
James Orr, Sanjoy Baruah

Multiprocessor Scheduling of
Elastic Tasks

Thursday, November 7, 2019

1

n Buttazzo et al. introduced the elastic scheduling model
» Increase tasks’ periods to compress (decrease) utilizations
» Analogous to elastic compression of physical springs

Elastic Scheduling of Real-Time Tasks

FF

Target	Length

2

n However, each task can only be stretched to

n Buttazzo et al. provide an iterative algorithm that
increases periods from proportionally to (as far
as) for a uniprocessor

Elastic Scheduling of Real-Time Tasks
3

Elastic Coefficients

nIdea: preserve semantics of Buttazzo’s algorithm
» Find smallest value of such that all tasks are schedulable
» must be in the range [0, Φ] where Φ is the maximum value

among tasks of the equation

» =0 implies all tasks at

» =Φ implies all tasks at

Multiprocessor Scheduling of Elastic Tasks
4

»Fluid – theoretical algorithm in which tasks can use a
partial processor, can use full processor capacity

Experiments to Validate the Approach
nAttempt to schedule (by simulation) task sets via 4
existing scheduling algorithms (smallest wins)

5

»Fluid
»Global EDF – jobs scheduled where available
»Fluid
»Global EDF
»PriD – generalization of Global EDF tasks with highest Ui

get dedicated processors

»Fluid
»Global EDF
»PriD
»Partitioned –jobs always

on the same processor

CPU
3

CPU
2

CPU
1

CPU
1

CPU
3

CPU
2

CPU
1

CPU
3

CPU
2

J. Goossens, S. Funk, and S. Baruah "Priority-driven Scheduling of Periodic
Task Systems On Multiprocessors" RTS Journal v. 25, 2003

CPU
1

CPU
3

CPU
2

Schedulable under Buttazzo’s algorithm for scheduling on a uniprocesor

Can actually partition tasks in polynomial time

Experimental Details

nFor each scheduling algorithm iterate over
range [0, Φ] to find smallest value such that
the taskset is schedulable

nGenerate 1000 task sets per data point
»m={8, 16, 32} CPUs
»n={2m, 2.5m, 3m, 4m, 8m} tasks
»Largest possible task size ⍺={0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
» ={1.1m⍺, 1.5m⍺, 1.9m⍺}

6

Summary of Results
nMonotonic ordering of schedulability

»Fluid > Partitioned > PriD > Global EDF
nAdditional observations

»Schedulability increases as ⍺ decreases
»Schedulability increases as number of CPUs

decreases
»Schedulability (generally) increases as tasks/CPU

increases

7

Lower is better

8

Schedulability increases as ⍺ decreases

Higher is better

9

Schedulability increases as ⍺ decreases

Lower is better

Schedulability increases as number of CPUs decreases
(but tasks/CPU stay the same)

10

Higher is better

(but tasks/CPU stay the same)

11

Schedulability increases as number of CPUs decreases

Lower is better

Schedulability (generally) increases as tasks/CPU
increases

12

Higher is better

13

Schedulability (generally) increases as tasks/CPU
increases

Summary of Results
nMonotonic ordering of schedulability

»Fluid > Partitioned > PriD > Global EDF
nAdditional observations

»Schedulability increases as ⍺ decreases
»Schedulability increases as number of CPUs

decreases
»Schedulability (generally) increases as tasks/CPU

increases

14

Thank you.

15

Supported in part by NSF grant CNS-1911460

Questions?

Supplementary Slides
16

n - Minimum (Desired) Period,

n – Maximum (Acceptable) Period,
n – Current Period
n – Computation Time
n – Elastic Coefficient

» Higher implies a more elastic task

G. Buttazzo, G. Lipari, and L. Abeni
"Elastic Task Model for Adaptive Rate Control," RTSS 1998

Time
τ1 τ1 τ1 τ1

17

Effects of changing ⍺

Lower is better

18

Higher is better

19

Effects of changing ⍺

Lower is better

20

Effects of changing no. tasks/CPU

Higher is better

21

Effects of changing no. tasks/CPU

Lower is better

22

Effects of changing no. of CPUs
(but keeping tasks/CPU constant)

Higher is better

23

Effects of changing no. of CPUs
(but keeping tasks/CPU constant)

