

Precise Scheduling of Mixed-Criticality Tasks by Varying Processor Speed

Ashikahmed Bhuiyan^{1*}, **Zhishan Guo¹**, Sai Sruti², and Kecheng Yang³ ¹University of Central Florida, ²Missouri University of Science & Technology, ³Texas Tech University,

*Alphabetically ordered by last names

RTNS'19, Nov. 06~08, 2019, Toulouse, France

Real-Time & Intelligent Systems Lab 11/07/2019

Minimum energy conserving speed?

Real-Time & Intelligent Systems Lab 11/07/2019

S. Baruah, V. Bonifaci, G. DAngelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster, and L. Stougie, "The preemptive uniprocessor scheduling of mixed-criticality implicit-deadline sporadic task systems," in ECRTS 2012

Real-Time & Intelligent Systems Lab 11/07/2019

EDF-VD

Theorem 3.4. Given a precise mixed-criticality model task set, the minimum value of ρ for the task set to be schedulable by EDF-VD is

$$\rho = \min(U_L^L + U_H^H, U_L^L + \frac{(1 - U_L^L)U_H^L}{(1 - U_H^H - U_L^L)})$$

Real-Time & Intelligent Systems Lab 11/07/2019

Theorem 3.4. Given a precise mixed-criticality model task set, the minimum value of ρ for the task set to be schedulable by EDF-VD is

$$\rho = \min(U_L^L + U_H^H, U_L^L + \frac{(1 - U_L^L)U_H^L}{(1 - U_H^H - U_L^L)})$$

Real-Time & Intelligent Systems Lab 11/07/2019

Real-Time & Intelligent Systems Lab 11

11/07/2019

All the tasks receive processor-share and have a constant execution rate from their release to the deadline.

Acknowledgment: Sanjoy Baruah

J. Lee, K. Phan, X. Gu, J. Lee, A. Easwaran, I. Shin, and I. Lee. MC-Fluid: Fluid model-based mixed-criticality scheduling on multiprocessors. In RTSS 2014.

All the tasks receive processor-share and have a constant execution rate from their release to the deadline.

All the tasks receive processor-share and have a constant execution rate from their release to the deadline.

❑ All the tasks receive processor-share and have a constant execution rate from their release to the deadline.

□ All the tasks receive processor-share and have a constant execution rate from their release to the deadline.

Total processor-share (of each task) is less or equal to the capacity (speed) of the processor.

□ All the tasks receive processor-share and have a constant execution rate from their release to the deadline. Total processor-share (of each mode-switch task) is less or equal to the Cumulative Execution capacity (speed) of the processor. HI-rate $\sum \theta_i^l < 1$ θ_i^{H} C_i^H $\tau_i \in \tau$ $\theta_i^{\; H} \leq 1$ 0 LO-rate

All the tasks receive processor-share and have a constant execution rate from their release to the deadline.
Total processor-share (of each

□ All the tasks receive processor-share and have a constant execution rate from their release to the deadline. Total processor-share (of each mode-switch task) is less or equal to the Cumulative Execution capacity (speed) of the processor. HI-rate $\sum_{\tau_i \in \tau} \theta_i^{\ l} < 1 \qquad \sum_{\tau_i \in \tau_H} \theta_i^{\ H} \leq 1$ θ_i^{H} C_i^H $\theta_i^{\ H} = \theta_i \qquad \theta_i^{\ l} = \lambda \theta_i$ 0 $\lambda = \frac{U^L}{1 + U^L - U^H}$ LO-rate $\forall i, \theta_i = \frac{u_i^L}{\lambda} - u_i^L + u_i^H$

- **Speedup Bound,** *s***.** How much faster processors are required for an algorithm to schedule the same taskset, scheduled by an optimal algorithm.
- Approximation Ratio, α . The ratio of energy conserving speed determined by an algorithm vs the optimal algorithm.

- **Speedup Bound,** *s***.** How much faster processors are required for an algorithm to schedule the same taskset, scheduled by an optimal algorithm.
- Approximation Ratio, α . The ratio of energy conserving speed determined by an algorithm vs the optimal algorithm.

	LO-criticality (Speedup Bound)	HI-criticality (Speedup Bound)	LO-criticality (Approximat ion Ratio)	HI-criticality (Approximation Ratio)
Optimal algorithm	Р	1	Р	1
An algorithm	sP	S	αP	1

Performance Evaluation

- **Speedup Bound,** *s***.** How much faster processors are required for an algorithm to schedule the same taskset, scheduled by an optimal algorithm.
- Approximation Ratio, α . The ratio of energy conserving speed determined by an algorithm vs the optimal algorithm.

Theorem 3.4. $(EDF - VD), s \le (1/\min(U_L^L + U_H^H, U_L^L + \frac{(1 - U_L^L)U_H^L}{(1 - U_H^H - U_L^L)}))$

Theorem 3.6.
$$(EDF - VD), \alpha \leq 1 + \frac{U_{H}^{\ \ L}(1 - U_{L}^{\ \ L})}{U_{L}^{\ \ L}(1 - U_{L}^{\ \ L} - U_{H}^{\ \ H})}$$

Theorem 4.3. (*MCF*),
$$\alpha \le \frac{1}{1 + U^L - U^H}$$

Energy-aware scheduling of MC tasks is challengingThis work

- Developed an integrated model combining precise scheduling of LO-criticality tasks on an energy-conserving platform.
- Proposed schedulability tests under the EDF-VD and MCF scheduling framework.
- Derived the speedup bound for EDF-VD and the approximation ratio for EDF-VD and MCF.

Energy-aware scheduling of MC tasks is challenging
 This work

- Developed an integrated model combining precise scheduling of LO-criticality tasks on an energy-conserving platform.
- Proposed schedulability tests under the EDF-VD and MCF scheduling framework.
- Derived the speedup bound for EDF-VD and the approximation ratio for EDF-VD and MCF.

Future Goal

- Considering multiprocessor platform and parallel task model.
- Experimental evaluation on a real platform.

Thank You

Real-Time & Intelligent Systems Lab 11/07/2019