
VALIDATING HIGH LEVEL SIMULATION
RESULTS AGAINST EXPERIMENTAL DATA

AND LOW LEVEL SIMULATION:
A CASE STUDY

David Griffin, James Harbin,

Alan Burns, Iain Bate, Robert I.

Davis, Leandro Soares Indrusiak

WIRELESS SENSOR
NODES

For when you want to transmit
data around a place without
wires

Reduces costs

Improve reliability, or at least
trade one set of reliability
concerns for another

Makes it much easier to deploy
if some of your nodes might
move

MIXED CRITICALITY SYSTEMS ON WIRELESS
SENSOR NODES COMMUNICATIONS

Intuition: Rather than have a definitively known worst case execution
time for each task, have more than one!

Most current work uses two: CLo and CHi

If a task exceeds a criticality budget, the system gracefully degrades
by reallocating resources to more important tasks

 E.g. if a task exceeds its Clo, all low criticality tasks get their resources lowered

 The protocol might allow for online recovery, or it might not

Attractive for wireless communications: Wireless communications are a
scarce resource shared by all nodes in range

AIRTIGHT

Protocol for Mixed Criticality Wireless Sensor
Networks Communication [Burns et al. 2018]

Synchronises clocks of nodes and uses a precomputed
global table to dictate which nodes should
send/receive at any time

Receiving nodes send an ACK packet

If a sending node doesn’t receive an ACK for a
packet, it will try to resend that packet

Tries harder to resend high-criticality packets than
low-criticality messages

If failures get too frequent, AirTight stops sending low-
criticality messages until the situation improves

IT’S NOT JUST…

AirTight is very lightweight and is
designed to be easy to analyze, which
isn’t the case for most competitors

• e.g. most difficult stuff is computed
offline

This paper uses a low-level custom
implementation of AirTight, but AirTight
isn’t an inherently low-level protocol. It
will work on top of more common
standards.

• Just needs the ability to be able to

send data and measure faults

Image credit: https://xkcd.com/927/

EXPERIMENTING WITH WIRELESS SENSOR
NETWORKS

It’s a pain.

Nodes have very little storage, so we can’t actually get most of the interesting data
from them
 Unless we wire them into a computer, defeating the point of “wireless sensor networks” as well as

introducing probe effects

Nodes are also slow, so experiments on real hardware take ages

It’s impossible to control all the variables, like background noise and therefore
transmission errors

Setting up experiments with real hardware is difficult

This makes it hard to develop a new wireless sensor network protocol using just real
world experiments

HIGH LEVEL
SIMULATORS

High level simulators provide a way around these
issues

Work much faster, and we can see everything that’s
happening

York implemented a good high level simulator for
AirTight

Abstracts away a lot of messy details of the real
world

Gives results which are pretty close to the real world

HIGH LEVEL
SIMULATORS

But how do we know that the results are
reasonable?

Simulator and Real-world results obviously differ
because the simulator doesn’t do a lot of things

 Simulator models a constant failure rate, but in real life
failure rates can change over time

 And published simulator experiments assume failure rate = 0 unless
we’re explicitly testing fault handling

 Simulator assumes that an ACK always arrives

 Simulator assumes perfect clock synchronisation

 Simulator assumes packets are an indivisible unit

Also simulator sometimes logs results which are
curious

 When you look at the detail, there are some noticeable
differences

DIFFERENCES BETWEEN REAL-WORLD
AND HIGH-LEVEL SIMULATOR

These differences aren’t that bad

Almost all the differences are a 1-slot pessimism in
the high-level simulator

It just seems odd that the high-level simulator
exhibits a pattern not seen in the real-world
experiment

This begs the question: Can we really trust the high-
level simulator?

WHAT TO DO ABOUT THE
DIFFERENCES?

Could treat these as bugs to fix in the high-level simulator
 But that could introduce more complexity to the high-level simulator,

making it slower and harder to understand

Could devise experiments to determine exact cause of
differences
 But that requires doing more experiments on real hardware, and getting

all the data off the real hardware is tricky

What we want is a way to characterise the difference
between already existing experiments without having to do
more work with real hardware.

