-Template

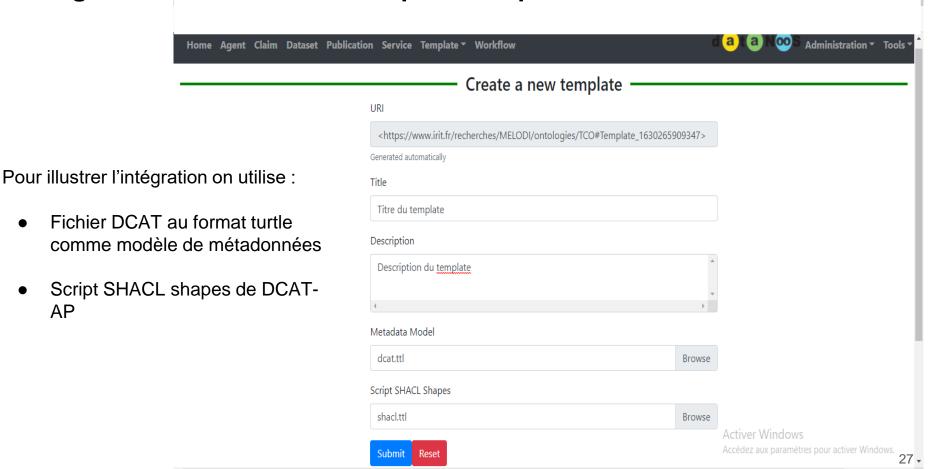

Deux étapes pour la réalisation du module :

- Définition de template de saisie de métadonnées
- Saisie de métadonnées

→ Illustration avec des diagrammes de séquence


MMD: Modèle de Métadonnées

Génération semi-automatique d'un nouveau template

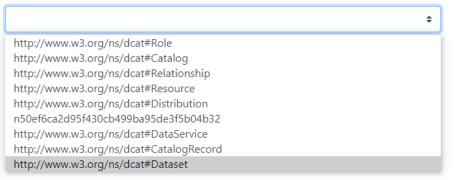

Conception du module DN-Template

- → Proposer une ontologie : TCO (Template and Constraint Ontologie)
 - Enregistrer les templates définis via l'éditeur de template
 - Garder les informations sur le template : date de création, chemin des fichiers (modèle de métadonnées et script shacl), IRI de l'ontologie du fichier modèle...
- → Définir un modèle ontologique sous forme de diagramme de classe UML

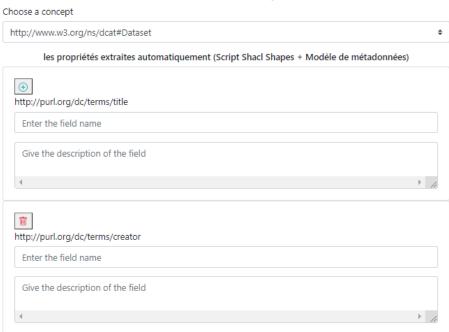
Intégration du module DN-Template à la plateforme DataNooS : Démo

AP


```
PREFIX TCO: <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#">https://www.irit.fr/recherches/MELODI/ontologies/TCO#</a>
TCO:Template30082021 a TCO:Template
                                              dct:tiltle " Template basé sur le modèle DCAT ";
                                              dct:description " Ce template est créé pour décrire les jeux de données en utilisant le modèle DCAT";
                                              dct:created "3008202100959"; #en datetime
                                              TCO:fichierDuModèle <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#MetadataModelDocument">https://www.irit.fr/recherches/MELODI/ontologies/TCO#MetadataModelDocument</a> dcat>;
                                              TCO:basedOn <a href="http://www.w3.org/ns/dcat">http://www.w3.org/ns/dcat</a>; #iri de l'ontologie
                                              TCO:contains <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument">TCO:contains <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument">TCO:contains <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument">TCO:contains <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument">TCO:contains <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument">TCO:contains <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument">https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument</a> dcat-ap>.
<a href="http://www.w3.org/ns/dcat">http://www.w3.org/ns/dcat</a> TCO:isExtractedFrom <a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#MetadataModelDocument">https://www.irit.fr/recherches/MELODI/ontologies/TCO#MetadataModelDocument</a> dcat</a>.
<a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#MetadataModelDocument">https://www.irit.fr/recherches/MELODI/ontologies/TCO#MetadataModelDocument</a> dcat> a meatadataFileModel;
                                                                                                                                                                                           dcat:downloadURL "D:\Semantics4FAIR\Files onto\dcat.ttl".
<a href="https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument_dcat-ap">https://www.irit.fr/recherches/MELODI/ontologies/TCO#shaclShapeScriptDocument_dcat-ap</a> a ScriptShaclShapeFile;
```


ap.ttl".

dcat:downloadURL "D:\Semantics4FAIR\Files onto\dcat-


Create a new template

Choose a concept

Conclusion

- → Contributions principales de ce stage :
 - la documentation de la plateforme DataNoos (aucune documentation détaillée n'existait auparavant)
 - une ontologie qui permet de décrire les formulaires de saisie de métadonnées (ontologie TCO)
 - le module DN-Template pour la gestion de la saisie de métadonnées sur la plateforme DataNoos
 - la validation de la proposition en utilisant le modèle DCAT et son script SHACL existant
- → A titre personnel:
 - ◆ Expérience enrichissante pleine d'apprentissage
 - Mise en pratique des savoirs acquis lors de ma formation en DC
 - Opportunité de travailler sur un projet innovant tel que DataNooS

Perspectives

- → Achever la phase d'implémentation
 - Générer le template final avec des champs plus compréhensibles pour les experts du domaine (les météorologues)
 - Terminer la phase de saisie de métadonnées

→ Exporter les templates définis par l'utilisateur sous un format de script SHACL

Références

- ★ Mark D Wilkinson et al. "The FAIR Guiding Principles for scientific data management and stewardship". In: Scientific data 3.1 (2016), pp. 1–9.
- ★ Annika Jacobsen et al. "A Generic Workflow for the Data FAIRification Process". In: Data Intelligence 2.1-2 (2020), pp. 56
- ★ Dan Brickley, Matthew Burgess, and Natasha F. Noy. "Google Dataset Search: Building a search engine for datasets in an open Web ecosystem". In:The World Wide Web Conference, WWW, San Francisco, CA, USA. ACM, 2019, pp. 1365– 1375.url:https://doi.org/10.1145/3308558.3313685
- ★ Amina Annane et al. "Un modèle sémantique en vue d'améliorer la FAIRisation des données météorologiques". In:Journées Francophones d'Ingénierie des Connaissances (IC)Plate-Forme Intelligence Artificielle (PFIA 2021). Ed. by Maxime Lefrançois. Collège SIC (Science de l'Ingénierie des Connaissances) de l'AFIA. Bordeaux, France: AFIA :Association Française pour l'Intelligence Artificielle, June 2021, pp. 20–29.url:https://hal-emse.ccsd.cnrs.fr/emse-03260061.

MERCI!!!