That means we have to represent both of the real-world and
high-level simulator experiments in one framework.

SOLUTION: LOW-LEVEL SIMULATOR

Implement a low-level simulator which is capable of modelling the
real world more accurately as well as the high-level simulator

 Works at a sub-packet level

 Models failure of ACKs

 Models clock drift

 User can see everything that’s happening

Not a replacement for the high-level simulator because it’s far too
slow

But creates a system where the user controls all variables

SOLUTION: LOW-LEVEL SIMULATOR

Create two configurations for the low-level simulator

1. Match assumptions with the high-level simulator

 Assume ACKs never fail, constant failure rates etc.

2. Calibrated against real-world experiments

 ACKs can fail, failure rate models data extracted from experiments, clock
synchronisation can fail

SOLUTION: LOW-LEVEL SIMULATOR

Can then compare

 High-level simulator to the Low-level simulator (matching the High-level simulator
assumptions)

 Real world experiments to the Low-level simulator (matching real world
instrumentation)

If both of these are good matches, then differences between the
High-level simulator and the Real world experiments can be
explained by the difference in configuration of the Low-level
simulator

 Which can then be fed into development of the High-level simulator to improve its
accuracy

EXPERIMENT

Uses the data from the small-scale experiment in
Burns et al. 2018

Specification:

5 Nodes, 5 High Criticality Flows, 6 Low
Criticality Flows

 Full details in paper

 Each flow was analyzed separately, using appropriate
statistical tests to determine whether results matched

CALIBRATING THE LOW
LEVEL SIMULATOR:
EXAMINING THE REAL-
WORLD
Most of the faults are of single slot
duration

In fact, this distribution is exactly
what you’d see if every fault had a
duration of < 1 slot

The faults of length 2 are likely two
separate faults that happened
near each other

 (There exists one fault of duration 8 which is not
statistically significant)

CALIBRATING THE LOW
LEVEL SIMULATOR:
EXAMINING THE REAL-
WORLD
And when you look at the fault inter-arrival
times, they look pretty much exactly like a
random distribution of point faults

So the real-world experiments tell us we likely
have faults occurring at a sub-slot level,
because the phenomena behaves like an
instantaneous event

This goes against the design of the high-level
simulator, which was designed to test
AirTight’s resilience to long lasting faults

HIGH LEVEL VS LOW
LEVEL SIMULATOR

As can be seen, the low-level
simulator can match the high-
level simulator perfectly

This is accomplished by

1. Assuming all ACKs delivered

2. Assuming clock
synchronization

3. Assuming constant failure
rate

REAL WORLD EXPERIMENTS
VS LOW LEVEL SIMULATOR

Very similar, but not identical as experiments are
obviously not able to replicate the exact conditions of
the real world

Nodes have a randomized (but small) amount of clock
drift

 This would have been noticed earlier if our experiment sent
payload data

 In this experiment nodes are almost always listening, meaning
the system is tolerant to clock-drift

Fault rate is constant, but modelled on the real-data
rather than set

ACK packets can fail at a rate derived from the data

CONCLUSIONS ON THE EXPERIMENT

The High-level simulator is accurate in most respects, and much faster than
any competitor

 Speed is important for a lot of experiments in design!

Low-level simulator can get really close to both the results of the high level
simulator and the real world experiments

The experiments suggests that Clock Drift, ACK packet failure are our most
likely culprits for discrepancies between High-level simulator and reality

Clock Drift could be an issue when it comes to efficiency in the real world

 Can’t have two nodes transmitting at same time

 Have to pad slots to accommodate clock drift, or synchronise better, or use
better nodes

CONCLUSIONS
ON THE METHOD

Given a sufficiently configurable low-level
simulator, simulator configuration is a good way
of characterising how sets of results differ

This allows a concise and easy to understand
explanation of differences between a high-level
simulation and real-world experiments

These differences are useful to understand as
they can indicate whether or not the difference in
the results is manageable, or indicates a more
fundamental problem that needs attention

Hence explaining this difference is important to
have confidence that the results of the high-level
simulator are fit for purpose

